
 

  
Abstract—Characteristics of data stream make it difficult for 

the clustering algorithms to satisfy the requirements on efficiency 
and effectiveness. This paper proposes a data stream clustering 
algorithm on dual-tier structure which employs the agent method. 
In the on-line process, a set of agents working simultaneously 
collect similar data points into sub-clusters by applying a heuristic 
strategy. And in the off-line process, summary information from 
the on-line component will be further analyzed to obtain the final 
clusters. The algorithm also supports the time-window queries on 
streams. The empirical evidence shows that this method can 
obtain high-quality clusters with low time complexity. 
 

Index Terms—Agent, Clustering, Data Mining, Data Stream 
 

I. INTRODUCTION 
ith the coming of the age of information, commerce, 
telecom, medical treatment and other industries are 

being confronted with a large amount of fast-arriving data more 
and more frequently. The importance of streaming data analysis 
gradually stands out in the domain of data mining, and 
clustering data streams has become a heated topic. 

A data stream is an ordered sequence of high-speed points 
which are coming continuously. Usually a data stream can be 
regarded as a dynamic data set, the scale of which increases 
infinitely with the lapse of time. As a result, it is too expensive 
to access a point in stream randomly, and thus requiring a single 
scan over the stream has become an object of the clustering 
algorithms. Clustering algorithms partition a data set into 
several disjoint groups such that points in the same group are 
similar to each other according to some similarity metric [1]. 
Clustering on streaming data brings forward challenges for 
traditional algorithms in the following aspects: obtaining high 
quality clusters by only one-pass over the data; time-window 
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analysis over an arbitrary period of the stream etc. As for 
stream clustering, a common method is dividing the streaming 
data into chunks, and algorithms for static sets can be used on 
each sub-set separately [2]. In recent years, stream algorithms 
have developed into a two-phase structure [3], [4]. Usually, a 
dual framework includes two parts: the on-line component and 
the off-line component. The former is responsible for the fast 
but rough processing of streaming data and saving the summary 
information to meet the one-pass restriction while the latter 
takes advantage of the information to conduct high-level 
analysis. At present, stream algorithms are still facing some 
problems, for example: sensitive to the initial data points; bad 
quality of clusters due to the loss of global information caused 
by dividing the stream; high time complexity etc. 

A novel dual-tier clustering algorithm for data streams, 
AGCluStream, is proposed in this paper. The on-line algorithm 
uses agents to make similar points denser in local areas, and 
record the temporary distribution of data according to the 
pyramidal time frame [3]. The off-line algorithm uses these 
records to conduct time-window analysis and higher-level 
clustering analysis. AGCluStream dose not divide the stream, 
and it adopts an incomplete-partition strategy to maintain the 
global information more effectively. 

This paper is organized as follows. In Section II, we will 
discuss the framework of AGCluStream including: In II.A, we 
will introduce the framework. In II.B, we will introduce the 
concept of grid-cluster. In II.C, we will explain the concrete 
procedure of agent operation. In II.D, we will introduce the data 
condensing method. In II.E, we will discuss the details of the 
on-line algorithm. In II.F, we will discuss the process of 
time-window analysis. In Section III, we will show the 
experiment results. Section IV is the conclusion part. 

 

II. THE FRAMEWORK OF AGCLUSTREAM  

A. A Brief Introduction to AGCluStream 
AGCluStream is a heuristic data stream clustering algorithm 

based on agent method, falling into the on-line and the off-line 
components. The on-line algorithm saves data information in a 
set of data structure called grid-cluster, and the agents adopt 
heuristic strategy to move data among grid-clusters ceaselessly 
to increase the degree of the data similarity in individual 
grid-cluster. In this process, newly arriving points continuously 
enter the grid-clusters, and then are carried to a proper position, 
where there are more similar points. Points in grid-clusters need 
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to be condensed at some time to release the memory for the 
future points. The on-line algorithm takes snapshots of the data 
stored in memory in time to record the data distribution at that 
moment. The off-line algorithm uses these snapshots to conduct 
further analysis and obtain the final clustering results. 

