

Abstract—Characteristics of data stream make it difficult for

the clustering algorithms to satisfy the requirements on efficiency
and effectiveness. This paper proposes a data stream clustering
algorithm on dual-tier structure which employs the agent method.
In the on-line process, a set of agents working simultaneously
collect similar data points into sub-clusters by applying a heuristic
strategy. And in the off-line process, summary information from
the on-line component will be further analyzed to obtain the final
clusters. The algorithm also supports the time-window queries on
streams. The empirical evidence shows that this method can
obtain high-quality clusters with low time complexity.

Index Terms—Agent, Clustering, Data Mining, Data Stream

I. INTRODUCTION
ith the coming of the age of information, commerce,
telecom, medical treatment and other industries are

being confronted with a large amount of fast-arriving data more
and more frequently. The importance of streaming data analysis
gradually stands out in the domain of data mining, and
clustering data streams has become a heated topic.

A data stream is an ordered sequence of high-speed points
which are coming continuously. Usually a data stream can be
regarded as a dynamic data set, the scale of which increases
infinitely with the lapse of time. As a result, it is too expensive
to access a point in stream randomly, and thus requiring a single
scan over the stream has become an object of the clustering
algorithms. Clustering algorithms partition a data set into
several disjoint groups such that points in the same group are
similar to each other according to some similarity metric [1].
Clustering on streaming data brings forward challenges for
traditional algorithms in the following aspects: obtaining high
quality clusters by only one-pass over the data; time-window

Manuscript received September 29, 2005. This work was supported by the

National Natural Science Foundation of China under Grant No. 60433020, the
Key Laboratory for Symbol Computation and Knowledge Engineering of the
National Education Ministry of China, and the Computational and Software
Scientific and Technological Innovation of 985 Project.

D.B.Zhou Author is with the Department of Computer Science, Jilin
University, Changchun, China (e-mail: zdbjob@yahoo.com.cn).

L.F.Jia Author is with the Department of Computer Science, Jilin University,
Changchun, China. (e-mail: JuniorJia@yahoo.com.cn)

Z.Wang Author is with the Department of Computer Science, Jilin
University, Changchun, China. (e-mail: wz2000@jlu.edu.cn).

X.J.Xu Author is with the Department of Computer Science, Jilin University,
Changchun, China. (e-mail: xuxiujuan666@yahoo.com.cn)

C.G.Zhou Author is with the Department of Computer Science, Jilin
University, Changchun, China. (e-mail: cgzhou@jlu.edu.cn)

analysis over an arbitrary period of the stream etc. As for
stream clustering, a common method is dividing the streaming
data into chunks, and algorithms for static sets can be used on
each sub-set separately [2]. In recent years, stream algorithms
have developed into a two-phase structure [3], [4]. Usually, a
dual framework includes two parts: the on-line component and
the off-line component. The former is responsible for the fast
but rough processing of streaming data and saving the summary
information to meet the one-pass restriction while the latter
takes advantage of the information to conduct high-level
analysis. At present, stream algorithms are still facing some
problems, for example: sensitive to the initial data points; bad
quality of clusters due to the loss of global information caused
by dividing the stream; high time complexity etc.

A novel dual-tier clustering algorithm for data streams,
AGCluStream, is proposed in this paper. The on-line algorithm
uses agents to make similar points denser in local areas, and
record the temporary distribution of data according to the
pyramidal time frame [3]. The off-line algorithm uses these
records to conduct time-window analysis and higher-level
clustering analysis. AGCluStream dose not divide the stream,
and it adopts an incomplete-partition strategy to maintain the
global information more effectively.

This paper is organized as follows. In Section II, we will
discuss the framework of AGCluStream including: In II.A, we
will introduce the framework. In II.B, we will introduce the
concept of grid-cluster. In II.C, we will explain the concrete
procedure of agent operation. In II.D, we will introduce the data
condensing method. In II.E, we will discuss the details of the
on-line algorithm. In II.F, we will discuss the process of
time-window analysis. In Section III, we will show the
experiment results. Section IV is the conclusion part.

