IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 2.

FEBRUARY 1989 209

Proof Procedure and Answer Extraction in Petri Net
Model of Logic Programs

GEORGE PETERKA anp TADAO MURATA, FELLOW, IEEE

Abstract—This paper discusses a proof procedure and answer ex-
traction in a high-level Petri net model of logic programs. The logic
programs are restricted to 1) Horn clause subset of first-order predi-
cate logic, 2) finite problems. The logic program is modeled by a high-
level Petri net and the execution of the logic program or the answer
extraction process in predicate calculus corresponds to a firing se-
quence which fires the goal transition in the net. For the class of the
programs described above, the goal transition is potentially firable if
and only if there exists a nonnegative T-invariant which includes the
goal transition in its support. This is the main result proved in this
paper. Three examples are given to illustrate in detail the above re-
sults.

Index Terms—Answer extraction, Horn clause, invariant, logic pro-
gramming, Petri nets, theorem proving.

1. INTRODUCTION

HE introduction of logic programming has opened a

new era for computer science because it provides a
uniform formalism for diverse aspects of computer sci-
ence, especially in artificial intelligence. Logic or logic
programs provide us with a general purpose problem-
solving language, a concurrent language suitable for op-
erating systems and also a foundation for deductive da-
tabase systems [1], [2].

This paper develops a model of logic programs for proof
procedures and answer extraction. The main motivation
of this work is to provide new insights and strategies for
concurrent processing of logic programs and automatic
theorem proving. The method is based on converting the
logic program to a high-level Petri net and then determin-
ing the potential firability of the transition corresponding
to the goal clause of the program. It turns out that for
Horn-clause logic programs the goal transition is poten-
tially firable if and only if (iff) there exists a nonnegative
T-invariant which includes the goal transition in its sup-
port. Since techniques for finding T-invariants in high-
level nets exist, this method may have practical applica-
tions.

Manuscript received October 31, 1986; revised October 30, 1987. This
work was supported by the National Science Foundation under Grant DMC-
8510208.

G. Peterka was with the Department of Electrical Engineering and Com-
puter Science, University of Illinois at Chicago. Chicago. IL 60680. He is
now with Illinois Advanced Design Corporation, 1251 South Wolf Road,
Hillside, IL 60162.

T. Murata is with the Department of Electrical Engineering and Com-
puter Science, University of Illinois at Chicago, Chicago, IL 60680.

IEEE Log Number 8825086.

A method for modeling logic programs by high-level
Petri nets was presented by Murata and Zhang [3]. Lau-
tenbach [4] found a necessary and sufficient condition for
a set of clauses to contain a contradiction based on anal-
ysis of the Petri net model of the set of clauses. Lauten-
bach’s condition turns out to be false for non-Horn clauses
[14], but it can be adapted for Horn clauses. Other earlier
related work is listed in the references of [3] and [15].

For brevity, it is assumed that the reader is familiar with
basic terminology in logic programming and automatic
theorem proving [1], [2].

II. PRELIMINARIES

A Petri net [5], [6] is defined as the 5-tuple N = (P,
T, E, My, W). P and T are two disjoint sets of vertices
called places and transitions, respectively. E is the set of
arcs consisting of directed edges from a place to a tran-
sition or from a transition to a place. M, is a function from
P to the set of nonnegative integers and denotes the initial
token distribution, called the initial marking. W is a func-
tion from E to the set of nonnegative integers and W(e)
denotes the weight or multiplicity assigned to arc e. In this
paper, all places have infinite capacity.

A transition is said to be enabled or firable if each of
its input places has at least as many tokens as the weight
of the respective incoming arc to the transition. An en-
abled transition may or may not fire. When an enabled
transition fires, the number of tokens in each of its input
places decreases by the weight of the respective incoming
arc to the transition and the number of tokens in each of
its output places increases by the weight of the outgoing
arc from the transition.