B. Grid-Cluster 
A grid-cluster is a data structure used to save streaming data 

and their statistical information in AGCluStream. It is assumed 
that, the data stream consists of a set of continuous records X1 ... 
Xi ... and each Xi is a multi-dimensional record containing d 
dimensions which are denote by Xi = (xi

1…xi
d). Then a 

grid-cluster is defined as follows:  
Definition 1. (Grid-Cluster): A grid-cluster is used to store 

the data points. It always maintains three statistical variables 
about the data inside: N, LS and SS. It is assumed that there are 
N points X1 ... XN saved in the grid-cluster G, these statistical 
variables are defined as follows:  

N: The total number of the points in G.  
LS: LS corresponds to a vector of d entries LS = (P1 … Pd), 

where the i-th entry k
i

N
ki xP 1=Σ= .  

SS: SS corresponds to a vector of d entries SS = (Q1 … Qd), 
where the i-th entry 2

1 )( k
i

N
ki xQ =Σ= . ■ 

The definition shows that each grid-cluster corresponds to a 
vector of three entries (N, LS, SS). Actually, grid-cluster is 
similar to the micro-cluster in CluStream [3], except that what 
is saved in grid-cluster is not only the summary information but 
the real data points. Another difference between grid-cluster 
and micro-cluster is that grid-cluster need not maintain the 
time-stamps of points. In CluStream, time-stamps are used to 
identify the micro-clusters which need to be deleted. However, 
it is dangerous to delete historical information of a stream 
unless take the attenuation into account, because some outliers 
in different time horizons probably constitute a cluster from the 
global point of view. Therefore, any deletion only depends on 
the temporary distribution of current data could cause the loss 
of information. AGCluStream avoids deleting operations by 
condensing data with the incomplete-partition strategy. 

C. Agent Operation 
Agents can be regarded as a set of independent working 

threads, there can be several agents working simultaneously. 
All of the agents share the same algorithm procedure, and thus 
AGCluStream supports the multi-threads run mode. The agent 
operation aims to increase the density of similar points by 
moving points among grid-clusters. It is necessary to define the 
density parameter of data first. 

Definition 2. (Density Parameter): The density of similar 
points in a grid-cluster is denoted by J which is defined 
as NXXDJ ck

N
k /),( 2

1=Σ= , where D(Xk, Xc) denotes the 
distance from Xk to the center Xc. ■  

As the definition shows, J is actually the variance statistic of 
data in grid-cluster and the formula to calculate the value of J is 
J = |SS| / N - | (LS / N) 2 |. For a grid-cluster Gi and a point Xj, 
there is a conclusion as follows: 

Lemma 1. Let J be the density parameter of grid-cluster Gi, 

J∆ be the increment of J, Xc be the center of Gi, N  be the 
number of points in Gi, and N  >> 1. Then,  

If Xj ∈  Gi, when Xj is deleted from Gi, the necessary and 
sufficient condition for 0<∆J  is: Jxx i

c
k
i

d
k >−Σ =

2
1 )(  

which is referred to as the pick-up condition. 
If Xj ∉  Gi, when Xj is added into Gi, the necessary and 

sufficient condition for 0<∆J  is: Jxx i
c

k
i

d
k <−Σ =

2
1 )(  

which is referred to as the release condition. ■ 
Proof: Above conclusions are obvious. Skip proof here. ■ 
We define two states for an agent: Loading and Idling, and 

two types of operation: Pick-up and Release. Agents in idling 
state first pick up points from the buffer where store the points 
which have just arrived. When the buffer is empty, the idle 
agents will pick up points that satisfy the pick-up condition 
from the grid-clusters. When an idle agent gets a point Xi, it will 
fall into the loading state. A loading agent tries to look for a 
grid-cluster which makes Xi satisfy the pick-up condition to 
release the loading point. 