II. THE FRAMEWORK OF AGCLUSTREAM

A. A Brief Introduction to AGCluStream
AGCluStream is a heuristic data stream clustering algorithm

based on agent method, falling into the on-line and the off-line
components. The on-line algorithm saves data information in a
set of data structure called grid-cluster, and the agents adopt
heuristic strategy to move data among grid-clusters ceaselessly
to increase the degree of the data similarity in individual
grid-cluster. In this process, newly arriving points continuously
enter the grid-clusters, and then are carried to a proper position,
where there are more similar points. Points in grid-clusters need

An Agent-Based Dual-Tier Algorithm for
Clustering Data Streams

DongBin Zhou, LiFeng Jia, Zhe Wang, XiuJuan Xu, ChunGuang Zhou

W

1-4244-0133-X/06/$20.00 © 2006 IEEE 5221-4244-0134-8/06/$20.00 © 2006 IEEE

to be condensed at some time to release the memory for the
future points. The on-line algorithm takes snapshots of the data
stored in memory in time to record the data distribution at that
moment. The off-line algorithm uses these snapshots to conduct
further analysis and obtain the final clustering results.

B. Grid-Cluster
A grid-cluster is a data structure used to save streaming data

and their statistical information in AGCluStream. It is assumed
that, the data stream consists of a set of continuous records X1 ...
Xi ... and each Xi is a multi-dimensional record containing d
dimensions which are denote by Xi = (xi

1…xi
d). Then a

grid-cluster is defined as follows:
Definition 1. (Grid-Cluster): A grid-cluster is used to store

the data points. It always maintains three statistical variables
about the data inside: N, LS and SS. It is assumed that there are
N points X1 ... XN saved in the grid-cluster G, these statistical
variables are defined as follows:

N: The total number of the points in G.
LS: LS corresponds to a vector of d entries LS = (P1 … Pd),

where the i-th entry k
i

N
ki xP 1=Σ= .

SS: SS corresponds to a vector of d entries SS = (Q1 … Qd),
where the i-th entry 2

1)(k
i

N
ki xQ =Σ= . ■

The definition shows that each grid-cluster corresponds to a
vector of three entries (N, LS, SS). Actually, grid-cluster is
similar to the micro-cluster in CluStream [3], except that what
is saved in grid-cluster is not only the summary information but
the real data points. Another difference between grid-cluster
and micro-cluster is that grid-cluster need not maintain the
time-stamps of points. In CluStream, time-stamps are used to
identify the micro-clusters which need to be deleted. However,
it is dangerous to delete historical information of a stream
unless take the attenuation into account, because some outliers
in different time horizons probably constitute a cluster from the
global point of view. Therefore, any deletion only depends on
the temporary distribution of current data could cause the loss
of information. AGCluStream avoids deleting operations by
condensing data with the incomplete-partition strategy.

C. Agent Operation
Agents can be regarded as a set of independent working

threads, there can be several agents working simultaneously.
All of the agents share the same algorithm procedure, and thus
AGCluStream supports the multi-threads run mode. The agent
operation aims to increase the density of similar points by
moving points among grid-clusters. It is necessary to define the
density parameter of data first.

Definition 2. (Density Parameter): The density of similar
points in a grid-cluster is denoted by J which is defined
as NXXDJ ck

N
k /),(2

1=Σ= , where D(Xk, Xc) denotes the
distance from Xk to the center Xc. ■

As the definition shows, J is actually the variance statistic of
data in grid-cluster and the formula to calculate the value of J is
J = |SS| / N - | (LS / N) 2 |. For a grid-cluster Gi and a point Xj,
there is a conclusion as follows:

Lemma 1. Let J be the density parameter of grid-cluster Gi,

J∆ be the increment of J, Xc be the center of Gi, N be the
number of points in Gi, and N >> 1. Then,

If Xj ∈ Gi, when Xj is deleted from Gi, the necessary and
sufficient condition for 0<∆J is: Jxx i

c
k
i

d
k >−Σ =

2
1)(

which is referred to as the pick-up condition.
If Xj ∉ Gi, when Xj is added into Gi, the necessary and

sufficient condition for 0<∆J is: Jxx i
c

k
i

d
k <−Σ =

2
1)(

which is referred to as the release condition. ■
Proof: Above conclusions are obvious. Skip proof here. ■
We define two states for an agent: Loading and Idling, and

two types of operation: Pick-up and Release. Agents in idling
state first pick up points from the buffer where store the points
which have just arrived. When the buffer is empty, the idle
agents will pick up points that satisfy the pick-up condition
from the grid-clusters. When an idle agent gets a point Xi, it will
fall into the loading state. A loading agent tries to look for a
grid-cluster which makes Xi satisfy the pick-up condition to
release the loading point.

