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The Impacts of Structural Difference and Temporality of Tweets on1

Retrieval Effectiveness2
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To explore the information seeking behaviors in microblogosphere, the microblog track at TREC 2011 intro-5

duced a real-time ad-hoc retrieval task that aims at ranking relevant tweets in reverse-chronological order.6

We study this problem via a two-phase approach: 1) retrieving tweets in an ad-hoc way; 2) utilizing the7

temporal information of tweets to enhance the retrieval effectiveness of tweets. Tweets can be categorized8

into two types. One type consists of short messages not containing any URL of a Web page. The other type9

has at least one URL of a Web page in addition to a short message. These two types of tweets have dif-10

ferent structures. In the first phase, to address the structural difference of tweets, we propose a method to11

rank tweets using the divide-and-conquer strategy. Specifically, we first rank the two types of tweets sep-12

arately. This produces two rankings, one for each type. Then we merge these two rankings of tweets into13

one ranking. In the second phase, we first categorize queries into several types by exploring the temporal14

distributions of their top-retrieved tweets from the first phase; then we calculate the time-related relevance15

scores of tweets according to the classified types of queries; finally we combine the time scores with the IR16

scores from the first phase to produce a ranking of tweets. Experimental results achieved by using the TREC17

2011 and TREC 2012 queries over the TREC Tweets2011 collection show that: (i) our way of ranking the two18

types of tweets separately and then merging them together yields better retrieval effectiveness than rank-19

ing them simultaneously; (ii) our way of incorporating temporal information into the retrieval process yields20

further improvements, and (iii) our method compares favorably with state-of-the-art methods in retrieval21

effectiveness.22
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1. INTRODUCTION32

Twitter, a worldwide popular microblog service, has a daily volume of over 340 million33

tweets,1 which motivates research interests in studying the information seeking34

behaviors within microblogosphere. The microblog track at TREC 2011 introduced35

a real-time ad-hoc retrieval task, whereby a user wishes to see the most recent and36

1http://en.wikipedia.org/wiki/Twitter
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relevant information to a query within Twitter [Ounis et al. 2011]. To respond to37

a query with a timestamp t, the retrieved tweets should satisfy the following three38

conditions: (1) relevant to the query, (2) published on or before time t, and (3) ranked39

in reverse-chronological order of their publishing times.40

Some studies have been done in information retrieval of tweets. These studies can be41

categorized into two major classes. The techniques in the first class [Choi et al. 2012;42

Duan et al. 2010; Han et al. 2012; Metzler and Cai 2011; Zhang et al. 2012] rank tweets43

by measuring the lexical similarities between tweets and queries. The methods in the44

second class [Amati et al. 2012; Choi and Croft 2012; Dong et al. 2010b; Efron and45

Golovchinsky 2011] rank tweets by exploring temporal information (the publishing46

times of tweets and the timestamps of queries). Some studies [Efron et al. 2012; Liang47

et al. 2012; Massoudi et al. 2011] employ both lexical similarity and temporality in48

ranking tweets. However, there are two important issues that are not well addressed49

by these existing works.50

The first issue is the impact of the structural difference of tweets on retrieval ef-51

fectiveness. Specifically, there are two types of tweets that have different structures.52

The first type (to be defined as T-tweet in Section 3.2) is just a short text message53

with no more than 140 characters. The second type (to be defined as TU-tweet in54

Section 3.2) contains at least one URL of a Web page in addition to a short text mes-55

sage. All existing studies simultaneously rank both types of tweets. However, we be-56

lieve it is important to utilize the structural difference of tweets in retrieval. Let us57

illustrate the motivation by the following example.58

Example 1. Consider a query q = “phone hacking British politicians”, a tweet59

d1 = “@jamesrae andy Gray is suing the NOTW... just got fired from Sky for footage60

that should never have been seen. I smell Murdoch!”, a second tweet d2 = “Ten-61

sions simmer as ‘frustrated’ Rupert Murdoch flies in to face phone-hacking affair62

http://t.co/b3kOppY via @guardian” and a third tweet d3 = “Windows Phone 7 gets63

USB Tethering Hack http://tinyurl.com/4lafss6”. d1 is a T-tweet that only has a short64

message. d1 is relevant to q but has no query terms. d2 and d3 are two TU-tweets.65

Each of them has not only a message but also a URL. d2 is relevant to q. It contains66

two query terms “phone” and “hacking” in its message and all four query terms in the67

web page of the URL in d2. d3 is irrelevant to q. It contains two query terms “Phone”68

and “hack” in its message. The Web page of the URL in d3 has no query terms. The69

content of a TU-tweet is the union of its short message and the contents of the Web70

pages of the URLs in it. It is intuitive that for a TU-tweet, the higher the percentage71

of query terms appearing in it is, the more likely the tweet is relevant. The relevant d272

has more query terms than the irrelevant d3. However, such an intuition does not ap-73

ply for a T-tweet. d1 has no query terms but it is relevant to q. This is because T-tweets74

are so short that some relevant T-tweets may not have any query terms. In addition,75

we find out that (see Section 6.1.2) the sets of the most important features for learning76

to rank the two types of tweets are very different.77

Motivated by such an observation, we propose to use the divide-and-conquer strat-78

egy to address the structural difference of tweets. Specifically, we learn two rankers79

that are dedicated to ranking T-tweets and TU-tweets separately. This produces two80

tweet type-specific rankers. We then learn a classifier that determines a preference be-81

tween any T-tweet and any TU-tweet with respect to a given query. The details about82

these two tweet type-specific rankers and the classifier are discussed in Sections 3.283

and 3.3, respectively. Given a query q, we first obtain a ranking of T-tweets, R1, and84

a ranking of TU-tweets, R2, by using the two type-specific rankers, respectively. Then85

we apply the classifier to determine the preference between each T-tweet from R1 and86

each TU-tweet from R2. Finally, we merge the tweets from R1 and R2 into a single87
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Fig. 1. The distributions of relevant tweets over time.

ranking. The merging process considers the preferences from the two rankers and88

the classifier. The discussion of how to merge two rankings of tweets is presented in89

Section 3.4.90

The second issue is the impact of the temporal sensitivities of queries on the re-91

trieval effectiveness of tweets. Queries can be categorized into time sensitive and time92

insensitive types [Dakka et al. 2012; Jones and Diaz 2007]. For ease of presentation,93

Figure 1 shows the temporal distributions of the relevant tweets with respect to four94

sample TREC queries. These distributions are plotted over the period from 1/23/201195

to 2/8/2011, when the TREC Tweets2011 collection was sampled from Twitter. The96

x-axis represents time in the unit of day [Efron and Golovchinsky 2011]. The y-axis97

represents the percentage of relevant tweets published on a particular day. By observ-98

ing these distributions, we claim that there are three types of queries. The first type is99

insensitive to time, while the last two types are time sensitive.100

— The first type of queries has a relatively flat (uniform) distribution of relevant tweets101

over time, indicating that these queries are insensitive to time. This is exemplified102

by the query “credit card debt.”103

— The second type of queries has a dominant peak in terms of their temporal104

distributions of relevant tweets. The dominant peak contains an extremely large105

portion of relevant tweets concentrating on a single day. This is exemplified by the106

query “Egyptian protesters attack museum.” The attack happened during the night107

of 1/28/2011 and a dominant peak in the distribution is formed on 1/29/2011. An108

event related to the topic of such a query is usually the event of a breaking news109

story. The relevant tweets are so concentrated around the peak that the percentage110

of relevant tweets rapidly decreases beyond the peak. In this article, such queries111

are called dominant peak queries.112

— The third type of queries has one or more nondominant peaks. Each peak contains a113

significant portion of relevant tweets on a day but the percentage of relevant tweets114

of a nondominant peak is not as high as that of a dominant peak. A nondominant115

peak of a query is caused by an event that is related to the query. These related116

events trigger people’s intensive discussions about the query topic at different117

times. This is exemplified by two queries: “Mexico drug war” and “Emanuel resi-118

dency court rulings.” For “Mexico drug war,” the nondominant peak on 1/27/2011 is119

caused by a related event, “Pot-firing catapult found at Arizona-Mexico border”. For120

“Emanuel residency court rulings,” the first two nondominant peaks on 1/24/2011121

and 1/25/2011 correspond to the event: “Illinois Court Throws Emanuel Off Chicago122

Mayoral Ballot”; the third peak on 1/28/2011 corresponds to another related event:123

“Illinois Supreme Court keeps Emanuel on ballot.” In this article, such queries are124

called nondominant peak queries.125
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These three types of queries depend on their temporal distributions of relevant126

tweets. In practice, it is unrealistic to know such distributions for given queries. In127

Efron and Golovchinsky [2011] and Jones and Diaz [2007], the temporal distribution128

of the relevant tweets with respect to a query q can be approximated by that of the129

top tweets with respect to q. These top tweets can be retrieved by a ranking model,130

such as BM25 [Robertson et al. 1996]. In this article, we classify queries into different131

types by the temporal distributions of their top tweets. For time-insensitive queries,132

there is no need to employ temporal information; for time sensitive queries, we propose133

two different techniques to calculate the temporal relevance of tweets to dominant134

peak queries and to nondominant peak queries, respectively. The degree of temporal135

relevance is measured by a time-related relevance score (to be given in Section 4.2).136

Our proposed method for categorizing queries and for computing the time-related rel-137

evance scores with respect to the two types of time sensitive queries are presented in138

Section 4.2. In this article, we only study these three types of queries. The studies of139

other types of queries, such as cyclic queries (e.g., “Halloween”) are deferred to future140

work.141

Our work has two novelties: 1) ranking the two types of tweets by a divide-and-142

conquer manner can improve retrieval effectiveness; and 2) our temporal classification143

of queries and two different ways of computing the time-related relevance scores with144

respect to the two different types of time sensitive queries are different from existing145

works. We now summarize the research questions we aim to answer in this article.146

— Acknowledging that tweets can be classified into the two types by their different147

structures, is the retrieval effectiveness of tweets affected by their structural148

difference?149

— How to leverage the structural difference of tweets to enhance their retrieval150

effectiveness?151

— What are the effectiveness and the efficiency of the proposed algorithm?152

— How can we improve retrieval effectiveness by taking into consideration the153

temporal information (publishing times) of tweets?154

— How does our method perform compared to various state-of-the-art methods?155

This article has the following contributions.156

— We investigate the impact of the structural difference of tweets on retrieval157

effectiveness.158

— We present a novel algorithm of ranking tweets by using the divide-and-conquer159

strategy. To our knowledge, our work is the first study that leverages the structural160

difference of tweets to enhance retrieval effectiveness.161

— We present a novel categorization of queries by their sensitivities to time.162

— We propose different techniques to calculate the degrees of temporal relevance of163

tweets with respect to the different categories of queries.164

The remainder of this article is organized as follows. We review the related works165

in Section 2. Section 3 introduces our divide-and-conquer method for ranking tweets.166

Section 4 discusses our method for categorizing queries in terms of their temporal167

sensitivities and proposes different techniques to calculate the temporal relevance of168

tweets. Experimental setup and experimental results are provided in Section 5 and169

Section 6, respectively. The article is concluded in Section 7.170

2. RELATED WORK171

Recently, interests are rising in exploring Twitter for information retrieval of tweets172

by different criteria, such as lexical relevance [Choi et al. 2012; Duan et al. 2010; Han173

et al. 2012; Metzler and Cai 2011; Zhang et al. 2012], temporal relevance [Amati et al.174
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2012; Choi and Croft 2012; Dong et al. 2010b; Efron and Golovchinsky 2011] and175

jointly lexical and temporal relevance [Efron et al. 2012; Liang et al. 2012; Massoudi176

et al. 2011]. Beyond tweet retrieval, some studies [Amodeo et al. 2011; Dakka et al.177

2012; Dong et al. 2010a; Jones and Diaz 2007; Keikha et al. 2011a, 2011b; Li and178

Croft 2003] also showed that incorporating the publishing times of documents into179

the retrieval process is beneficial for ad-hoc retrieval. Instead of using the publishing180

times of documents, some works [Berberich et al. 2010; Dai and Davison 2010; Elsas181

and Dumais 2010; Kulkarni et al. 2011] studied how to improve the ranking effec-182

tiveness by using the temporal information extracted from the contents of documents.183

Moreover, our study is also related to some works [Ailon et al. 2008; Bian et al. 2010;184

Dai et al. 2011; Hüllermeier and Fürnkranz 2010] in learning to rank. In the rest of185

this section, we review in greater detail the related works.186

2.1. Lexical Relevance-Based Retrieval187

The first thread of related works studied tweet retrieval by measuring their lexical188

similarities to queries. Duan et al. [2010] employed RankSVM [Herbrich et al. 2000;189

Joachims 2002] to rank tweets by their lexical relevance to queries. Metzler and Cai190

[2011] studied the real-time ad-hoc tweet retrieval problem by using RankSVM to191

rank tweets with respect to queries and rearranged the top-ranked tweets in reverse-192

chronological order. This work achieved the best results reported in TREC 2011. Choi193

et al. [2012] showed that the quality of tweets is correlated with their relevance and194

applied the quality features in relevance ranking. They assumed that high quality195

tweets are more likely to be retweeted than low quality ones and learned a model to196

estimate the probability of a tweet being retweeted by exploring its lexical content.197