Agent operations constitute the main part of the on-line 
algorithm, and thus the efficiency of judging the pick-up and 
release conditions has a direct impact on time complexity of the 
algorithm. As the calculation of Euclidean distance usually 
requires a high cost, we can take the judgment of sufficient 
conditions as an assistant method to judge the necessary and 
sufficient conditions by the Manhattan distance. 

Lemma 2. Let J be the density parameter of the grid-cluster 
Gi, J∆  be the increment of J, Xc be the center of Gi, and d be 
the number of data dimensions. Then, 

If Xj ∈ Gi, when Xj is deleted from Gi, the sufficient 
condition for 0<∆J  is: JdkxxMax k

c
k
i >∈− ]},1[||{|  (1) 

If Xj ∉Gi, when Xj is added into Gi, the sufficient condition 
for 0<∆J  is: Jxx k

c
k
i

d
k <−Σ = |)(|1                                (2) ■ 

Proof: As for the case of Formula1, we know from Lemma1 
that points which satisfy the pick-up condition are distributed in 
the data space outside the d-dimension sphere O with J as its 
radius. Points which satisfy Formula1 are distributed in the 
space outside the d-dimension circumscribed-polyhedron of O, 
so they satisfy the pick-up condition at the same time. It is 
similar to the case of Formula 2. ■  

Lemma 3 Let R be the radius of the sub-cluster constituted 
by points in grid-cluster Gj, 2t d= and ∫

+∞ −−=Γ
0

1)( dxexn xn . 

The error function for judging the pick-up condition by 

Formula 1 is: 2

2 ( 1)( )( )
( )

t t t

p t t t

t dJ Jf d
R J

π
π

Γ + −=
−

 

The error function for judging the release condition by 

Formula 2 is: 
2 ( 1)( )

t

r t

tf d π
π

− Γ +=   ■  

Proof: As for the case of the pick-up condition judgment, we 
know from the proof of Lemma 2 that errors are determined by 
the difference between the volume of the d-dimension sphere 
and that of its regular circumscribed-polyhedron. It is similar to 
the case of release judgment. ■  
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Let agents be in idling state initially, Q be the maximum 
exploration steps of a agent, M be the minimum points number 
in grid-cluster, N be the maximum points number in 
grid-cluster, and D(Xi, Gi) be the distance from the point Xi to 
the center of grid-cluster Gi. The agent operation algorithm is 
summarized as follows: 

Algorithm AgentOP (Q, M, N)  
1. Check whether the buffer is empty, if not empty, pick up 

a point from the buffer and fall into the loading state, 
then go to 4; otherwise, go to 2. 

2. Skip randomly to a grid-cluster Gi, if the point number 
Ci < M, go to 1. 

3. Choose a point Xi randomly, if it satisfies the pick-up 
condition, pick up this point and fall into the loading 
state, add Gi to a set S, exploration counter T = 0, go to 4; 
otherwise, repeat this step. 

4. Skip randomly to a grid-cluster Gj ( ij ≠ ), if the point 
number Cj < M, add Gj to S, go to 6; If Cj > N, repeat this 
step. Otherwise, go to 5. 

5. If the loading point satisfies the release condition, 
release it into the current grid-cluster, go to ends. 
Otherwise, add Gj to S, go to 6. 

6. T = T + 1, if QT ≤  go to 4; otherwise, release the 
loading point into the grid-cluster Gk, where k is defined 
as D(Xi, Gk) = Min {D(Xi, Gi) | Gi ∈S }, clear S. ■ 

Note that S stores G0 as the original grid-cluster from where 
the loading point is picked up, if D(Xi, G0) is the minimum 
value of the distance from points in S to the center, the point 
will not move, and we say that the agent has executed a futile 
action. The ratio of the futile action times to the total action 
times in a unit time is referred to as the futile action rate. 