Agent operations constitute the main part of the on-line
algorithm, and thus the efficiency of judging the pick-up and
release conditions has a direct impact on time complexity of the
algorithm. As the calculation of Euclidean distance usually
requires a high cost, we can take the judgment of sufficient
conditions as an assistant method to judge the necessary and
sufficient conditions by the Manhattan distance.

Lemma 2. Let J be the density parameter of the grid-cluster
Gi, J∆ be the increment of J, Xc be the center of Gi, and d be
the number of data dimensions. Then,

If Xj ∈ Gi, when Xj is deleted from Gi, the sufficient
condition for 0<∆J is: JdkxxMax k

c
k
i >∈−]},1[||{| (1)

If Xj ∉Gi, when Xj is added into Gi, the sufficient condition
for 0<∆J is: Jxx k

c
k
i

d
k <−Σ = |)(|1 (2) ■

Proof: As for the case of Formula1, we know from Lemma1
that points which satisfy the pick-up condition are distributed in
the data space outside the d-dimension sphere O with J as its
radius. Points which satisfy Formula1 are distributed in the
space outside the d-dimension circumscribed-polyhedron of O,
so they satisfy the pick-up condition at the same time. It is
similar to the case of Formula 2. ■

Lemma 3 Let R be the radius of the sub-cluster constituted
by points in grid-cluster Gj, 2t d= and ∫

+∞ −−=Γ
0

1)(dxexn xn .

The error function for judging the pick-up condition by

Formula 1 is: 2

2 (1)()()
()

t t t

p t t t

t dJ Jf d
R J

π
π

Γ + −=
−

The error function for judging the release condition by

Formula 2 is:
2 (1)()

t

r t

tf d π
π

− Γ += ■

Proof: As for the case of the pick-up condition judgment, we
know from the proof of Lemma 2 that errors are determined by
the difference between the volume of the d-dimension sphere
and that of its regular circumscribed-polyhedron. It is similar to
the case of release judgment. ■

1-4244-0133-X/06/$20.00 © 2006 IEEE 523

Let agents be in idling state initially, Q be the maximum
exploration steps of a agent, M be the minimum points number
in grid-cluster, N be the maximum points number in
grid-cluster, and D(Xi, Gi) be the distance from the point Xi to
the center of grid-cluster Gi. The agent operation algorithm is
summarized as follows:

Algorithm AgentOP (Q, M, N)
1. Check whether the buffer is empty, if not empty, pick up

a point from the buffer and fall into the loading state,
then go to 4; otherwise, go to 2.

2. Skip randomly to a grid-cluster Gi, if the point number
Ci < M, go to 1.

3. Choose a point Xi randomly, if it satisfies the pick-up
condition, pick up this point and fall into the loading
state, add Gi to a set S, exploration counter T = 0, go to 4;
otherwise, repeat this step.

4. Skip randomly to a grid-cluster Gj (ij ≠), if the point
number Cj < M, add Gj to S, go to 6; If Cj > N, repeat this
step. Otherwise, go to 5.

5. If the loading point satisfies the release condition,
release it into the current grid-cluster, go to ends.
Otherwise, add Gj to S, go to 6.

6. T = T + 1, if QT ≤ go to 4; otherwise, release the
loading point into the grid-cluster Gk, where k is defined
as D(Xi, Gk) = Min {D(Xi, Gi) | Gi ∈S }, clear S. ■

Note that S stores G0 as the original grid-cluster from where
the loading point is picked up, if D(Xi, G0) is the minimum
value of the distance from points in S to the center, the point
will not move, and we say that the agent has executed a futile
action. The ratio of the futile action times to the total action
times in a unit time is referred to as the futile action rate.

D. Data Condensing
There are a great number of points stored in the grid-clusters,

and the memory will be exhausted with the accumulation of
streaming data. The condensing operation combines the denser
points near the grid-cluster center to a complex-point with a
higher weight, witch denotes the number of points it contains,
and the peripheral sparse points are left for the future treatment
together with later points. This method is referred to as an
incomplete-partition strategy.