Zhang et al. [2012] proposed a query-specific model to rank tweets by considering the198

characteristics unique to a query. Specifically, given a query q, they treated the top and199

the bottom tweets retrieved by a ranking model as positive and negative examples and200

then learned a ranking model specific to q. Efron et al. [2012] expanded each tweet201

d with respect to a query q as follows. The terms of the most similar tweets to d are202

added to d. The query q is then compared with the expanded tweets for the similarity203

computation, in order to improve retrieval effectiveness. Han et al. [2012] expanded204

each tweet d in a similar manner by the terms from other tweets that are lexically205

similar to d. Our work has two fundamental differences from the works reviewed ear-206

lier: 1) we consider the structural difference of the two types of tweets in the retrieval207

process while they ranked both types of tweets together; and 2) they only measured the208

lexical similarities of tweets to queries while we take into consideration both lexical209

similarities and temporal information.210

2.2. Temporal Relevance-Based Retrieval211

The second thread of related works studied the impact of temporal information on re-212

trieval effectiveness. Dong et al. [2010a, 2010b] proposed the recency ranking problem213

and studied the problem using Twitter data. Amati et al. [2012] assumed that the re-214

cent tweets with respect to (the timestamp of) a query q are more likely to be relevant215

than the old tweets. Massoudi et al. [2011] studied a query expansion method where216

the expanded query terms are selected from high-quality and recent tweets, instead of217

low-quality and old tweets. The quality of tweets can be estimated by some indicators,218

such as the number of followers of Twitter users. All the works we have mentioned in219

principle prefer recent tweets (or terms from recent tweets) to old ones. However, this220

is not always desirable. For example, in Figure 1, for the query “Mexico drug war,” a221

significant portion of relevant tweets are published on 1/27/2011 and some relevant222

tweets are published on 2/2/2011. The tweets on 1/27/2011 are as relevant as those223

tweets on 2/2/2011. They should not be assigned lower priorities in retrieval. Our work224
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classifies queries by the temporal distributions of their top tweets and then proposes225

different ways of utilizing temporal information of tweets according to the classified226

types of queries. Liang et al. [2012] studied the real-time ad-hoc tweet retrieval by a227

two-phase approach where 1) an ad-hoc retrieval of tweets is conducted and 2) tweets228

are re-ranked to promote the relevant and recent ones. Our two-phase method is differ-229

ent from theirs in two aspects. First, they ranked both types of tweets simultaneously230

while we leverage the structural difference of tweets. Second, they promoted recent231

tweets over old tweets while we classify queries by their time sensitivities before ap-232

plying temporal information in different manners according to the classified types of233

queries. Choi and Croft [2012] obtained the top tweets (consisting of retweets and non-234

retweets) with respect to a query q from a ranking model. Then they explored the235

temporal distribution of the top retweets to measure the importance of each day with236

respect to q. The importance of a day t to q is proportional to the number of the top237

retweets published on t. Finally, they arranged non-retweets by considering the im-238

portance of each of their publishing days. Our work differs from theirs in that they239

use retweets to measure the importance of days while we use top tweets to determine240

the importance of days. Moreover, our calculation of the degrees of relevance between241

tweets and queries by temporality is quite different from theirs. Efron et al. [2012]242

obtained the top tweets with respect to a query q and then, for each tweet d, acquired243

the most similar (top) tweets to d. They calculated the temporal similarity between q244

and d based on the temporal distribution of q’s top tweets and that of d’s top tweets.245

Our work differs from their work in that we classify queries based on the temporal246

distributions of their top tweets and then calculate the temporal relevance of tweets to247

queries by their classified types.248

Besides Twitter search, Li and Croft [2003] studied time sensitive queries and249

assumed that relevant documents are mostly recent documents. They proposed an250

exponential-based age penalty strategy where aged documents are penalized and then251

demoted to boost the ranking positions of recent documents. Efron and Golovchinsky252

[2011] studied the same problem and proposed a query-specific exponential-based253

age penalty method where aged documents are penalized differently with respect to254

different queries. Our classification, determination and handling of time sensitive255

queries are different from the given works. Moreover, their hypothesis [Efron and256

Golovchinsky 2011; Li and Croft 2003] that aged documents should be penalized more257

than recent documents is not necessarily true for some time sensitive queries. For ex-258

ample, in Figure 1, for the query “Mexico drug war”, the relevant tweets on 1/27/2011259

should not be penalized relative to those on 2/2/2011. Amodeo et al. [2011] and Keikha260

et al. [2011b] presented temporal query expansions by using the terms selected from261

the top (blog) documents (with respect to a query q) that are published on the days that262

are most relevant to q. The relevance of a day t to q is measured by the average similar-263

ity of the top documents published on t to q in Keikha et al. [2011b] or by the percent-264

age of q’s top documents published on t [Amodeo et al. 2011]. We do not use temporal265

information in query expansion. Keikha et al. [2011a] showed that blog feed retrieval266

can benefit from the usage of temporal information. They studied the retrieval of267

blog feeds. A blog feed consists of a set of blog documents published on different268

days. We study the retrieval of individual tweets. Although both studies use temporal269

information, the utilizations of temporality in these two studies are very different.270

Dakka et al. [2012] indicated that, for a time sensitive query q, a document d can be271

represented by two dimensions: the lexical content cd and the publishing time td. They272

assumed the independence between cd and td. Our work differs from theirs in that we273

assume the contents of documents (tweets) and their publishing times are not neces-274

sarily independent. For example, for the query “Emanuel residency court rulings,” the275

relevant tweets published on 1/24/2011 and 1/25/2011 discuss the event “Illinois Court276
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Throws Emanuel Off Chicago Mayoral Ballot” while the relevant tweets published on277

1/28/2011 discuss the event “Illinois Supreme Court keeps Emanuel on ballot.” The con-278

tents of tweets with respect to a query can be influenced by other related events which279

happen at different times. Jones and Diaz [2007] categorized queries into time insensi-280

tive ones, temporally ambiguous queries such as “Iraq War” (referencing two different281

wars) and temporally unambiguous queries such as “Turkish earthquake 1999”. Our282

work categorizes queries by their sensitivities to time, instead of their temporal283

ambiguities.284

Exploring the temporal information from the contents of documents can improve285

retrieval effectiveness too. Berberich et al. [2010] proposed a language model supple-286

mented with a temporal dimension where the temporal information from a query and287

that from documents are uniformly expressed and matched in retrieval. For exam-288

ple, the query, “World Cups in 1990s” should be matched by the documents containing289

“1998 World Cup,” because “1990s” temporally covers “1998.” Elsas and Dumais [2010]290

studied the relationship between the temporal dynamics of document contents and291

the relevance of documents. For example, they showed that the contents of the rele-292

vant documents for navigational queries, such as “YouTube,” have great and frequent293

changes over time. Kulkarni et al. [2011] discussed the interaction among the tempo-294

ral changes of query popularity, the temporal changes of document contents and query295

intents. Dai and Davison [2010] utilized the freshness of Web site contents for comput-296

ing Web site authority by examining the frequency of Web site content changes and297

that of Web site hyperlink changes over time. Our work uses the publishing times of298

top documents (tweets) to improve retrieval effectiveness.299

2.3. Learning to Rank300

Our work is also related to some studies in learning to rank. Bian et al. [2010] provided301

a divide-and-conquer framework for learning to rank documents. Dai et al. [2011] ex-302

tended the same divide-and-conquer framework for learning to rank documents by303

freshness and relevance simultaneously. Our work has a fundamental difference from304

theirs. Both works [Bian et al. 2010; Dai et al. 2011] divided (clustered) queries into305

different clusters where queries within a cluster have a similar set of important learn-306

ing to rank features. However, we divide (partition) documents (tweets) into two sets307

by considering their structural difference. Given some different rankings of a same308

set of documents that yield inconsistencies, Ailon et al. [2008] studied how to obtain a309

ranking of the same set of documents that approximately minimizes the disagreement310

with the given rankings. In our work, we merge two rankings of two different sets311

of tweets, one for T-tweets and the other for TU-tweets. Hüllermeier and Fürnkranz312

[2010] studied the problem where each example (document) is assigned the probabili-313

ties of belonging to different classes. No ranking of examples (documents) is discussed314

in Hüllermeier and Fürnkranz [2010].315

3. A DIVIDE-AND-CONQUER METHOD FOR RANKING TWEETS316

In this section, we introduce a novel method for ranking tweets. This method explores317

the structural difference of tweets by the divide-and-conquer strategy. It is deployed as318

the first phase to produce a ranking of tweets, taking into consideration their lexical319

similarities to queries only.320

3.1. Method Overview321

In this method, we differentiate the following two types of tweets: the first type is a322

short plain message without URLs (T-tweet) and the second type is a message con-323

taining at least one URL (TU-tweet). A URL usually leads to a Web page with a sub-324

stantially more content than a short message. To explore such a structural difference,325
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we propose to rank these two types of tweets separately and then merge the two type-326

specific rankings of tweets into a single ranking. The proposed method has two tweet327

type-specific rankers and a classifier. The two type-specific rankers are dedicated to328

ranking T-tweets and TU-tweets. The classifier calculates the preference between any329

T-tweet and any TU-tweet with respect to a query.330

In this article, we resort to the learning to rank algorithms to produce the two331

rankers. Specifically, RankSVM [Herbrich et al. 2000; Joachims 2002] is employed.332

It can consider not only various lexical similarities between queries and tweets, such333

as BM25 similarity [Robertson et al. 1996], but also some special social network char-334

acteristics that are independent of queries, such as the number of retweets of tweets.335

It leverages different criteria as features to learn the two type-specific rankers. We336

denote as T-tweet Ranker the RankSVM model that is dedicated to ranking T-tweets.337

It is learned over the training data consisting of a set of training queries Q and a set of338

labeled T-tweets with respect to Q. Let TU-tweet Ranker denote the RankSVM model339

that is TU-tweet oriented. It is learned over the training data consisting of the same340

set of training queries Q but a different set of labeled TU-tweets with respect to Q.341

A classifier is learned to determine a preference between each T-tweet and each TU-342

tweet. Specifically, it is learned by using the union of the two sets of labeled tweets343

with respect to the same training query set Q. The classifier indicates for each T-tweet344

d1 and each TU-tweet d2 whether d1 is preferred over d2 or vice versa.345

The goal of this method is to produce the ranking of tweets for a set of test queries,346

Q′ = {q′
1, q′

2, ... , q′
m}. For each test query q′

i, we apply the T-tweet Ranker to obtain a347

ranking of T-tweets R1. Then we obtain a ranking of TU-tweets R2 by the TU-tweet348

Ranker. For each pair of one T-tweet from R1 and one TU-tweet from R2, the classi-349

fier is employed to determine a preference relationship between them with respect to350

q′
i. There are three sets of preferences: 1) the preference between any two T-tweets351

which is indicated by their relative ranking positions in R1; 2) the preference of any352

two TU-tweets from R2; and 3) the preference between any T-tweet from R1 and any353

TU-tweet from R2 indicated by the classifier. Finally, the two rankings, R1 and R2, are354

merged into a ranking by considering all three sets of preferences.355

Because these three sets of preferences are computed by three different models,356

there may be inconsistent preferences. For example, given two T-tweets di and dj and a357

TU-tweet dk, the T-tweet Ranker may indicate di � dj, which denotes the preference of358

di over dj. However, the classifier may indicate dk � di and dj � dk. In such a circular359

preference situation, no matter how these three tweets are ranked in the merged rank-360

ing, there is at least one inconsistency. Suppose that the degree of the preference of di361

over dj is 0.5, that of dj over dk is 0.4, that of dk over di is 0.3, and there are no other362

preferences. If we determine that di is ranked above dj which is ranked above dk, it363

will incur an inconsistency with the degree of 0.3. This is the smallest amount of incon-364

sistency among all possible orderings of these three tweets. In an ideal situation, we365

want to merge the two type-specific rankings into an optimal ranking that agrees best366

with the three sets of preferences. However, such a problem is NP-complete [Cohen367

et al. 1998]. Therefore, we propose a greedy merging algorithm called GreedyMerging.368

This algorithm always picks the tweet to be ahead of the remaining tweets, if it incurs369

the least amount of inconsistency relative to any of the remaining tweets. If there is370

no inconsistency among the three sets of preferences, the algorithm will produce the371

optimal merged ranking consistent with all preferences.372

3.2. Tweet Type-Specific Rankers373

In this section, we present the two rankers: one ranks T-tweets while the other ranks374

TU-tweets. For ease of introduction, we first define T-tweets and TU-tweets.375
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Definition 3.1 (T-Tweet). A T-tweet is a tweet whose message body has no URLs.376

The structure of a T-tweet consists of only one field:377

a) Tweet Message Field: the message body of the tweet.378

Definition 3.2 (TU-Tweet). A TU-tweet is a tweet whose message body has at least379

one URL. A tweet whose message body has URLs only is very rare. The structure of a380

TU-tweet consists of three fields:381

a) Tweet Message Field: the message body with the exclusion of the embedded URLs.382

b) URL Title Field: the union of the titles of the Web pages of the embedded URLs.383

c) URL Body Field: the union of the bodies of the Web pages of the embedded URLs.384

In a learning problem, the features are essential. Table I presents all the features385

for learning to rank tweets. Some features in Table I are explained in detail in the386

following. For T-tweets, the applicable features are computed based on their tweet387

message fields, whereas for TU-tweets, they are computed based on their three fields388

as well as the union of the three fields. For example, the BM25 similarity between a389

query and a T-tweet d can be computed based on the tweet message field of d; for a390

TU-tweet, four BM25 similarities can be computed, one based on the tweet message391

field, one based on the URL title field, one based on the URL body field and the last392

one based on the union of these three fields. Different degrees of significance can be393

associated with the different fields by the learning model. It has been shown that394

improvement in ranking can be achieved by weighting the fields of documents (for395

example, the titles of documents vs. the bodies of documents) differently [Robertson396

et al. 2004]. In our opinion, the same can apply to the tweets. Thus, we propose the397

features whose calculations are based on the different fields of tweets together with398

queries. During the establishment of the rankers, different weights are learned for399

those different field-based features.400

Moreover, the features can be categorized into two types: tweet-related (TR for short)401

and query-tweet-related (QTR for short). The former type is calculated purely based402

on the tweets themselves. For example, for feature F13, it is a Boolean feature indi-403

cating whether the tweet has at least an embedded URL. Studies [Duan et al. 2010;404

McCreadie et al. 2011; Metzler and Cai 2011] showed that whether a tweet has a URL405

is an effective feature for ranking tweets. Intuitively, the Web pages of the URLs em-406

bedded in tweets often provide more information than tweets’ 140 characters. Thus,407

a tweet with embedded URLs has a higher probability of being relevant than a tweet408

without embedded URLs [Duan et al. 2010].409

Besides the tweet-related features, the query-tweet-related features are also used410

to calculate different lexical similarities between queries and tweets. In addition to411

capturing term similarities, such as BM25 similarities discussed before, our method412

also computes concept similarities as features. A concept is a proper noun (PN), a413

dictionary phrase (DP), a simple noun phrase (SNP), or a complex noun phrase (CNP).414

A dictionary phrase is a noun phrase that can be looked up in dictionaries such as415

Wikipedia but is not a proper noun. A simple noun phrase (complex noun phrase)416

consists of two (more than two) nonstop terms but is neither a proper noun nor a417

dictionary phrase. A concept is recognized in a document if all of its nonstop terms418

appear in the document within a text window of certain size, with the smallest window419

size for PNs, then a bigger window size for DPs, an even bigger window size for SNPs,420

and the largest window size for CNPs. Please refer to the papers [Liu et al. 2004; Zhang421

et al. 2007] for the details about these concepts. In this article, we adopt the phrase422

recognition tool [Zhang et al. 2007] to identify the four types of concepts from queries423

and tweets. This tool can achieve an accuracy of 92% in recognizing concepts.424
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Table I. Features for Ranking Tweets

ID Type Feature Description (q = query, T = tweet). No.