D. Data Condensing  
There are a great number of points stored in the grid-clusters, 

and the memory will be exhausted with the accumulation of 
streaming data. The condensing operation combines the denser 
points near the grid-cluster center to a complex-point with a 
higher weight, witch denotes the number of points it contains, 
and the peripheral sparse points are left for the future treatment 
together with later points. This method is referred to as an 
incomplete-partition strategy. 

Assume that there are currently C points in memory, 
condensing operation will sort the points in descending order 
by distance from their centers, delete the first E points and 
gather the remaining points towards the center. We denote the 
condensing rate by the variable CE−=1ρ .  

Let C be the number of points in current memory, Dc
i be the 

center of grid-cluster Gi, Ci be the number of points in Gi, Wi be 
the weight of the point Di, and ρ  be the condensing rate. We 
summarize the condensing algorithm as follows: 

Algorithm Condensing (C, ρ )  
1. Sort all the points in descending order of distance from 

their centers, and get the ordered sequence D1 … Dc. 
2. Calculate the number of the points to be deleted 

)1( ρ−×= CE . S is a set of the deleted points. For each 
i ∈  [1, E], delete Di from the grid-cluster it belongs to, 

and add it to S. 
3. For each grid-cluster Gi, create a new point Di = Dc

i, 
with the weight Wi = Ci. Delete all the points in Gi and 
then add Di to Gi. 

4. Start agent threads to pick up the points in S, and release 
them to proper grid-clusters until S is empty. ■ 

The grid-clusters need to be stored at snapshots in time in the 
on-line stage. Snapshot can be regard as a mirror image of 
current memory usually stored on disk, and it is also necessary 
to condense the points before the storage of snapshot to reduce 
the space complexity. 

E.  On-Line Algorithm 
The more points the algorithm maintains, the better it can 

reflect the data distribution. Assume that there are G 
grid-clusters with N as their capacity, the maximum number of 
points can be maintained in the algorithm is NGC ×<  (When C 
approaches to G×N, the condensing process will be triggered). 
As a result, there are C points and G grid-clusters stored in 
memory at the same time, the space complexity is )( GC +Ο . 
It is assumed that the probability for picking up a point that 
satisfy the pick-up condition is p, the time complexity for the 
pick-up operation is ))(( pfΟ , and the probability density 
function is kpkpfP )1())(( −== . Let Q be the maximum 
exploration steps, then the time complexity for the release 
operation is )(QΟ .  

The storage of the snapshots needs to put out all the data in 
memory. There are two types of the output data points, the 
complex-points formed in the condensing process and the 
origin points still remaining in memory. As the time 
window-analysis process requires identifying the different 
types of points on snapshots, we have to assign a unique id to 
each point when a snapshot needs to be stored after a 
condensing operation. An origin point simply corresponds to a 
unique id. A complex-point Dc represents a point set S, if there 
is no point that has already got an id in S, Dc can be assigned a 
unique id simply; otherwise, an id list L needs to be created for 
Dc and all the ids in S should be copied to L, if S also contains 
some id lists, they should be copied to L either. 

AGCluStream needs not accumulate data for initialization 
and is insensitive to the initial points. Once start an agent 
thread, the on-line algorithm begin to run immediately. The 
futile action rate increases gradually while similar points gather 
towards to each individual grid-cluster. Futile actions may 
cause a waste of the system resources, and thus the agents 
should be reduced as the futile rate rises to save system 
resources. Once the number of agents is reduced to be zero, the 
algorithm will end automatically.  