Assume that there are currently C points in memory,
condensing operation will sort the points in descending order
by distance from their centers, delete the first E points and
gather the remaining points towards the center. We denote the
condensing rate by the variable CE−=1ρ .

Let C be the number of points in current memory, Dc
i be the

center of grid-cluster Gi, Ci be the number of points in Gi, Wi be
the weight of the point Di, and ρ be the condensing rate. We
summarize the condensing algorithm as follows:

Algorithm Condensing (C, ρ)
1. Sort all the points in descending order of distance from

their centers, and get the ordered sequence D1 … Dc.
2. Calculate the number of the points to be deleted

)1(ρ−×= CE . S is a set of the deleted points. For each
i ∈ [1, E], delete Di from the grid-cluster it belongs to,

and add it to S.
3. For each grid-cluster Gi, create a new point Di = Dc

i,
with the weight Wi = Ci. Delete all the points in Gi and
then add Di to Gi.

4. Start agent threads to pick up the points in S, and release
them to proper grid-clusters until S is empty. ■

The grid-clusters need to be stored at snapshots in time in the
on-line stage. Snapshot can be regard as a mirror image of
current memory usually stored on disk, and it is also necessary
to condense the points before the storage of snapshot to reduce
the space complexity.

E. On-Line Algorithm
The more points the algorithm maintains, the better it can

reflect the data distribution. Assume that there are G
grid-clusters with N as their capacity, the maximum number of
points can be maintained in the algorithm is NGC ×< (When C
approaches to G×N, the condensing process will be triggered).
As a result, there are C points and G grid-clusters stored in
memory at the same time, the space complexity is)(GC +Ο .
It is assumed that the probability for picking up a point that
satisfy the pick-up condition is p, the time complexity for the
pick-up operation is))((pfΟ , and the probability density
function is kpkpfP)1())((−== . Let Q be the maximum
exploration steps, then the time complexity for the release
operation is)(QΟ .

The storage of the snapshots needs to put out all the data in
memory. There are two types of the output data points, the
complex-points formed in the condensing process and the
origin points still remaining in memory. As the time
window-analysis process requires identifying the different
types of points on snapshots, we have to assign a unique id to
each point when a snapshot needs to be stored after a
condensing operation. An origin point simply corresponds to a
unique id. A complex-point Dc represents a point set S, if there
is no point that has already got an id in S, Dc can be assigned a
unique id simply; otherwise, an id list L needs to be created for
Dc and all the ids in S should be copied to L, if S also contains
some id lists, they should be copied to L either.

AGCluStream needs not accumulate data for initialization
and is insensitive to the initial points. Once start an agent
thread, the on-line algorithm begin to run immediately. The
futile action rate increases gradually while similar points gather
towards to each individual grid-cluster. Futile actions may
cause a waste of the system resources, and thus the agents
should be reduced as the futile rate rises to save system
resources. Once the number of agents is reduced to be zero, the
algorithm will end automatically.

F. Time-Window Analysis
During the time-window analysis, AGCluStream chooses the

points of a given time horizon and performs clustering on them.
Time-window analysis relies on the snapshots which are stored
on the disk. In fact, because of the condensing operation, the
output OA of AGCluStream is much smaller than that of
CluStream Oc (OA ≈ ρ Oc), this proves that the storage

1-4244-0133-X/06/$20.00 © 2006 IEEE 524

requirement of AGCluStream is quite modest.
Time-window analysis needs two input parameters: the

current time tc and the length of the time window h. Time
window W(tc, h) represents a past time horizon of h from tc. Let
tn be the current time, T be the time horizon from the beginning
of the stream to tn, a common case in practice is tc = tn and h = T,
i.e., it is required to cluster all the data in stream by now. From
the above statement we know that the snapshot Sn stored at tn
contains information of all the historical data since the
beginning of the stream, so we could get the final cluster result
by Sn. A complex-point represents a set of points at the same
position and could be chosen as a cluster centroid. If the input
cluster number is K, we first employ the K-Means [5] method to
cluster the complex-points on Sn to get K clustering centroids,
and then apply K-Means again over all the weighted points on
Sn with these centroids to obtain the final result.