F1 QTR
The percentage of the terms of q contained by the hashtags of T. The hashtags are the
keywords or topics of T and they appear in the tweet message field of T by prefixing the
symbol “#”.

1

F2 QTR
The percentage of the expansion terms of q contained by the hashtags of T. The expan-
sion terms are obtained by the pseudo relevance feedback method [Liu et al. 2004]. 1

F3 QTR Whether the four fields (the three fields of a TU-tweet and their union) contain q as an
SNP or CNP respectively.

4

F4 QTR The frequency of q in T as an SNP or CNP. 1

F5 QTR
Whether the four fields contain a key term of q, if exist. The key term is the nonverb
term in q, satisfying the following two conditions: 1) it has the least document frequency
among all query terms; 2) it is not a term in a PN or a DP concept.

4

F6 TR The length of the tweet message field of T. [Duan et al. 2010; McCreadie et al. 2011;
Metzler and Cai 2011]

1

F7 QTR Whether the four fields contain all PN or DP query concepts. 4
F8 QTR The sum of the frequencies of all PN or DP query concepts in T. 1
F9 QTR The percentage of the nonverb terms of q contained in the four fields. 4

F10 QTR
The (weighted) percentage of the query concepts contained in the four fields. All query
concepts are either equally weighted or weighted by their inverse document frequencies. 8

F11 QTR BM25 and TFIDF similarities between q and the four fields. [Duan et al. 2010; McCreadie
et al. 2011]

8

F12 TR Whether T (or the Web pages of embedded URLs) has more than 50% content in English.
[McCreadie et al. 2011; Metzler and Cai 2011]

1

F13 TR Whether T has at least one URL in its tweet message field. [Duan et al. 2010; McCreadie
et al. 2011; Metzler and Cai 2011]

1

F14 TR The count of the Twitter user of T mentioned by the tweets in the collection. [Duan et al.
2010]

1

F15 TR Whether T is a retweet (or a reply tweet). [Duan et al. 2010; Metzler and Cai 2011] 2

F16 QTR
The percentage of the related concepts of q contained in the four fields. The related con-
cepts of q are the top three frequent PN concepts among the top 10 web documents
retrieved by Google with respect to q.

4

F17 QTR
The percentage of the related nouns of q contained in the four fields. The related nouns
are the nouns with the top three document frequencies among the top 10 web documents
retrieved by Google with respect to q.

4

F18 QTR Whether the order of query terms appearing in the four fields is the same as that in q. 4

A query can be represented by a set of concepts as illustrated by the following425

example.426

Example 2. Given a query of “Australian Open Djokovic vs. Murray”, it contains five427

concepts. They are three PN concepts, “Australian Open,” “Djokovic” and “Murray,” an428

SNP concept, “Djokovic Murray” (“vs.” is omitted as a stop word) and a CNP concept,429

“Australian Open Djokovic Murray.”430

We propose the features (say F10) involving query concepts because they capture the431

similarities between queries and tweets better than query terms as illustrated by the432

following example.433

Example 3. Given the query q = “Australian Open Djokovic vs. Murray”, a T-tweet434

d1 = “and Djokovic it is.... Murray becoming more like England football team...failing435

where it matters...” and a T-tweet d2 = “Can’t stop watching the Australian Open!”, d1436

contains two query terms, “Djokovic” and “Murray” and d2 also contains two query437

terms, “Australian” and “Open”. But d1 is relevant to q while d2 is irrelevant. In terms438

of query concepts, d1 contains three out of five query concepts, “Djokovic”, “Murray”439

and “Djokovic Murray” but d2 contains only one query concept, “Australian Open”.440
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There are eight features with the ID of F10. One of the features is the percentage of441

the query concepts contained in the tweet message field. As illustrated by Example 3,442

the more query concepts a tweet contains, the more likely the tweet is relevant to443

the query. The value of this feature for d1 is 3/5 while that for d2 is 1/5. Another444

member feature is the weighted percentage of the query concepts contained in the445

tweet message field. Since a concept can be weighted by its inverse document frequency446

(idf for short), the weighted percentage of the query concepts contained in the tweet447

message field is the ratio of the sum of the idfs of the query concepts contained in the448

tweet message field over the sum of the idfs of all query concepts. If we consider the449

four fields of TU-tweets (the three fields and their union), eight such features can be450

calculated over the four fields of TU-tweets accordingly.451

The features with the IDs of F16 and F17 calculate the numbers of the related con-452

cepts and the related nouns of queries in the different fields of tweets. A person who453

writes a tweet specifies an event by a set S1 of concepts or terms. A person who queries454

the same event may utilize another set S2 of concepts or terms. The concepts or terms455

in S1 are related to those in S2. Let us illustrate these features with the following456

Example.457

Example 4. Given a query “White House spokesman replaced” and a T-tweet d1 =458

“Jay Carney named as Barack Obama’s press secretary,” d1 is relevant to the query,459

although it does not contain any query concepts or terms. “Jay Carney” is a related460

concept to the query, as it is one of the three most frequent PN concepts from the top461

10 Web documents retrieved by Google with respect to the query. Therefore, the match462

of “Jay Carney” is an indicator of d1’s relevance to the query.463

To build the two tweet type-specific rankers, we partition TREC relevance judg-464

ments of tweets into a set of labeled T-tweets and a set of labeled TU-tweets. We465

use the former set of T-tweets as the training data for learning a T-tweet Ranker466

and the latter set of TU-tweets for learning a TU-tweet Ranker, respectively. For467

building a T-tweet ranker, we convert each training example (T-tweet) into a vector468

of the proposed features that are applicable for T-tweets. Then, we feed the vectors469

of features into RankSVM to generate a T-tweet Ranker. We repeat the same pro-470

cedure as before by using the training data for TU-tweets to generate a TU-tweet471

Ranker.472

3.3. Preference Classifier473

The two tweet type-specific rankers only provide the preference between two tweets of474

the same type. In order to merge the rankings of T-tweets and TU-tweets, a classifier475

is proposed to determine the preference of each T-tweet with respect to each TU-tweet.476

We employ the SVM model [Joachims 1999] to perform such determination. In partic-477

ular, each training example is a triple of < d1, d2, label >, where d1 is a T-tweet, d2 is478

a TU-tweet and the label indicates whether d1 is preferred over d2 or vice versa. We479

again use TREC relevance judgments as the training data. Specifically, for a training480

query, a labeled T-tweet d1 and a labeled TU-tweet d2 form a training example (pair),481

only if their labels of relevance to that query are different. The different labels of d1482

and d2 imply that d1 is preferred over d2 or vice versa.483

To learn such a classifier, we reuse the features in Table I and they are referred to484

as ranking features. We also propose a set of new features that captures the differ-485

ence of the corresponding (ranking) features of d1 and d2 with respect to a query. Let486

us call this set of new features dependent features. Each dependent feature aims at a487

direct comparison of relevance between d1 and d2. It is calculated by a T-tweet (rank-488

ing) feature minus a corresponding TU-tweet (ranking) feature. For example, given489
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the feature group F11, a T-tweet feature is the BM25 similarity between a query q and490

the tweet message field of d1. But four corresponding TU-tweet features are the BM25491

similarities between q and the four fields of d2, respectively. Thus, four dependent fea-492

tures are obtained by subtracting the four TU-tweet features from the T-tweet feature,493

respectively. A (preference) classifier can be learned by using these features and the494

training examples. In our preliminary experiments, the classifier using both ranking495

features and dependent features performed better than the classifiers that just use496

either ranking features or dependent features.497

3.4. Greedy Merging Algorithm498

After we build the two tweet type-specific rankers and the preference classifier, we can499

rank tweets with respect to a test query q′. First, we use these two rankers to rank500

T-tweets and TU-tweets with respect to q′ separately. Then, we employ the preference501

classifier to compute the preference between any two tweets, one from each ranking.502

This constitutes three sets of preferences: one for any two T-tweets, one for any two503

TU-tweets and one for any T-tweet and any TU-tweet. The goal is to merge the two504

rankings into a ranking that agrees with these three sets of preferences as much as505

possible. Cohen et al. [1998] showed that the problem of finding the ordering that506

agrees best with a given set of preferences is NP-complete. Therefore, we propose a507

quadratic greedy merging algorithm. To merge a ranking of T-tweets and a ranking508

of TU-tweets, this algorithm always picks the tweet that has the smallest sum of the509

degrees of the preferences of other tweets (that have not been picked) over it. This510

makes the merged ranking consistent with the three sets of preferences, if there is no511

inconsistency among the three sets of preferences.512

Let T and TU be a ranking of T-tweets and a ranking of TU-tweets, respectively.513

They are defined as follows. We assign (numerical) subscripts to the T-tweets in T so514

that the T-tweets with smaller subscripts have higher preferences. The same applies515

to TU. For convenience of presentation, we give the T-tweets in T the subscripts from 1516

to m and the TU-tweets in TU the subscripts from m + 1 to m + n. But the comparison517

between a subscript of a T-tweet and that of a TU-tweet does not indicate a preference518

between them.519

T = [
d1, . . ., dm

]
s.t. di � dj, 1 ≤ i < j ≤ m

TU = [
dm+1, . . ., dm+n

]
s.t. di � dj, m + 1 ≤ i < j ≤ m + n.

(1)520

521

Let fp : �T × �TU → R be a preference function which maps a pair of a T-tweet di522

and a TU-tweet dj to a real number. �T and �TU are the T-tweet space and the TU-523

tweet space, respectively. If the real number is positive, di � dj; if it is negative, the524

reverse is true; if it is zero, there is no preference between di and dj. The magnitude525

of the number indicates the degree of the preference. We assume that the real number526

being zero does not occur, which is true in practice. This function corresponds to the527

preference classifier (see Section 3.3). Let D be the union of T and TU, D = T ∪ TU =528

[d1, . . ., dm, dm+1, . . ., dm+n]. Let Pref (di, dj) denote the preference between a tweet di529

and another tweet dj in D. Pref (di, dj) can be defined as follows.530

Pref (di, dj) =

⎧⎪⎪⎨
⎪⎪⎩

di � dj 1 ≤ i < j ≤ m
di � dj m + 1 ≤ i < j ≤ m + n
di � dj 1 ≤ i ≤ m < m + 1 ≤ j ≤ m + n and fp(di, dj) > 0
dj � di 1 ≤ i ≤ m < m + 1 ≤ j ≤ m + n and fp(di, dj) < 0.

(2)531
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Let RP(i) be the ranking position of a tweet di in T or TU. Due to the subscript532

assignments given to the T-tweets in T and the TU-tweets in TU, RP(i) is defined as533

follows.534

RP(i) =
{

i 1 ≤ i ≤ m
i − m m + 1 ≤ i ≤ m + n.

(3)535

Let M = [ Mij](m+n)×(m+n) be the preference matrix for D as defined here. It is con-536

sistent with Equation (2) and has the following interpretation: 1) Mij > 0 indicates537

di � dj; 2) Mij < 0 indicates dj � di; 3) the absolute value of Mij represents the degree538

of the preference, which is normalized between 0 and 1. Moreover, we propose three539

weighting parameters, λT(> 0) , λTU(> 0) and λPairwise(> 0), to be set to the degrees540

that we trust the three sets of preferences.541

[ Mij](m+n)×(m+n) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λT · RP(j)−RP(i)
max{RP(i), RP(j)} 1 ≤ i, j ≤ m

λTU · RP(j)−RP(i)
max{RP(i), RP(j)} m + 1 ≤ i, j ≤ m + n

λPairwise · fp(di,dj)

max1≤s≤m<m+1≤t≤m+n{|fp(ds,dt)|} 1 ≤ i ≤ m < m + 1 ≤ j ≤ m + n

−Mji 1 ≤ j ≤ m < m + 1 ≤ i ≤ m + n.

(4)542

We now explain why M is defined in such a manner. Specifically, we elaborate the543

intuition of each of the four components of M.544

(1) The first component
(
λT · RP(j)−RP(i)

max{RP(i), RP(j)}
)

indicates the preference between any two545

T-tweets, di and dj. If 1 ≤ i < j ≤ m, then RP(i) < RP(j) and therefore Mij > 0,546

indicating di � dj; if 1 ≤ j < i ≤ m, then RP(j) < RP(i) and therefore Mij < 0,547

indicating dj � di. The degree of the preference is normalized between 0 and 1548

by max{RP(i), RP(j)}. Moreover, it is also easy to verify that Mij < Mi(j+1) if 1 ≤549

i ≤ m, 1 ≤ j ≤ m − 1. This is reasonable, because as the separation between two550

T-tweets increases, so is the degree of the preference. We propose such a heuristic551

method to measure the degree of the preference between two T-tweets, because552

most learning to rank algorithms, such as RankSVM, produce the ranking scores553

that have no meaning in an absolute sense and can only be used for ordering.554

(2) The second component
(
λTU · RP(j)−RP(i)

max{RP(i), RP(j)}
)

has the same interpretation as the555

first component, except that it indicates the preference between any two TU-556

tweets, di and dj.557

(3) The third component
(
λPairwise · fp(di,dj)

max1≤s≤m<m+1≤t≤m+n{|fp(ds,dt)|}
)

indicates the prefer-558

ence between a T-tweet di and a TU-tweet dj. If fp(di, dj) > 0, then Mij > 0 and559

di � dj; if fp(di, dj) < 0, then Mij < 0 and dj � di. The degree of the preference is560

normalized between 0 and 1 by max1≤s≤m<m+1≤t≤m+n{|fp(ds, dt)|}.561

(4) The fourth component indicates that the preference between a TU-tweet di and a562

T-tweet dj is the negation of the preference between dj and di.563

Let us illustrate the preference matrix M with the following example.564

Example 5. Given two T-tweets, d1 and d2 and three TU-tweets: d3, d4 and d5, the565

three sets of the preferences of these tweets are shown in Table II.566
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Table II. Three Sets of Preferences for Example 5

Rankers and Classifier Tweet Preferences and Their Ranking Positions

T-tweet Ranker d1 � d2; RP(d1) = 1 and RP(d2) = 2;
TU-tweet Ranker d3 � d4 � d5; RP(d3) = 1, RP(d4) = 2 and RP(d5) = 3;