F. Time-Window Analysis 
During the time-window analysis, AGCluStream chooses the 

points of a given time horizon and performs clustering on them. 
Time-window analysis relies on the snapshots which are stored 
on the disk. In fact, because of the condensing operation, the 
output OA of AGCluStream is much smaller than that of 
CluStream Oc (OA ≈ ρ Oc), this proves that the storage 
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requirement of AGCluStream is quite modest. 
Time-window analysis needs two input parameters: the 

current time tc and the length of the time window h. Time 
window W(tc, h) represents a past time horizon of h from tc. Let 
tn be the current time, T be the time horizon from the beginning 
of the stream to tn, a common case in practice is tc = tn and h = T, 
i.e., it is required to cluster all the data in stream by now. From 
the above statement we know that the snapshot Sn stored at tn 
contains information of all the historical data since the 
beginning of the stream, so we could get the final cluster result 
by Sn. A complex-point represents a set of points at the same 
position and could be chosen as a cluster centroid. If the input 
cluster number is K, we first employ the K-Means [5] method to 
cluster the complex-points on Sn to get K clustering centroids, 
and then apply K-Means again over all the weighted points on 
Sn with these centroids to obtain the final result. 

In common cases, h < T, and the time frame ensures that it is 
always possible to find a snapshot at ts, ts < tc – h, and h’ = tc - ts, 
is within a pre-specified tolerance of h. Assume that snapshots 
saved at tc, ts are Sc, Ss, points in time window W(tc, h) are those 
which exist only in Sc but not in Ss, i.e. they are in the point set 
S(tc, h) = Sc –Ss. S(tc, h) can be obtained by the point ids as 
follows: Initially, S(tc, h) = Sc, for each point Di in Ss, let IDi be 
its id and Wi be its weight, there are two different cases: 

(1) If Di is an origin point in Ss, delete Di from  S(tc, h). 
(2) If Di has been combined into a complex-point Dc in Sc, 

IDi must be in the id list of Dc. Let Wc be the weight of 
Dc, create a new point )()('

iciiccc WWDWDWD −⋅−⋅=  with 
its weight icc WWW −=' , then replace Dc by '

cD  in S(tc, h). 
Suppose that the input cluster number is K, we first cluster 

the complex-points in S(tc, h) to get K cluster centroids, and 
then cluster all the weighted points in S(tc, h) with these 
centroids to obtain the final result. 

 

III. EMPIRICAL RESULTS 
All of our experiments are conducted on a PC with Intel 

Pentium IV processor and 256 MB memory, which runs 
Windows XP professional operating system. The data set is 
generated by the DataGenerator 2.0. 

At the moment T =100, we analyze points in the two time 
windows W (100, 100) and W (100, 40) respectively, with the 
stream speed = 1000/s. The quality of clustering results is 
usually measured using the sum of square distance (SSQ). 
Figure 1 shows the comparison on SSQ between the clustering 
results of the two algorithms and the real clusters. 
AGCluStream and CluStream present similar performances in 
the best results of each algorithm, but AGCluStream possesses 
better stability. In our experiment for testing the accuracy of the 
algorithms identifying the cluster centers, 85.7% of the results 
of AGCluStream fall in an error range of 16.7%, but the 
proportion for CluStream in this error range is only 42.9%. 

Figure 1 SSQ Ratios of The Real Clusters to the
Best Results Of Each Algorithm
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The experiment has shown that AGCluStream can get a 

lower time complexity. The iteration times that AGCluStream 
takes for convergence almost crease linearly with the number of 
data points. We set the stream speed to the maximum value that 
can be accepted by the algorithm, and figure 2 shows the time 
costs of AGCluStream over each period of the stream. 

 

Figure 2  Test On Efficiency
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IV. CONCLUSIONS AND FUTURE WORK  
In this paper, we have developed a novel data stream 

clustering algorithm based on the agent swarm intelligence 
technique. The algorithm avoids dividing the streaming data 
into chunks so as to maintain the integrity of the global 
information to get higher-quality clusters. This method needs 
no initial points and is insensitive to the initialization 
information. Meanwhile, it allows time-window analysis on 
streams by the dual-tire structure. Experiment evaluations show 
the excellent performance of our algorithm in the aspects of 
effectiveness and efficiency. In future work, we will underline 
the attenuation strategy in this framework which could reflects 
the various tend of clusters in streaming data. 
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