In common cases, h < T, and the time frame ensures that it is
always possible to find a snapshot at ts, ts < tc – h, and h’ = tc - ts,
is within a pre-specified tolerance of h. Assume that snapshots
saved at tc, ts are Sc, Ss, points in time window W(tc, h) are those
which exist only in Sc but not in Ss, i.e. they are in the point set
S(tc, h) = Sc –Ss. S(tc, h) can be obtained by the point ids as
follows: Initially, S(tc, h) = Sc, for each point Di in Ss, let IDi be
its id and Wi be its weight, there are two different cases:

(1) If Di is an origin point in Ss, delete Di from S(tc, h).
(2) If Di has been combined into a complex-point Dc in Sc,

IDi must be in the id list of Dc. Let Wc be the weight of
Dc, create a new point)()('

iciiccc WWDWDWD −⋅−⋅= with
its weight icc WWW −=' , then replace Dc by '

cD in S(tc, h).
Suppose that the input cluster number is K, we first cluster

the complex-points in S(tc, h) to get K cluster centroids, and
then cluster all the weighted points in S(tc, h) with these
centroids to obtain the final result.

III. EMPIRICAL RESULTS
All of our experiments are conducted on a PC with Intel

Pentium IV processor and 256 MB memory, which runs
Windows XP professional operating system. The data set is
generated by the DataGenerator 2.0.

At the moment T =100, we analyze points in the two time
windows W (100, 100) and W (100, 40) respectively, with the
stream speed = 1000/s. The quality of clustering results is
usually measured using the sum of square distance (SSQ).
Figure 1 shows the comparison on SSQ between the clustering
results of the two algorithms and the real clusters.
AGCluStream and CluStream present similar performances in
the best results of each algorithm, but AGCluStream possesses
better stability. In our experiment for testing the accuracy of the
algorithms identifying the cluster centers, 85.7% of the results
of AGCluStream fall in an error range of 16.7%, but the
proportion for CluStream in this error range is only 42.9%.

Figure 1 SSQ Ratios of The Real Clusters to the
Best Results Of Each Algorithm

0.977
0.912

0.975
0.913

0

0.2

0.4

0.6

0.8

1

1.2

W(100,100) W(100,40)

SS
Q
 R
a
ti
o
s

AGCluStream CluStream

The experiment has shown that AGCluStream can get a

lower time complexity. The iteration times that AGCluStream
takes for convergence almost crease linearly with the number of
data points. We set the stream speed to the maximum value that
can be accepted by the algorithm, and figure 2 shows the time
costs of AGCluStream over each period of the stream.

Figure 2 Test On Efficiency

0

0.5

1

1.5

2

2.5

3

3.5

4

6000 7000 8000 9000 10000 15000 20000

Data Quanitity

R
u
n
t
i
m
e
（
i
n

s
e
c
o
n
d
）

IV. CONCLUSIONS AND FUTURE WORK
In this paper, we have developed a novel data stream

clustering algorithm based on the agent swarm intelligence
technique. The algorithm avoids dividing the streaming data
into chunks so as to maintain the integrity of the global
information to get higher-quality clusters. This method needs
no initial points and is insensitive to the initialization
information. Meanwhile, it allows time-window analysis on
streams by the dual-tire structure. Experiment evaluations show
the excellent performance of our algorithm in the aspects of
effectiveness and efficiency. In future work, we will underline
the attenuation strategy in this framework which could reflects
the various tend of clusters in streaming data.

REFERENCES
[1] R. Duda and P. Hart. Pattern Classification and Scene Analysis. J. Wiley

and Sons, 197
[2] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani.

Streaming-data algorithms for high-quality clustering. Proceedings of
ICDE, 2002

[3] CC Aggarwal, J. Han, J. Wang, and PS Yu. A framework for clustering
evolving data streams. In Proceeings of the 29th VLDB conference, 2003

[4] Zhe Wang, Bin Wang, Chunguang Zhou, Xiujuan Xu. Clustering Data
Streams On the Two-tier Structure. APWeb 2004. 416-425

[5] Huang Z. Extensions to the k-means algorithm for clustering large data
sets with categorical values. Data Mining and Knowledge discovery,
1998,2: 283-304

1-4244-0133-X/06/$20.00 © 2006 IEEE 525