Preference Classifier
fp(d1, d3) = −0.9(d3 � d1); fp(d2, d3) = −1(d3 � d2)

fp(d1, d4) = −0.7(d4 � d1); fp(d2, d4) = −0.8(d4 � d2)

fp(d1, d5) = 0.6(d1 � d5); fp(d2, d5) = 0.5(d2 � d5)

For simplicity, we assume that the three weighting parameters: λT, λTU and λPairwise567

are all equal to 1. The preference matrix for Example 5 is shown here.568

M =

⎡
⎢⎢⎢⎢⎢⎣

0 0.5 −0.9 −0.7 0.6
−0.5 0 −1 −0.8 0.5

0.9 1 0 0.5 0.67
0.7 0.8 −0.5 0 0.33

−0.6 −0.5 −0.67 −0.33 0

⎤
⎥⎥⎥⎥⎥⎦ .569

To merge the two rankings, we propose a greedy merging algorithm. To explain the570

proposed merging algorithm, we first define Dispreferness.571

Definition 3.3 (Dispreferness). Given the preference matrix M and a tweet di, the572

Dispreferness of the tweet di is calculated by573

Dispreferness(M, di) =
∑

j

| min{0, Mij}|. (5)574

Given a tweet di, if it is preferred over a tweet dj, then Mij > 0 and | min{0, Mij}| = 0575

will not contribute to Dispreferness(M, di). On the other hand, if dj is preferred over576

di, then Mij < 0 and | min{0, Mij}| contributes a positive value to Dispreferness(M, di).577

Dispreferness(M, di) is the sum of the degrees of the preferences of other tweets over di.578

The greedy merging algorithm, called GreedyMerging, merges two rankings of tweets579

by placing the tweet d with the least Dispreferness(M, d) in the first position of the580

merged ranking L. Placing d in such a position of L may incur a certain amount of581

inconsistency and this amount is Dispreferness(M, d). Compared to any other tweet582

placed at the first position, this amount of inconsistency is the least. Then, after re-583

moving d from the matrix M and re-computing the Dispreferness of other tweets, it584

iteratively places the tweet that has the least Dispreferness in the next position in L.585

The algorithm always picks the tweet that incurs the least amount of inconsistency at586

the time it is picked. Details of the algorithm are shown in Algorithm 1.587

The following proposition demonstrates that the proposed algorithm is theoretically588

reasonable, because if there is no inconsistency among the three sets of preferences,589

the optimal ranking of tweets will be achieved by GreedyMerging.590

PROPOSITION 3.4. If there is no inconsistency among all the preferences from the T-591

tweet Ranker, the TU-tweet Ranker and the pairwise classifier, GreedyMerging produces592

the optimal ranking.593

PROOF. Assuming no inconsistency among all the preferences, there must be a lin-594

ear order of tweets in terms of their preferences: di1 � di2 � · · · � din . This linear order595

is an optimal ranking of tweets because any pair of tweets is ordered by their prefer-596

ences. The first tweet di1 has zero Dispreferness because no tweet has preference over597

it. Moreover, no other tweet, say d, has zero Dispreferness, since di1 is preferred over598

d, causing Dispreferness(M, d) > 0. GreedyMerging inserts di1 into the first position of599

the merged ranking L. After di1 is chosen and the matrix is updated by deleting the600
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ALGORITHM 1: The GreedyMerging Algorithm
Input: A ranking of T-tweets: T; a ranking of TU-tweets: TU; the preferences of pairs of a

T-tweet and a TU-tweet, fp; Three weighting parameters: λT, λTU and λPairwise;
Output: A merged ranking of tweets L;
1. Union two rankings of tweets D = T ∪ TU;
2. Create the preference matrix M|D|×|D| for D, based on T, TU, fp, λT, λTU and λPairwise;
3. while(D �= ∅)
4. Find the tweet d with the least Dispreferness(M, d);
5. d = arg mind∈D{Dispreferness(M, d)};
6. Insert d into the merged ranking L;
7. Update D and M:
8. D = D − {d};
9. M|D−1|×|D−1| = M|D|×|D|−[d]; // deleting the row and column representing d;
10. end

row and the column representing di1 , the second tweet di2 has no tweet preferred over601

it among the remaining tweets and only its Dispreferness is zero. GreedyMerging in-602

serts di2 into the second position of L. The same argument is applied repeatedly until603

all tweets are inserted into L.604

After a ranking of T-tweets and a ranking of TU-tweets are merged by GreedyMerg-605

ing, we obtain a ranking L of both types of tweets but their IR scores are absent. We606

need to assign some (pseudo) IR scores to the tweets in L so that the time-related rel-607

evance scores of tweets (to be given in Section 4.2) can be combined with the IR scores608

to yield the similarity scores for the final ranking of tweets (see Section 4.3). The rank-609

ing of the tweets in descending order of their pseudo IR scores should be identical610

to L. We adopt the conversion proposed in Lee [1997]. Given a ranking of n tweets,611

L = [d1, . . . , dn], where the subscript i of tweet di is its ranking position, we assign di612

an IR score IR(di) as follows.613

IR(di) = 1 − i − 1
n

. (6)614

4. TEMPORAL USAGE IN RETRIEVAL615

In the first phase, tweets are ranked by only considering their lexical similarities to616

queries. In this section, we discuss how to use the temporal information (publishing617

times) of tweets to improve retrieval effectiveness.618

4.1. Time Representation619

In this section, we describe the temporal representation of tweets with respect to620

queries. Each query q has a timestamp t and only the tweets published on or before621

t are considered to be relevant. Given a tweet d with a publishing time td, we adopt622

the time representation f (td, t) proposed in Efron and Golovchinsky [2011] with the623

interpretation that f (td, t) = 0 means the tweet d is published on the same day as t624

and f (td, t) = n(n > 0) indicates the tweet d is published n days before t.625

4.2. Query Type Determination626

In this section, we first propose a method to classify queries by the temporal distri-627

butions of their top tweets and then present different ways to measure the temporal628

relevance of tweets to classified queries.629

There are three types of queries as discussed in Section 1. We utilize the top tweets630

from the first phase to classify a query into one of these three types. Specifically, for631

a query q with a timestamp t, let D = {d1, . . . , dK } be the top K tweets retrieved by632
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the divide-and-conquer method in the first phase. Let T = {t1, . . . , tK } be the set of633

publishing times associated with those top K tweets, where each publishing time ti634

presents either the same time t or a time before t. Let TD = {t′i|t′i = f (tm, t), tm ∈ T} be635

the set of the unique time representations of their publishing times. Let I(tj, t, t′i) be an636

indicator function.637

I(tj, t, t′i) =
{

1 f (tj, t) = t′i
0 otherwise.

(7)638

The type of q can be classified as follows.639

— q is a time insensitive query if the largest proportion of the top K tweets pub-640

lished on a single day is less than or equal to a certain threshold p(≤ 0.5), that is,641

Equation (8) holds.642

max
t′i∈TD

⎧⎨
⎩ 1

K

∑
tj∈T

I(tj, t, t′i)

⎫⎬
⎭ ≤ p ≤ 0.5. (8)643

— q is a dominant peak query if the largest proportion of the top K tweets pub-644

lished on a certain single day (say t′) is greater than a threshold s(> p), that is,645

Equation (9) holds. Its dominant peak is on t′.646

max
t′i∈TD

⎧⎨
⎩ 1

K

∑
tj∈T

I(tj, t, t′i)

⎫⎬
⎭ > s > p. (9)647

— q is a nondominant peak query if the largest proportion of the top K tweets pub-648

lished on a single day is less than or equal to s but greater than p, that is, Equation649

(10) holds. It can have a set of nondominant peaks and the proportion of the top K650

tweets at each peak is less than or equal to s but greater than p.651

s ≥ max
t′i∈TD

⎧⎨
⎩ 1

K

∑
tj∈T

I(tj, t, t′i)

⎫⎬
⎭ > p. (10)652

The parameters K, p and s are estimated empirically. After a query q is classified653

into one of the three types, the tweets from the first phase are assigned time-related654

relevance scores (TRSs for short) to q as follows.655

— If q is a time-insensitive query, all the tweets retrieved from the first phase are not656

assigned any TRSs. This implies that time has no impact on ranking the tweets657

with respect to q.658

— If q is a dominant peak query, that is, the temporal distribution of its top K tweets659

has a dominant peak on t′i (the t′i days before t), a tweet d (published on td) is660

assigned a TRS as follows.661

TRS(td, t) = 1
2δ

exp
{
−|f (td, t) − t′i|

δ

}
. (11)662

This function is in the form of the Laplace distribution [Laplace 1774]. When the663

tweet occurs at the peak, its TRS is normalized by maxtd{TRS(td, t)} to be 1. The664

farther the tweet d is temporally away from the peak, the smaller the TRS of d665

is. In other words, tweets temporally closer to the peak are given higher TRSs.666

We tested different exponential functions and found that the Laplace-like function667
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performed best. It has a single peak on t′i and its variance 2δ2 can be estimated by668

the maximum likelihood method.669

δ̂ = 1
|TD|

∑
t′i∈TD

∣∣∣∣∣∣
1
K

∑
tj∈T

I(tj, t, t′i) − μ̂

∣∣∣∣∣∣ s.t. μ̂ = 1
|TD|

∑
t′i∈TD

⎛
⎝ 1

K

∑
tj∈T

I(tj, t, t′i)

⎞
⎠ . (12)670

— If q is a nondominant peak query, that is, the temporal distribution of its top671

K tweets has a set of nondominant peaks at a set of time representations P =672

{t′1, . . . , t′|P|}, a tweet (published on td) is assigned a TRS as follows.673

TRS(td, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
tj∈T I(tj,t,t′n)

maxt′m∈P

{∑
tj∈T I(tj,t,t′m)

} ·
∑

d′∈Dt′n
BM25(d,d′)

|Dt′n | f (td, t) �∈ P
∑

tj∈T I(tj,t,f (td,t))

maxt′m∈P

{∑
tj∈T I(tj,t,t′m)

} f (td, t) ∈ P

s.t. Dt′m = {
d′|f (td′ , t) = t′m, t′m ∈ P

}
, t′n = arg max

t′m∈P

{∑
d′∈Dt′m

BM25(d, d′)

|Dt′m |

} (13)674

Let us explain the intuition of Equation (13) as follows.675

(1) Suppose that the distribution of q’s top K tweets has multiple nondominant676

peaks.677

(a) For a tweet (published on td) belonging to the highest peak at time678

f (td, t), its TRS is assigned to be 1, that is, maxt′m∈P

{∑
tj∈T I(tj, t, t′m)

}
=679 ∑

tj∈T I(tj, t, f (td, t)) ⇒
∑

tj∈T I(tj,t,f (td,t))

maxt′m∈P

{∑
tj∈T I(tj,t,t′m)

} = 1680

(b) For a tweet d (published on td) belonging to a nonhighest peak at time681

f (td, t), its TRS is the ratio of the number of the top K tweets at that peak682

to that at the highest peak, that is, TRS(td, t) =
∑

tj∈T I(tj,t,f (td,t))

maxt′m∈P

{∑
tj∈T I(tj,t,t′m)

} .683

(c) For a tweet d (published on td) not belonging to any peak, we first deter-684

mine which peak contains the tweets that are most similar to d. We use685

BM25 to measure the average similarity of d to the tweets at a peak.2686

Then we pick the peak with the highest average similarity to d, say the687

peak at time t′n. Let S2

(
=

∑
d′∈Dt′n

BM25(d,d′)

|Dt′n |

)
denote that highest average688

similarity. Each tweet in that picked peak is assigned the same TRS. Let689

S1

(
=

∑
tj∈T I(tj,t,t′n)

maxt′m∈P

{∑
tj∈T I(tj,t,t′m)

}
)

denote that TRS of a tweet in that picked690

peak. Finally we assign d a TRS that is the product of S1 and S2. In other691

words, the tweets in different peaks describe different events related to q.692

We first determine which related event d is likely to describe. The likeli-693

hoods of d describing different events are measured by the average similar-694

ities of d to those tweets at different peaks. We then assign d a TRS that695

is equal to the highest average similarity multiplied by the TRS of a tweet696

describing the same related event as d does.697

2We utilize the tweet message field without exploring the Web pages of URLs if present.
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(2) Suppose that the distribution of q’s top K tweets has a single nondominant698

peak, the same approach is used.699

(a) For a tweet belonging to the unique peak, its TRS is assigned to be 1.700

(b) For a tweet d that does not belong to that peak, the average similarity of d701

to the tweets in that peak is computed. It is multiplied by the TRS of any702

tweet at the peak (having a value of 1 due to the single peak) to yield the703

TRS of d.704

4.3. Aggregation of IR Scores and Time-Related Relevance Scores705

The first phase calculates the IR scores of tweets with respect to a query q. The second706

phase of the method calculates the time-related relevance scores of tweets by using707

temporal information. Given a tweet d, let IR(d) and TRS(d) be the IR score of d708

and the time-related relevance score of d, respectively. An aggregation score AGS(d)709

can be calculated in the manner of F-measure [Rijsbergen 1979] (see Equation (14)).710

The tweets are arranged in descending order of the aggregation scores. Although the711

F-measure is usually used as an evaluation measure, it can be employed to balance712

IR(d) and TRS(d). The parameter β aims at balancing the contributions of IR(d) and713

TRS(d) to the aggregation score. The appropriate value of β is estimated in the experi-714

ments. Experimental results demonstrate that such an aggregation outperforms other715

aggregations, such as CombSUM and CombMNZ [Shaw et al. 1994].716

AGS(d) = (1 + β2)
IR(d) · TRS(d)

β2 · IR(d) + TRS(d)
(14)717

5. EXPERIMENT SETUP718

5.1. TREC Tweets2011 Collection719

TREC 2011 released a tweet collection called Tweets2011 for the real-time ad-hoc re-720

trieval task of the microblog track. The collection consists of about 16 million tweets721

sampled from Twitter over 17 days (from 1/23/2011 to 2/8/2011). Instead of directly giv-722

ing those tweets, TREC 2011 provided two tools for participating groups to crawl the723

collection. One tool employing a Twitter API provides an information-rich collection of724

tweets in the JSON format. The other one just crawls the HTML pages of tweets. The725

efficiency of the first tool is very low, crawling about 150 tweets per hour due to the726

limitation of the Twitter API. The second tool only crawls the HTML pages of tweets727

and it is far more efficient than the first tool. However, some social information, such as728

Twitter user profile, is absent in the HTML collection of tweets. We utilize the second729

tool in this article. Since Twitter users might delete their tweets at any time, change730

their usernames or change the public sharing properties of their tweets, it is possible731

that some tweets are successfully crawled by some groups while become unavailable732

when other groups are crawling. The statistics of our crawled tweet collection is shown733

in Table III. In the TREC Tweets2011 collection crawled by us, 16.7% of tweets are734

TU-tweets. We crawled the Web pages whose URLs are linked by the TU-tweets in the735

collection, which results in another collection of about 2.3 million Web pages.3736

5.2. TREC 2011 and 2012 Queries and TREC Relevance Judgments737

TREC 2011 released 50 queries and TREC 2012 released 60 queries. TREC required738

both sets of queries to be retrieved over the TREC Tweets2011 collection. Each query739

represents an information need at a specific time. An example query is shown in740

Figure 2. The num tag encloses the ID of the query. The query tag encloses the query.741

3Some URLs given by the TU-tweets are not available during our crawling.
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Table III. The Statistics of Our Crawled TREC Tweets2011 Collection

HTTP Response Code Tweet Count Description

200 (OK) 14437978 Successfully downloaded tweets.
302 (Found) 1612080 Downloaded retweets via redirects.
403 (Forbidden) 339147 The tweets without public sharing properties.
404 (Not Found) 707403 The tweets no longer available.

Fig. 2. An example of TREC query.

The querytime tag gives the timestamp of the query in the form of ISO standard. Each742

tweet is assigned a unique tweet ID. The descending ordering of the IDs of tweets can743

be interpreted as the reverse-chronological order of their publishing times. The query-744

tweettime tag represents the timestamp of the query. In response to a query with a745

timestamp t, only the tweets whose IDs are not greater than t need to be considered.746

TREC also provided the relevance judgments of tweets with respect to those two747

sets of queries. TREC assessors read tweets, then followed the URLs inside them and748

finally labeled them in a three point scale: “highly relevant,” “relevant,” and “irrele-749

vant.” For the TREC 2011 queries, 49 (out of 50) queries have at least one relevant750

or highly relevant tweet and 33 (out of 50) queries have at least one highly relevant751

tweet. For the TREC 2012 queries, 59 (out of 60) queries have at least one relevant or752

highly relevant tweet and 56 (out of 60) queries have at least one highly relevant tweet.753

“Highly relevant” tweets are preferred over “relevant” tweets that are preferred over754

“irrelevant” tweets. For the set of TREC 2011 queries, we use the set of TREC 2012755

queries as the training query set and their corresponding TREC relevance judgments756

as the training data and vice versa.757

5.3. Relevance Criteria758

There are two relevant criteria: 1) both relevant and highly relevant tweets are con-759

sidered relevant; 2) only the highly relevant tweets are considered relevant. In our760

experiments, we denote these two relevant criteria as the relevant criterion and the761

highly relevant criterion, respectively. Our results are evaluated by these two criteria.762

5.4. Evaluation Measures763

In this article, we employ the precision at top 30 tweets (P30 for short), the mean764

average precision (MAP for short) and the normalized discounted cumulative gain at765

top 30 tweets (NDCG@30 for short) as the evaluation measures. To evaluate the re-766

trieval effectiveness of our method that does not involve ranking tweets in reverse-767

chronological order, we use MAP as the primary measure and P30 and NDCG@30 as768

the secondary measures. However, we use P30 as the primary measure and MAP as769

the secondary measure to evaluate the performance of our method in ranking tweets in770

reverse-chronological order, as TREC 2011 stipulated that P30 is the official measure771

for the reverse-chronological rankings of tweets [Ounis et al. 2011]. In this article, we772

only consider statistical significance at p < 0.05 according to one-sided paired t-test.773
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6. EXPERIMENTAL RESULTS774

In this section, we evaluate our method by using both TREC 2011 and TREC 2012775

queries over the TREC Tweets2011 collection. Two sets of experiments are conducted776

to evaluate our two-phase method. One set evaluates the retrieval performance of the777

divide-and-conquer method in the first phase; the other set evaluates that of utilizing778

temporal information of tweets in the second phase. We also compare the performance779

of our two-phase method with various state-of-the-art methods. In particular, we con-780

duct the experiments to reveal the answers to the following research questions.781

— Is it beneficial to apply the divide-and-conquer strategy on ranking tweets? In other782

words, would there be any benefit to rank the two types of tweets separately, com-783

pared with the method of ranking them simultaneously? Experiments are conducted784

to verify the motivation of leveraging the structural difference of tweets.785

— What are the important features for learning to rank tweets? We study the degrees786

of importance of the proposed features for ranking T-tweets, TU-tweets and both787

types of tweets together.788

— What are the effectiveness and the efficiency of the proposed divide-and-conquer789

algorithm for ranking tweets?790

— How many queries do benefit from the divide-and-conquer algorithm and how many791

queries do not? In particular, we conduct a result analysis of the proposed algorithm792

and discuss the reasons why our algorithm helps or hurts some typical queries.793

— Is it necessary to have two different types of time sensitive queries (dominant peak794

queries vs. nondominant peak queries)? Experiments are conducted to validate the795

benefit of our proposed categories of temporal queries.796

— How to estimate the parameters K, p, s and β that are used by our temporal classi-797

fication of queries?798

— Does the utilization of temporal information provide further improvement over the799

algorithm using the divide-and-conquer strategy?800

— How many queries do benefit from the usage of temporal information and how many801

queries do not? We analyze the performance of our method query by query and802

discuss the reasons why our method improves or deteriorates the performance of803

some queries.804

— How is the performance of our two-phase method that combines the usage of tem-805

poral information with the divide-and-conquer approach, compared with various806

state-of-the-art methods?807

6.1. Relevance Ranking Analysis808

In this section, we first demonstrate the necessity of considering the structural differ-809

ence of tweets. Second, we study the degrees of importance of the proposed features for810

ranking tweets. Third, we study the effectiveness of the divide-and-conquer method by811

comparing it with various baselines. Fourth, we discuss the efficiency of the proposed812

method. Finally, we conduct a result analysis and discuss why some queries are helped813

or hurt by our method.814

6.1.1. The Motivation of Considering Structural Difference of Tweets. To validate the motiva-815

tion of using the divide-and-conquer strategy to address the structural difference of816

tweets, we analyze a uniform ranker (denoted by Uniform Ranker) and the two tweet817

type-specific rankers (denoted by T-tweet Ranker and TU-tweet ranker respectively).818

The Uniform Ranker is constructed by using RankSVM. It is learned over the training819

data consisting of a set of training queries and both types of labeled tweets. It ranks820

both types of tweets simultaneously. We first apply the Uniform Ranker to produce821

a ranking of tweets. This ranking R consists of both types of tweets and is then822
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Table IV. Uniform Ranker vs. Tweet Type-Specific Rankers

TREC 2011
Relevant Highly Relevant

MAP P30 NDCG@30 MAP P30 NDCG@30
Uniform Ranker (for T-tweets) 0.0613 0.1497 0.1142 0.0231 0.0202 0.1030

T-tweet Ranker 0.0768 † 0.1639 0.1327 † 0.0297 0.0152 0.1151
Uniform Ranker (for TU-tweets) 0.4440 0.5013 0.4762 0.3966 0.2364 0.4831

TU-tweet Ranker 0.4715 † 0.5102 0.4952 † 0.4042 0.2242 0.4923

TREC 2012
Relevant Highly Relevant

MAP P30 NDCG@30 MAP P30 NDCG@30
Uniform Ranker (for T-tweets) 0.0474 0.1266 0.0670 0.0182 0.0411 0.0706

T-tweet Ranker 0.0510 0.1373 0.0678 0.0184 0.0446 0.0696
Uniform Ranker (for TU-tweets) 0.2882 0.4226 0.2798 0.2447 0.2435 0.2722

TU-tweet Ranker 0.2926 † 0.4367 † 0.2949 0.2489 † 0.2548 0.2829

Note: † indicates statistically significant improvements over the corresponding baselines

partitioned into two rankings, R1 for T-tweets and R2 for TU-tweets. The relative823

order of the tweets in each Ri(i = 1, 2) is the same as that in R. Two tweet type-specific824

rankers are constructed by using RankSVM too. The T-tweet Ranker is learned by only825

using the portion of T-tweets in the training data and the TU-tweet ranker is learned826

by only using the portion of TU-tweets. They are used to rank the two types of tweets827

separately. Finally, we compare the performance of these two rankings R1 and R2 with828

those of the two corresponding rankings from the two tweet type-specific rankers.829

The performance is evaluated by using both relevant criteria. The comparison of their830

performance is shown in Table IV.831

We make three observations based on the information shown in Table IV. First,832

the Uniform Ranker achieves decent performance in ranking TU-tweets but it per-833

forms poorly in ranking T-tweets with respect to both sets of TREC 2011-2012 queries.834

Second, the two tweet type-specific rankers consistently outperform the Uniform835

Ranker in terms of MAP, P30 and NDCG@30 by the relevant criterion over both sets836

of queries. Third, for the highly relevant criterion, the two type-specific rankers show837

somewhat stronger performance than the Uniform Ranker. Specifically, for the TREC838

2011 queries, the two rankers consistently outperform the Uniform Ranker in MAP839

and NDCG@30 but get marginal deteriorations in P30. For the TREC 2012 queries,840

the TU-tweet Ranker consistently outperforms the Uniform Ranker in all three mea-841

sures. The T-tweet Ranker outperforms the Uniform Ranker in terms of MAP and P30842

but gets a negligible deterioration in NDCG@30. These three observations validate the843

motivation and the necessity of treating the two types of tweets separately.844

6.1.2. Feature Analysis. It is worth investigating the degrees of importance of the pro-845

posed features for learning to rank tweets. We sort the proposed features in descend-846

ing order of their degrees of importance that are calculated by RankSVM [Bian et al.847

2010]. Specifically, we study the degrees of importance of the features applicable for848

the T-tweet Ranker, the TU-tweet Ranker and the Uniform Ranker. Table V shows the849

top 10 important features for each of these three rankers.850

From Table V, several observations can be made. First, QTR features (the features851

whose calculations depend on tweets and queries) are more important than TR fea-852

tures (the features whose calculations depend on tweets only) in ranking T-tweets,853

TU-tweets or ranking them simultaneously, because QTR features dominate the top854

10 features for these three rankers. Second, the top 10 features for the T-tweet Ranker855

are very different from those for the TU-tweet Ranker. In particular, only 3 of the top856

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 21, Publication date: November 2013.



21:22 L. Jia et al.

Table V. Top 10 Features for T-tweet Ranker, TU-tweet Ranker, and Uniform Ranker

Top 10 Features for T-tweet Ranker Shared by Rankers Below
Rank ID Type Feature Description TU-Tweet Uniform

1 F17 QTR The percentage of related nouns of Q contained in the
tweet message field.

√ √

2 F10 QTR The percentage of query concepts contained in the tweet
message field

√ √

3 F10 QTR The weighted percentage of query concepts contained in
the tweet message field

√ √

4 F12 TR Whether the tweet message field has more than 50% con-
tent in English.

5 F16 QTR The percentage of related concepts of Q contained in the
tweet message field.

6 F18 QTR Whether the order of query terms in the tweet message
field is the same as that of in the query

7 F3 QTR Whether the tweet message field contains the whole
query as a SNP or CNP.

8 F1 QTR The percentage of query terms contained by the hashtags
in the tweet.

9 F5 QTR Whether the tweet message field contains the key query
term.

10 F2 QTR The percentage of expansion terms contained by the
hashtags in the tweet.

Top 10 Features for TU-tweet Ranker Shared by Rankers Below
Rank ID Type Feature Description T-Tweet Uniform

1 F10 QTR The weighted percentage of query concepts contained in
the union of all three fields.

√

2 F10 QTR The percentage of query concepts contained in the URL
title field.

√

3 F10 QTR The percentage of query concepts contained in the URL
body field.

√

4 F10 QTR The percentage of query concepts contained in the tweet
message field.

√ √

5 F3 QTR Whether the URL title field contains the whole query as
a SNP or CNP.

√

6 F17 QTR The percentage of related nouns of Q contained in the
tweet message field.

√ √

7 F10 QTR The weighted percentage of query concepts contained in
the URL body field.

√

8 F10 QTR The weighted percentage of query concepts contained in
the tweet message field.

√

9 F10 QTR The percentage of query concepts contained in the union
of all three fields.

√ √

10 F3 QTR Whether the URL body field contains the whole query as
a SNP or CNP.

√

Top 10 Features for Uniform Ranker Shared by Rankers Below
Rank ID Type Feature Description T-Tweet TU-tweet

1 F10 QTR The percentage of query concepts contained in the tweet
message field.

√ √

2 F10 QTR The percentage of query concepts contained in the URL
title field.

√

3 F10 QTR The weighted percentage of query concepts contained in
the tweet message field.

√ √

4 F17 QTR The percentage of related nouns of Q contained in the
tweet message field.

√ √
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Table V. Continued

Top 10 Features for Uniform Ranker Shared by Rankers Below
Rank ID Type Feature Description T-Tweet TU-tweet

5 F10 QTR The percentage of query concepts contained in the union
of all three fields.

√

6 F10 QTR The percentage of query concepts contained in the URL
body field.

√

7 F3 QTR Whether the URL title field contains the whole query as
a SNP or CNP.

√

8 F10 QTR The weighted percentage of query concepts contained in
the union of all three fields.

√

9 F10 QTR The weighted percentage of query concepts contained in
the URL body field.

√

10 F3 QTR Whether the URL body field contains the whole query as
a SNP or CNP.

√

10 features for the T-tweet Ranker appear among the top 10 important features for857

TU-tweet Ranker and they are not among the top 3 features for the TU-tweet Ranker.858

This observation shows that the T-tweet Ranker and the TU-tweet Ranker emphasize859

different features and thus again verifies the motivation and the necessity of rank-860

ing these two types of tweets separately. Third, the top 10 important features for the861

T-tweet Ranker are quite different from those for the Uniform Ranker while the top862

10 important features for the TU-tweet Ranker are very similar to those for the Uni-863

form Ranker. In particular, only 3 of the top 10 features for the T-tweet Ranker appear864

among those for the Uniform Ranker while all the top 10 features for the TU-tweet865

Ranker are the same as those for the Uniform Ranker but with a different order. This866

observation explains why the Uniform Ranker achieves decent performance in ranking867

TU-tweets but suffers poor performance in ranking T-tweets.868

6.1.3. The Impact of the Divide-and-Conquer Method. To study the impact of our divide-869

and-conquer method, four systems are configured. The first system is BM25 similarity870

[Robertson et al. 1996]. We empirically learn the two parameters b and k for BM25.871

In particular, the parameter b is learned from 0.5 to 1 with an interval of 0.05 and the872

parameter k is learned from 1.2 to 2.0 with an interval of 0.1. The combination of these873

two parameters that optimizes the performance of the TREC 2011 queries is applied874

to the TREC 2012 queries and vice versa. The second system is the Uniform Ranker875

(see Section 6.1.1). These two methods act as the baselines. The third system is the876

proposed divide-and-conquer method equipped with a simple merging (called Simple-877

Merging) algorithm. It can act as an alternative to the GreedyMerging algorithm to878

merge the rankings of T-tweets and TU-tweets. The SimpleMerging algorithm works879

as follows. Given a ranking of T-tweets, a ranking of TU-tweets and the preferences880

of T-tweets relative to TU-tweets, SimpleMerging compares the preference between881

the first T-tweet and the first TU-tweet. If the first T-tweet is preferred over the882

first TU-tweet, SimpleMerging puts the first T-tweet into the merged ranking and883

then compares the preference between the second T-tweet and the first TU-tweet.884

Otherwise, SimpleMerging puts the first TU-tweet into the merged ranking and then885

compares the first T-tweet with the second TU-tweet. Repeat the given comparison un-886

til all tweets are merged into the final ranking. SimpleMerging guarantees to preserve887

the relative ranking positions of the T-tweets and those of the TU-tweets. Its time888

complexity is linear. The fourth system is the divide-and-conquer method equipped889

with the GreedyMerging algorithm and its time complexity is quadratic. The three890

parameters, λT, λTU and λPairwise, of GreedyMerging are estimated as follows. We stip-891

ulate that the sum of the three parameter values be 1 and each parameter can only be892
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Table VI. The Comparison of the Divide-and-Conquer Method of SimpleMerging or GreedyMeging with
Uniform Ranker and BM25

TREC2011
Relevant Highly Relevant

MAP P30 NDCG@30 MAP P30 NDCG@30
BM25 0.3693 0.3966 0.3747 0.2488 0.1576 0.3474

Uniform Ranker 0.4778 ↑ 0.4905 ↑ 0.4880 ↑ 0.3788 ↑ 0.2000 ↑ 0.4793 ↑
SimpleMerging 0.4953 ↑ 0.5109 ↑ 0.4914 ↑ 0.3912 ↑ 0.2152 ↑ 0.4882 ↑
GreedyMerging 0.5006 ↑ ‡ 0.5143 ↑ 0.4939 ↑ 0.4090 ↑ ‡ 0.2283 ↑ † 0.4933 ↑

TREC2012
Relevant Highly Relevant

MAP P30 NDCG@30 MAP P30 NDCG@30
BM25 0.2603 0.3791 0.2207 0.1910 0.2167 0.2319

Uniform Ranker 0.3077 ↑ 0.4175 ↑ 0.2705 ↑ 0.2345 ↑ 0.2375 ↑ 0.2633 ↑
SimpleMerging 0.3206 ↑ 0.4130 ↑ 0.2832 ↑ 0.2409 ↑ † 0.2357 ↑ 0.2710 ↑
GreedyMerging 0.3259 ↑ 0.4367 ↑ 0.2966 ↑ †‡ 0.2590 ↑ †‡ 0.2583 ↑ 0.2852 ↑ †‡

Note: ↑, †, and ‡ indicate statistically significant improvements over BM25, Uniform Ranker and Sim-
pleMergeing, respectively.

assigned one of 10 possible values: 0.1, ..., 1.0. The combination of these three parame-893

ters that optimizes the performance of the TREC 2011 queries is applied to the TREC894

2012 queries and vice versa. The performances of these systems are shown in Table VI.895

Several observations can be made from the information in Table VI. First, all three896

learning to rank models, the Uniform Ranker, the divide-and-conquer method with the897

SimpleMerging algorithm (the SimpleMerging algorithm for short) and the divide-and-898

conquer method with the GreedyMerging algorithm (the GreedyMerging algorithm for899

short) consistently and significantly outperform the BM25 baseline in all measures by900

both criteria with respect to the two sets of queries. This indicates that using learning901

to rank techniques benefits the retrieval effectiveness of tweets. Second, for the set of902

TREC 2011 queries, the SimpleMerging algorithm consistently outperforms the Uni-903

form Ranker in all the measures by both criteria; for the set of TREC 2012 queries,904

the SimpleMerging algorithm consistently outperforms the Uniform Ranker in MAP905

and NDCG@30 but gets negligible deteriorations in P30 by both criteria. For all the906

measures with respect to the two sets of TREC queries, the GreedyMerging algorithm907

consistently outperforms the Uniform Ranker baseline by both relevant criteria. This908

observation validates that the retrieval effectiveness of tweets benefits from the em-909

ployment of the divide-and-conquer strategy for handling the structural difference910

of tweets. Third, the GreedyMerging algorithm consistently outperforms the Simple-911

Merging algorithm in all the measures by both relevant criteria with respect to the912

two sets of queries. This indicates the performance of the GreedyMerging algorithm is913

superior to that of the SimpleMerging algorithm.914

6.1.4. The Efficiency of GreedyMerging Algorithm. To merge a ranking of m T-tweets and915

a ranking of n TU-tweets, the time complexity of the GreedyMerging algorithm is916

O((m+n)2). It consists of the construction of the preference matrix M and the merging917

process based on M. Compared with the SimpleMerging algorithm, the GreedyMerg-918

ing algorithm is not very efficient when m and n are large. However, its quadratic time919

complexity should not be problematic when only merging the top m′ T-tweets and the920

top n′ TU-tweets, where m′ � m and n′ � n. Merging the top m′ T-tweets and the top921

n′ TU-tweets makes the construction of the preference matrix efficient, since we only922

construct the submatrix based on these top tweets. It also makes the merging process923
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Fig. 3. Performance of GreedyMerging with the Varying Values of m′ and n′ with respect to the TREC 2011
queries.

efficient, because the GreedyMerging algorithm merges tweets by their Dispreferness924

that now is calculated on this small submatrix.925

We study the effectiveness of the GreedyMerging algorithm when m′ and n′ are as-926

signed small values. Figures 3 and 4 show the MAP, P30 and NDCG@30 performance927

of the GreedyMerging algorithm with varying small values of m′ and n′ for both sets928

of TREC 2011 and TREC 2012 queries, respectively. For the TREC 2011 queries, the929

value of m′ varies from 10 to 60 and that of n′ varies from 10 to 150. For the TREC930

2012 queries, the value of m′ varies from 10 to 60 and that of n′ varies from 10 to 300.931

In all the component figures of Figures 3 and 4, the x axes represent the varying values932

of n′ and the y axes represent the MAP, P30 and NDCG@30 performance by either the933

relevant criterion or the highly relevant criterion. The different curves represent the934

varying values of m′. The dash lines represent the corresponding performance of the935

GreedyMerging algorithm by merging all m T-tweets with all n TU-tweets. For ease of936

presentation, let us denote as FullGreedyMerging the GreedyMerging algorithm that937

merges all m T-tweets and all n TU-tweets.938

Figure 3 shows the performance of the GreedyMerging algorithm by both relevant939

criteria with respect to the set of TREC 2011 queries. According to Figure 3(a), which940

shows the MAP performance by the relevant criterion, the GreedyMerging algorithm941

achieves a comparable MAP score of 0.4987 when merging only the top 60 (m′ = 60) T-942

tweets and the top 150 (n′ = 150) TU-tweets, relative to a MAP score of 0.5006 achieved943

by FullGreedyMerging. A similar observation can be made based on Figure 3(d) where944

the MAP performance is evaluated by the highly relevant criterion. The GreedyMerg-945

ing algorithm achieves a comparable MAP score of 0.4017 when merging only the top946

40 (m′ = 40) T-tweets and the top 90 (n′ = 90) TU-tweets, compared with a MAP score947

of 0.4090 achieved by FullGreedyMerging. If the users are interested in the top tweets,948

we can achieve comparable performance in terms of P30 and NDCG@30, when merg-949

ing very few T-tweets and TU-tweets. According to Figure 3(b) (Figure 3(e)) where the950

P30 performance is evaluated by the (highly) relevant criterion, we can achieve a P30951

score of 0.5122 (0.2263) when just merging the top 10 (m′ = 10) T-tweets and the top952

30 (n′ = 30) TU-tweets, compared with the P30 score of 0.5143 (0.2283) achieved by953

FullGreedyMerging. Similar observations can be made based on the NDCG@30 per-954

formance shown by Figure 3(c) and Figure 3(f). This indicates that we can make the955
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Fig. 4. Performance of GreedyMerging with the Varying Values of m′ and n′ with respect to the TREC 2012
queries.

GreedyMerging algorithm much more efficient without significantly hurting its effec-956

tiveness for the TREC 2011 queries.957

Figure 4 shows the performance of the GreedyMerging algorithm by both rele-958

vant criteria with respect to the set of TREC 2012 queries. As shown in Figure 4(a)959

(Figure 4(d)) where the MAP performance is evaluated by the (highly) relevant crite-960

rion, the GreedyMerging algorithm achieves a reasonable MAP score of 0.3013 (0.2476)961

by merging only the top 60 (m′ = 60) T-tweets and the top 300 (n′ = 300) TU-tweets,962

relative to a MAP score of 0.3256 (0.2590) achieved by FullGreedyMerging. We note963

that the TREC 2012 queries are harder than the TREC 2011 queries to achieve good964

performance, which explains why we only achieve reasonable MAP performance for965

the TREC 2012 queries by merging more top tweets than the TREC 2011 queries. If966

only the top tweets are interested by users, we can achieve comparable performance967

in P30 and NDCG@30 by merging very few top T-tweets and top TU-tweets. In partic-968

ular, according to Figure 4(b) (Figure 4(e)) where the P30 performance is evaluated by969

the (highly) relevant criterion, the GreedyMerging algorithm achieves a comparable970

P30 score of 0.4340 (0.2571) by merging only the top 10 (m′ = 10) T-tweets and the971

top 30 (n′ = 30) TU-tweets, relative to the P30 score of 0.4367 (0.2583) achieved by972

FullGreedyMerging. Similar observations can be made based on the NDCG@30 perfor-973

mance shown in Figure 4(c) and Figure 4(f). All these observations indicate that the974

GreedyMerging algorithm can be much more efficient by achieving reasonable MAP975

performance and comparable P30 and NDCG@30 performance for the TREC 2012976

queries.977

6.1.5. Result Analysis. In this section, we conduct an analysis for both sets of TREC978

queries. Specifically, we compare the MAP performance of the Uniform Ranker with979

that of the divide-and-conquer method using the GreedyMerging algorithm (see Ta-980

ble VI). This comparison shows whether our way of handling the structural difference981

of tweets can improve retrieval effectiveness. We analyze the average precision (AP for982

short) changes query by query. Figure 5 shows the AP changes by both relevant criteria983

with respect to the two sets of queries. For example, Figure 5(a) shows the AP changes984

for the TREC 2011 queries by the relevant criterion. The changes are displayed from985

the most improved query (on the left) to the most deteriorated query (on the right).986

This displaying style continues from Figure 5(b) to 5(d). According to Figure 5, our987
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Fig. 5. AP Changes of the TREC 2011-2012 queries (Uniform Ranker vs. Divide-and-Conquer Method).

proposed method based on the divide-and-conquer strategy can improve the majority988

of the queries by both relevant criteria for the two sets of queries. This validates the989

effectiveness of our method.990

We perform a deeper analysis of our results to find out how many queries are sig-991

nificantly improved or hurt in their APs (�AP ≥ 0.1) by our method and discuss the992

corresponding reasons. For the TREC 2011 queries, Figure 5(a) shows that 13 queries993

are significantly improved in their APs while 7 queries are significantly hurt according994

to the relevant criterion. Figure 5(b) shows that 10 queries are significantly improved995

while 4 queries are significantly hurt according to the highly relevant criterion. For996

the TREC 2012 queries, Figure 5(c) shows that 6 queries are significantly improved997

in their APs while 3 queries are significantly hurt according to the relevant criterion.998

Figure 5(d) shows that 9 queries are significantly improved while only 1 query is sig-999

nificantly hurt according to the highly relevant criterion.1000

One reason why our method improves some queries in their APs is that the T-tweet1001

Ranker (see Section 6.1.1) outperforms the Uniform Ranker in ranking T-tweets for1002

them. Let us illustrate this reason with an example.1003

Example 6. The query q = “Assange Nobel peace nomination” has four concepts: two1004

PN concepts, “Assange” and “Nobel peace,” and two CNP concepts, “Nobel peace nomi-1005

nation” and “Assange Nobel peace nomination.” Given a T-tweet d1 = “Nobel war prize1006

for wikileaks... only if the nukes are fired... #cablegate #wikileaks #assange #anony-1007

mous” and another T-tweet d2 = “#unlikelyheadlines GEORGE BUSH WINS NOBEL1008

PEACE PRIZE! Ha,” d1 is relevant to q while d2 is irrelevant to q. The T-tweet Ranker1009

ranks d1 on top of d2, because its most important feature is “the percentage of related1010

nouns of the query contained in the tweet message field” (see Table V). d1 contains one1011

related noun, “wikileaks”, while d2 does not contain any related nouns. The merged1012

ranking preserves the ranking of d1 ahead of d2. However, the Uniform Ranker ranks1013

d2 above d1. For the most important feature of the Uniform Ranker, “the percentage1014

of query concepts contained in the tweet message field” (see Table V), d1 contains a1015

PN concept, “Assange” in its message field and d2 contains another PN concept “Nobel1016

peace” in its message field too. d1 and d2 are tied. The second most important feature1017

of the Uniform Ranker, “the percentage of query concepts contained in the URL title1018

field” (see Table V), is not applicable for T-tweets. For the third most important feature1019

of the Uniform Ranker, “the weighted percentage of query concepts contained in the1020

tweet message field” (see Table V), d2 beats d1, because the weight of “Nobel peace”1021
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is higher than that of “Assange.” We use the inverse document frequency of a concept1022

as its weight. There are more tweets containing “Assange” than the tweets containing1023

“Nobel peace” in our collection. Therefore, the Uniform Ranker ranks d2 above d1.1024

Another reason why our method improves some queries in their APs is that the1025

TU-tweet Ranker (see Section 6.1.1) outperforms the Uniform Ranker in ranking TU-1026

tweets for them. Let us illustrate this reason with an example.1027

Example 7. The query q = “Supreme Court cases” has two concepts, a PN con-1028

cept “Supreme Court” and a CNP concept “Supreme Court cases”. Given a TU-tweet1029

d1 = “@enrogers Only FOX news... http://www.foxnews.com/opinion/2010/01/22/1030

ken-klukowski-supreme-court-amendment-mccain-feingold/” and another TU-tweet1031

d2 = “Letter to Julia Gillard by Peter H Kemp - Solicitor of the Supreme Court of NSW1032

http://wlcentral.org/node/1175 #assange #wikileaks,” d1 is relevant while d2 is irrel-1033

evant. The Uniform Ranker ranks d2 on top of d1, because its most important feature is1034

“the percentage of query concepts contained in the tweet message field” (see Table V).1035

d1 has no query concept in its message field while d2 has a query concept “Supreme1036

Court” in its message field. The TU-tweet Ranker ranks d1 above d2, because its most1037

important feature is “the weighted percentage of query concepts contained in the union1038

of all three fields” (see Table V). The Web page linked by the URL in d1 contains both1039

query concepts, “Supreme Court” and “Supreme Court cases” while the Web page linked1040

by the URL in d2 only contains “Supreme Court”. The merged ranking preserves the1041

ranking of d1 ahead of d2.1042

The T-tweet Ranker and the TU-tweet Ranker are superior to the Uniform Ranker in1043

ranking T-tweets and TU-tweets. Our merging algorithm preserves most of the pref-1044

erences indicated by those two tweet type-specific rankers. So our divide-and-conquer1045

method improves the majority of the queries.1046

The reason why some queries suffer significant drops in their APs is that the TU-1047

tweet Ranker falsely ranks some irrelevant TU-tweets over some relevant TU-tweets1048

with respect to them. This happens for a small minority of queries, because the TU-1049

tweet Ranker is not perfect. Let us illustrate this reason with a query “Michelle Obama1050

fashion” whose performance is hurt most by both relevant criteria among the TREC1051

2012 queries.1052

Example 8. The query q = “Michelle Obama fashion” has two concepts, a PN con-1053

cept, “Michelle Obama” and a CNP concept, “Michelle Obama fashion”. Given a TU-1054

tweet d1 = “Michelle Obama & Jill Biden Coordinate With Pearls On Monday (PHO-1055

TOS, POLL) http://huff.to/h4PmSg” and a TU-tweet d2 = “Fashionista: Fashion News1056

Roundup: Franca Sozzani Trashes Fashion Bloggers, Cathy Horyn Throws Down Over1057

Michell... http://bit.ly/fTKBEs,” d1 is relevant but d2 is irrelevant. The Web page1058

linked by the URL in d1 presents the following excerpt: “And the pair did a little co-1059

ordinating of their own – blazers and pearls. Michelle opted for a gray suit, with a1060

necklace secured with a safety pin (super punk rock!), while Jill mixed cream with1061

metallics and long necklace strands.”. This excerpt implicitly talks about the fashion1062

aspect of “Michelle Obama”, although the query term “fashion” does not occur at all.1063

However, consider an excerpt from the Web page linked by the URL in d2, “Fashion1064

News Roundup: Franca Sozzani Trashes Fashion Bloggers, Cathy Horyn Throws Down1065

Over Michelle Obamas McQueen, and Naomi Campbells a No-Show in Court”. This1066

excerpt contains all the query terms that form a CNP concept but is irrelevant to the1067

query. The TU-tweet Ranker ranks d2 on top of d1, because its most importance feature1068

is “the weighted percentage of query concepts contained in the union of all three fields”1069

(see Table V). d2 contains all the query concepts in the union of its three fields while1070

d1 only has a query concept, “Michelle Obama” in the union of its three fields. The1071
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ranking of d2 ahead of d1 is preserved in the merged ranking. However, the Uniform1072

Ranker ranks d1 above d2, because its most important feature is “the percentage of1073

query concepts contained in the tweet message field” (see Table V). d1 has a query con-1074

cept “Michelle Obama” in its message field while d2 does not have any query concepts1075

in its message field.1076

Again our merging algorithm can preserve most of the preferences of TU-tweets1077

indicated by the TU-tweet Ranker. Given a query q, if its AP performance of TU-tweets1078

achieved by the TU-tweet Ranker is significantly deteriorated, compared with that of1079

the Uniform Ranker, q suffers a significant drop in the AP performance of its merged1080

ranking.1081

6.2. Improving Relevance Ranking via Temporal Information1082

In this section, we present a set of experiments to evaluate our method that han-1083

dles temporality. Specifically, we first validate our proposed three temporal cate-1084

gories of queries. Then we evaluate our proposed F-measure aggregation method (see1085

Section 4.3) by comparing it with two baseline aggregation methods, combSUM and1086

combMNZ [Shaw et al. 1994]. Third, we show that the incorporation of the temporal1087

information of tweets can further improve the retrieval effectiveness of the divide-and-1088

conquer method in the first phase. Finally, we present a result analysis and discuss the1089

reasons why our way of using temporality helps or hurts some queries.1090

6.2.1. The Validation of Temporal Query Categorizations. In this section, we validate our1091

three temporal categories of queries. We conduct the experiments in three scenarios1092

where queries are classified into either time insensitive ones or time sensitive ones.1093

In the first scenario, a classified time sensitive query is always treated as a dominant1094

peak query, no matter how its top tweets are temporally distributed. The time-related1095

relevance scores of the tweets with respect to it are calculated by the Laplace-like func-1096

tion given by Equation (11). In the second scenario, a classified time sensitive query1097

is always treated as a nondominant peak query, irrespective of the temporal distribu-1098

tion of its top tweets. The time-related relevance scores of the tweets with respect to1099

it are thus computed by Equation (13). In the third scenario, a time sensitive query is1100

classified to be either a dominant peak query or a nondominant peak query. The time-1101

related relevance scores of the tweets with respect to that query are calculated by1102

Equation (11) or Equation (13), depending on its type. This is what we propose in this1103

article. By comparing the results from the third scenario with those from the first two1104

scenarios, we can conclude whether our temporal query categorization is necessary.1105

Several parameters are proposed to temporally categorize queries, so we first discuss1106

how to estimate them, which is followed by a description of how to configure the three1107

scenarios. There are four parameters to be estimated. They are K, p, s and β (see1108

Equations (8) to (10) and (14)). Given a query q, we first empirically use the top K1109

tweets of q to approximate the temporal distribution of the relevant tweets to q; then1110

we categorize q into one of three classes, after comparing the proportion of its top1111

K tweets at each day by p and s; we calculate the time-related relevance scores of1112

the tweets according to the classified type of q; finally, we aggregate the IR scores of1113

the tweets with their time-related relevance scores by β. We perform a grid search1114

for estimating them. Specifically, K is estimated within the range from 10 to 60 at1115

intervals of 10; the parameter p is estimated within the range from 0 to 0.5 at intervals1116

of 0.1 to ensure p ≤ 0.5; the parameter s is estimated within the range from p + 0.11117

to 1 at intervals of 0.1 to ensure s > p; the parameter β is estimated within the range1118

from 0 to 1 using the same interval length as p and s. For the TREC 2011 queries, we1119

employ the TREC 2012 queries and their relevance judgments as the training data to1120
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estimate these four parameters and vice versa. We present the parameter estimation1121

method here.1122

(1) Given a combination of a K value, a p value, and an s value within their ranges,1123

the training query set Q can be categorized into three subsets of queries: QA (time1124

insensitive queries), QB (time sensitive dominant peak queries) and QC (time sen-1125

sitive nondominant peak queries). The class of a training query q(∈ Q) is deter-1126

mined by exploring the temporal distribution of its top K tweets (from the first1127

phase) jointly with the p value and the s value.1128

(2) For the subset of the training queries, QA, parameter β is not estimated. Let MAPA1129

denote the MAP performance of the ranking of the tweets by their IR scores with1130

respect to QA.1131

(3) For the subset of the training queries, QB, we iteratively test all possible values of1132

the parameter β for QB. Let βB denote this parameter β for QB.1133

(a) For each possible value of βB, we first calculate the time-related relevance1134

scores (TRSs) of tweets with respect to QB by Equation (11), then aggregate the1135

IR scores of the tweets (with respect to QB) with their TRSs by Equation (14)1136

by using the βB value; finally we obtain a ranking of the tweets in descend-1137

ing order of their aggregated scores. The performance of this ranking can be1138

measured by a MAP score.1139

(b) Find the βB value (from Step 3.a) that corresponds to the highest MAP score.1140

Let MAPB denote this highest MAP score for QB.1141

(4) For the subset of the training queries QC, we iteratively test all possible values1142

of β for QC. Let βC denote this parameter β for QC. Apply a similar method to1143

Step 3 on QC except that the TRSs of the tweets with respect to QC are computed1144

by Equation (13). Find the βC value that corresponds to the highest MAP score for1145

QC (denoted by MAPC).1146

(5) Union the K value, the p value and the s value from Step 1, the βB value from1147

Step 3, and the βC value from Step 4 into a combination of five parameters. This1148

combination corresponds to a MAP performance for all training queries Q(= QA ∪1149

QB ∪ Qc) that can be calculated as follows. Let MAPQ denote this MAP score.1150

MAPQ = MAPA · |QA| + MAPB · |QB| + MAPC · |QC|
|QA| + |QB| + |QC| (15)1151

(6) Iteratively repeat Step 1–Step 5 with another combination of a K value, a p value1152

and an s value until all their possible combinations are iterated. Find the combina-1153

tion of K, p, s, βB and βC that corresponds to the highest MAPQ. This combination1154

is the set of the estimated parameter values.1155

We provide some explanations for this method. Given a possible combination of a1156

value of K, a value of p and a value of s, we find out the value of the parameter β that1157

maximizes the MAP performance of all the training queries. Since the calculations of1158

the time-related relevance scores for dominant peak queries and nondominant peak1159

queries are defined differently, the parameter β for them should be estimated differ-1160

ently. Therefore, we technically have five parameters to estimate: K, p, s, βB and βC.1161

After the parameters are estimated, we can apply them to test queries. Specifically,1162

given the top K tweets of a test query q′, we categorize q′ into one of three classes by1163

exploring the temporal distribution of the top K tweets via the estimated p value and1164

the estimated s value. If q′ is categorized to be a time insensitive query, there is no1165

estimated parameter β for q′; if q′ is categorized to be a dominant peak query, the esti-1166

mated parameter βB value is used to aggregate the IR scores of the tweets for q′ with1167

their TRSs; if q′ is categorized to be a nondominant peak query, the estimated param-1168

eter βC value is used to aggregate the IR scores of the tweets for q′ with their TRSs.1169

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 21, Publication date: November 2013.



The Impacts of Structural Difference and Temporality of Tweets on Retrieval Effectiveness 21:31

Table VII. The Comparison of Three Systems

TREC 2011
Relevant Highly Relevant

MAP P30 NDCG@30 MAP P30 NDCG@30
System I (p = s) 0.5062 0.5224 0.4983 0.4116 0.2323 0.4981
System II (s = 1) 0.5142 0.5224 0.5061 0.4141 0.2273 0.4962
System III 0.5270†‡ 0.5218 0.5076 0.4357 0.2283 0.5125

TREC 2012
Relevant Highly Relevant

MAP P30 NDCG@30 MAP P30 NDCG@30
System I (p = s) 0.3236 0.4362 0.2939 0.2564 0.2554 0.2817
System II (s = 1) 0.3360 0.4492 0.2933 0.2644 0.2589 0.2858
System III 0.3415† 0.4695†‡ 0.3018 0.2719 0.2738†‡ 0.2911

Note: † and ‡ indicate statistically significant improvements over System I and System II
respectively.

Our proposed system that uses the given estimation method corresponds to the third1170

scenario. Let System III denote the system in the third scenario. System III is com-1171

pared against two systems, each having only one type of time sensitive queries.1172

System I is obtained by stipulating p = s < 1, ignoring the restrictions of p ≤ 0.51173

and s > p. It assumes that if a query does not satisfy Equation (8), it is time sensitive.1174

Because Equation (10) cannot hold when p = s, all time sensitive queries are assumed1175

to be the dominant peak queries, regardless of the distributions of their top tweets.1176

If a query has multiple peaks, then the highest peak serves as the dominant peak.1177

System I has two parameters p(= s) and β that can be estimated in a similar way as1178

discussed before. In particular, by assuming p = s < 1, all training queries can be1179

partitioned into a set of time insensitive queries and a set of dominant peak queries.1180

The combination of a p value and a β value that yields the largest MAP score for the1181

training queries is utilized to categorize a test query q′. If q′ is a time sensitive query,1182

then the Laplace-like function is used to calculate the time-related relevance scores1183

for the tweets for q′, as this is the only type of time sensitive queries for this system.1184

System I corresponds to the proposed system in the first scenario described earlier.1185

System II is configured by stipulating s = 1. Because Equation (9) cannot hold when1186

s = 1, all time sensitive queries are assumed to be the nondominant peak queries.1187

Equation (13) is applied to calculate the time-related relevance scores. The two pa-1188

rameters p and β are estimated using a similar method to that used by System I. For1189

each test query q′, the combination of a p value and a β value which yields the largest1190

MAP score for the training queries is applied to q′. System II corresponds to the pro-1191

posed system used in the second scenario. Table VII presents their performances.1192

As shown in Table VII, for the set of TREC 2011 queries, compared with System I,1193

System III suffers slight deteriorations in P30 by both relevant criteria. However, Sys-1194

tem III consistently outperforms System I in MAP and in NDCG@30 by both relevant1195

criteria. We also see that System III consistently outperforms System II in almost all1196

measures by both relevant criteria except a negligible deterioration in P30 by the rele-1197

vant criterion. For the set of TREC 2012 queries, System III consistently outperforms1198

System I and System II in all measures by both relevant criteria. These improvements1199

validate our temporal query categorizations.1200

6.2.2. The Evaluation of Aggregation Method. In this section, we evaluate our proposed1201

aggregation method (i.e., System III in Table VII). We compare its performance with1202

two baselines, CombSUM and CombMNZ [Shaw et al. 1994]. In particular, given1203

a tweet d with an IR score IR(d) and a time-related relevance score TRS(d), the1204

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 21, Publication date: November 2013.



21:32 L. Jia et al.

Table VIII. The Comparison of Various Aggregations

TREC 2011
Relevant Highly Relevant

MAP P30 NDCG@30 MAP P30 NDCG@30
CombSUM 0.5028 0.5245 0.4951 0.4025 0.2394 0.4917
CombMNZ 0.4909 0.5156 0.4851 0.3931 0.2343 0.4882
Our Aggregation 0.5270 0.5218 0.5076 0.4357 0.2283 0.5125

TREC 2012
Relevant Highly Relevant

MAP P30 NDCG@30 MAP P30 NDCG@30
CombSUM 0.3358 0.4616 0.2915 0.2495 0.2631 0.2849
CombMNZ 0.3412 0.4638 0.3020 0.2660 0.2690 0.2897
Our Aggregation 0.3415 0.4695 0.3018 0.2719 0.2738 0.2911

CombSUM method calculates an aggregated score for d, CombSum(d) = IR(d) +1205

TRS(d); the CombMNZ method calculates an aggregated score for d, CombMNZ(d) =1206

CombSum(d) · md, where md is the number of nonzero scores for d. Specifically, if d1207

has a nonzero IR(d) score and a nonzero TRS(d) score, then md = 2. If a query q1208

is time insensitive, no TRSs are assigned to the tweets with respect to q. Table VIII1209

shows the comparisons of the three aggregation methods. For the TREC 2012 queries,1210

our aggregation method consistently outperforms CombSUM in all measures by both1211

relevant criteria. Our method also outperforms CombMNZ in almost all measures by1212

both relevant criteria except a negligible deterioration in NDCG@30 by the relevant1213

criterion. For the TREC 2011 queries, compared with the two baselines, our method1214

suffers marginal deteriorations in P30 by both relevant criteria. But it outperforms the1215

two baselines in all other measures by both relevant criteria. Overall, our aggregation1216

method shows the strongest performance among all three aggregation methods. How-1217

ever, the improvements over CombSUM and CombMNZ by our aggregation method1218

are not statistically significant.1219

6.2.3. The Impact of Temporal Information on Retrieval Effectiveness. We now study the im-1220

pact of incorporating temporal information on retrieval effectiveness. In this experi-1221

ment, we use two baselines. The first baseline is our divide-and-conquer method using1222

the GreedyMerging algorithm (i.e., its performance in Table VI), because we want to1223

see whether the inclusion of temporal information can further improve the perfor-1224

mance of this baseline or not. Let BASELINEI denote the first baseline. The second1225

baseline is the algorithm proposed by [Efron and Golovchinsky 2011]. Given a query1226

q with a timestamp t, this method ranks the tweets published before or on t by using1227

their temporal information. Specifically, it prefers the recent tweets close to t to the old1228

tweets and calculates a score P(d|q) for a tweet d (publishing at td) by Equation (16).1229

P(d|q) ∝ P(q|d) · r · e−r·f (td,t), (16)1230

where r is the rate parameter of the exponential distribution. P(q|d) is an IR score1231

provided by a retrieval model. f (td, t) is the same time representation we adopt in this1232

article. Efron and Golovchinsky [2011] proposed to do the maximum posterior estima-1233

tion for the parameter r for each q as follows. Let Dq = {d1, . . . , dk} be the top k tweets1234

for q by a ranking model. Let TDq = {t1, . . . , tk} be the set of the time representations1235

of the publishing times associated with Dq. Then rMAP
q = ρ+k−1

σ+∑k
i=1 ti

. This estimation in-1236

volves three parameters, k, ρ and σ . In order to compare our method with this method1237

(denoted by BASELINEII), we use the IR scores of the tweets from the first phase as1238

P(q|d) for BASELINEII. Moreover, we also do the maximum posterior estimation of1239
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Table IX. The Impacts of Temporal Information

TREC 2011
Relevant Highly Relevant

MAP P30 NDCG@30 MAP P30 NDCG@30
BASELINEI (Divide-and-
Conquer Method)

0.5006 0.5143 0.4939 0.4090 0.2283 0.4933

BASELINEII [Efron and
Golovchinsky 2011]

0.3958↓ 0.3891↓ 0.3909↓ 0.3391↓ 0.1505↓ 0.4117↓

Our Method (System III) 0.5270†‡ 0.5218‡ 0.5076‡ 0.4357†‡ 0.2283‡ 0.5125‡

TREC 2012
Relevant Highly Relevant

MAP P30 NDCG@30 MAP P30 NDCG@30
BASELINEI (Divide-and-
Conquer Method)

0.3259 0.4367 0.2966 0.2590 0.2583 0.2852

BASELINEII [Efron and
Golovchinsky 2011]

0.2305↓ 0.3283↓ 0.2082↓ 0.1698↓ 0.1923↓ 0.2011↓

Our Method (System III) 0.3415†‡ 0.4695†‡ 0.3018‡ 0.2719‡ 0.2738†‡ 0.2911‡

Note: † and ↓ indicate statistically significant improvements and deteriorations over BASELINEI; ‡ indicates
statistically significant improvements over BASELINEII.

r for each test query. Efron and Golovchinsky [2011] showed that their suggested pa-1240

rameter values are effective for the proposed maximum posterior estimations across1241

two collections, including a Twitter collection. In our experiments, for each parameter,1242

we try different values for that parameter including their suggested value. For exam-1243

ple, for the parameter k, we try 10, 20, and 30, where 20 is their suggested value. The1244

method using their suggested values for the three parameters k, ρ and σ achieves the1245

best performance and thus we just report the best performance in this article. Table IX1246

presents the comparison of our method with two different baselines.1247

As shown in Table IX, compared with BASELINEI, BASELINEII deteriorates in1248

all measures by both relevant criteria for both sets of TREC queries. We are not sur-1249

prised by this results, because BASELINEII always prefers recent tweets to old tweets.1250

Such a recency-preferred strategy does not apply for our queries, as we discussed in1251

Section 1, which is the reason why we propose our three temporal categorizations of1252

queries. For comparing our method with BASELINEI with respect to the set of TREC1253

2011 queries, our method ties with BASELINEI in P30 by the highly relevant criterion1254

but outperforms BASELINEI in all other measures by both relevant criteria. For the1255

set of TREC 2012 queries, it consistently achieves improvements over BASELINEI1256

in all measures using both relevant criteria. This demonstrates that our proposed1257

method using temporality can effectively further improve the retrieval effectiveness1258

of our divide-and-conquer method in the first phase. Our method also consistently and1259

statistically significantly outperforms BASELINEII in all measures by both relevant1260

criteria for the two sets of queries, which demonstrates the effectiveness of our pro-1261

posed temporality usage.1262

6.2.4. Result Analysis. In this section, we conduct an analysis for our utilization of the1263

temporal information of tweets. In particular, we do a query-by-query analysis by com-1264

paring the MAP performance of BASELINEI with that of our method (see Table IX).1265

Figure 6 shows the average precision (AP for short) changes for the TREC 2011 and1266

2012 queries by both relevant criteria. It displays the changes from the most improved1267

query to the most deteriorated query. According to Figure 6, our usage of temporality1268

improves the average precisions for the majority of the TREC 2011 and 2012 queries.1269

This demonstrates the effectiveness of our proposed method.1270
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Fig. 6. The average precision changes for temporality.

We provide a deeper analysis to see how many queries are significantly improved1271

or hurt (�AP > 0.05) in their APs by our temporality usage and present the reasons1272

why their APs are improved or deteriorated. For the TREC 2011 queries, 10 (8) queries1273

are significantly improved while 2 (3) queries are significantly hurt according to the1274

(highly) relevant criterion. For the TREC 2012 queries, 11 (13) queries are significantly1275

improved while 5 (7) queries are significantly hurt according to the (highly) relevant1276

criterion. Let us illustrate the reasons with two examples. For example, the query q =1277

“Aguilera super bowl fail” is a dominant peak query. 73% of its relevant tweets were1278

published on 2/7/2011. The first phase of our method achieves a very good precision at1279

the top tweets for q, as 26 out of the top 30 tweets are relevant to q. Then our method1280

correctly classifies q as a dominant peak query and predicts its dominant peak is on1281

2/7/2011. This query is significantly improved in its AP. On the contrary, if the first1282

phase of our method fails to achieve a decent precision by its top tweets with respect to1283

a query q, then our classification of q is inaccurate, which may lead to a deterioration1284

in the AP of q after we apply our temporal method on q. For example, for the query1285

“Michelle Obama fashion,” we are not surprised to see a significant performance drop1286

for this query again, because the first phase of our method achieves a poor precision1287

at its top tweets, as 10 out of the top 30 tweets are relevant to q. Our classification for1288

this query and our prediction of the peaks of this query are inaccurate. Overall, the1289

performance of our usage of temporal information depends on an accurate classifica-1290

tion of each query, which in turn depends on how well its top tweets using the first1291

phase of our method approximate its relevant tweets.1292

6.3. Comparison with Related Works1293

In this section, we compare the performance of our method with those of some related1294

works. TREC 2011 required the retrieved tweets to be ordered in reverse-chronological1295

order [Ounis et al. 2011]. In this experiment, we evaluate the performance of our1296

two-phase method in ranking tweets in reverse-chronological order. Since our method1297

mainly aims at ranking tweets in terms of relevance, we adopt a simple strategy to1298

produce the reverse-chronological ranking of tweets. In particular, we take the top 301299
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Table X. Comparison of Our Method vs. State-of-the-Art Methods
with Respect to the TREC 2011 Queries

Relevant Highly Relevant
Reverse Chronological Order

P30 MAP P30 MAP
[Liang et al. 2012] 0.4177 0.2365 0.1979 0.2722
[Choi et al. 2012] 0.5068 0.3068 - -
Our Method 0.5218 0.3018 0.2283 0.3189

Descending Order of Relevance
P30 MAP P30 MAP

[Amati et al. 2012] - 0.3950 - -
Our Method 0.5218 0.5270 0.2282 0.4357

Descending Order of Relevance
Top 100 Tweets

P30 MAP P30 MAP
[Efron et al. 2012] - 0.2350 - -
Our Method (Top 100) 0.5218 0.4892 0.2282 0.4262

tweets and rearrange them in reverse order of time. This strategy is the most popular1300

strategy adopted by the participants in TREC 2011 [Ounis et al. 2011]. The primary1301

evaluation measure is P30 for the reverse-chronological ranking of tweets. Metzler1302

and Cai [2011] achieved the best P30 score in TREC 2011 but their results were ob-1303

tained in the absence of TREC relevance judgments as training data. So we omit the1304

comparison of our results with theirs, because we use TREC relevance judgments as1305

training data. We compare our results with other published results with respect to1306

the set of TREC 2011 queries. Liang et al. [2012] achieved improvements over the re-1307

sults of Metzler and Cai [2011] only by the highly relevant criterion. Moreover, [Choi1308

et al. 2012] only reported their performance by the relevant criterion and their results1309

outperform the TREC 2011 best results. Some studies [Amati et al. 2012; Efron et al.1310

2012] reported their MAP performance by ranking tweets in descending order of rel-1311

evance to the TREC 2011 queries, without addressing the requirement of the reverse1312

chronological order. We compare our results with these published results in Table X. As1313

shown in Table X, our method consistently and significantly outperforms the results1314

from Liang et al. [2012] in terms of P30 and MAP by both relevant criteria. Accord-1315

ing to the primary evaluation measure P30, our results outperform theirs by 24.9%1316

using the relevant criterion and by 15.4% using the highly relevant criterion. Both1317

works explore the Web pages whose URLs are embedded in tweets. According to the1318

primary measure P30, our results outperform the results from Choi et al. [2012] by the1319

relevant criterion and obtains a competitive performance in MAP. For ranking tweets1320

in descending order of relevance, our results also significantly outperform the results1321

from Amati et al. [2012] and Efron et al. [2012]. Their results were obtained without1322

exploring the Web pages linked by tweets while our results use the information from1323

those Web pages. Efron et al. [2012] reported their results by only evaluating top 1001324

tweets with respect to a given query.1325

For the set of TREC 2012 queries, we compare our results with the best known re-1326

sults reported by the TREC 2012 overview paper [Soboroff et al. 2012]. Unlike TREC1327

2011, TREC 2012 required tweets to be ranked in descending order of relevance, in-1328

stead of reverse chronological order. Moreover, TREC 2012 only evaluated up to top1329

1000 tweets by the highly relevant criterion. The “hitURLrun3” run from [Han et al.1330

2012] achieved the best P30 and MAP scores [Soboroff et al. 2012]. For the TREC1331

2012 participants, the relevance judgments with respect to the TREC 2011 queries are1332
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Table XI. Comparison of Our Method vs. Best Results
with Respect to the TREC 2012 Queries

TREC 2012
Highly Relevant
MAP P30

hitURLrun3 [Han et al. 2012] 0.2640 0.2701
Our Method 0.2719 0.2738

available as training data, so we compare our corresponding results with the reported1333

best results. Since TREC 2012 required tweets to be ranked in descending order of1334

relevance, MAP is more important than P30. Table XI shows that our results compare1335

favorably with the best results in both measures. Both methods use the Web pages1336

whose links are provided by tweets.1337

7. CONCLUSION AND FUTURE WORK1338

In this article, we studied the problem of real-time ad-hoc retrieval of tweets intro-1339

duced by TREC 2011. We proposed a two-phase approach to retrieve tweets. Motivated1340

by the observation that tweets have different structures where one type of tweets con-1341

tains just short plain messages (called T-tweets) and the other type of tweets contains1342

short messages with at least one embedded URL (called TU-tweets), we proposed a1343

divide-and-conquer based method for the first phase. Specifically, the method consists1344

of two tweet type-specific rankers and a classifier. We first used the two rankers to ob-1345

tain a ranking of T-tweets and a ranking of TU-tweets. Then we utilized the classifier to1346

determine a preference for every two tweets, one from each type. Finally, we proposed1347

a greedy algorithm to merge the two type-specific rankings into a single ranking for1348

both types of tweets. The merging process takes into consideration all the preferences1349

from the two rankers and the classifier. Experiments showed that our proposed method1350

yields better retrieval effectiveness than the ranker that ranks the two types of tweets1351

simultaneously. We also showed how our method can be made efficient by performing1352

a merging of only the top tweets. In the second phase, we proposed to classify temporal1353

queries by the temporal distributions of their top tweets and calculate the time-related1354

relevance scores of the tweets with respect to different classes of queries accordingly.1355

A ranking of tweets is produced by combining their IR scores from the first phase with1356

their time-related relevance scores. Experimental results demonstrated that the uti-1357

lization of the temporal information can further improve the retrieval effectiveness1358

of the first phase. Our method is also compared favorably with some state-of-the-art1359

methods.1360

For future work, we plan to investigate whether we can further improve the per-1361

formance of the divide-and-conquer method by the social aspects of tweets. Such in-1362

formation can be found in the JSON version of the TREC Tweets2011 collection. We1363

also plan to study other categorizations of queries, such as cyclic queries and trending1364

queries.1365
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