A bag, or multiset, is an extension of a set which allows
multiple occurrences of elements [5]. For example, B =
{a, ¢, ¢} is a bag over the domain {a, b, c} with the
number of occurrences, #(a, B) = 1, #(b, B) = 0 and
#(c, B) = 2. An ordered bag is called a sequence and is
denoted by < >. A sequence ¢ can be converted to a
corresponding bag B by B = Bag (o). For example, for
the sequence 0 = < ¢, a, ¢ >, we have B = Bag (o) =
{a, ¢, ¢}. The concatenation of two sequences o, and o,
is denoted by o, - 0,. A firing sequence is a sequence of
transitions.

The Parikh mapping of a bag B is denoted by ¢ (B) and
is defined by

Y(B) = (#(t,, B), #(1,, B), * - , #(1,, B))

0098-5589/89/0200-0209$01.00 © 1989 IEEE

210 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15, NO. 2. FEBRUARY 1989

where {f, t, * - - , t,} is the domain for B. ¥/(¢), the
Parikh mapping of a firing sequence o, is similarly de-
fined and is denoted by @. A firing sequence 0 = <1, t,,
1, > is said to transform a marking M, into a mark-
ing M,,. This can be denoted by any of the following ways:

Mo[(f > Mn

MO[tla Ly, ", > Mn

Mlt, My, 1, My, -+ 1, > M,

where M; is the marking which results after the ith tran-
sition in the firing sequence fires. A firing sequence o =
<t t, **,t,> is said to be executable from M, if t,
is firable from M,, and 1, is firable from M,, and so on for
all transitions in o. A transition ¢ is said to be porentially
Jfirable if it can be made firable through some firing se-
quence.

The indegree (outdegree) of a transition ¢ is an integer
equal to the sum of the weights of all incoming (outgoing)
arcs of z. A transition is called a source (goal) if it has
indegree (outdegree) = 0.

The incidence matrix for a Petri net with n transitions
and m places, 4 = [qa;] is an n X m matrix of integers.
a;; is the weight of the arc from transition i to place j mi-
nus the weight of the arc from place j to transition i. An
n-vector of integers, X, is called a T-invariant if ATX =
0. The ith entry of a vector X is denoted by X(i). A sub-
set of transitions corresponding to nonzero entries of an
n-vector X = 0 is called the support and is denoted by
[X . A T-invariant, X = 0 is said to be executable from
M, if there exists a firing sequence o executable from
marking M, such that its firing count vector ¢ = X. The
following lemma regarding T-invariants is well known
[6].

Lemma I: An n-vector X = 0 is a T-invariant iff there
exists a marking M, and a firing sequence ¢ from M, back
to M, such that 0 = X.

Lautenbach’s net representation [4] N of a set of clauses
R in propositional logic is defined to be a Petri net N =
(P, T, E, My, W) where:

1) The set of transitions T equals the set of clauses R.

2) The set of places P is the set of all occurring literals
in nonnegated form.

3) Thesetofarcs E € P x TU T X P is given by

(p,t)e EN (P x T)iff =p occurs in ¢,
(r, p) e EN (T x P)iff p occurs in 1.

4) The initial marking M, = 0.
5) The weight function W is given by

W:E - {1}.

Colored Petri nets [7] and predicate-transition nets [9]
are two types of high-level Petri nets. It is known that
these two high-level Petri nets are equivalent in the sense
that any concept, algorithm or theorem which applies to

one approach also applies to the other [11]. In this sense,
the two types of nets are interchangeable. The formal pro-
cedure for converting a logic program into a high-level
Petri net is presented in {3]. An informal method for con-
verting a logic program into a high-level Petri net is given
and is illustrated by an example in Section IV in this pa-
per.

The following lemma has been proved in [15] and is
used to prove Theorem 2 in the present paper.

Lemma 2: Given a Hom-clause logic program P and a
goal G, we have the high-level Petri net representation Q
for P and a goal transition #, for G. There exists a contra-
diction in P U { = G } iff ¢, is potentially firable from the
empty marking in Q.

It is assumed in this paper that logic programs are re-
stricted to Horn-clause predicate logic problems whose
high-level Petri net representation contains a finite num-
ber of colors and thus car be unfolded into a finite unco-
lored or ordinary net. This is essentially a restriction to
finite problems.

III. MaIN RESULTS

Theorem 1: Let N = (P, T, E, My, W) be a Petri net
having all transitions with outdegree < 1. Let 7, be a goal
transition in 7. There exists a firing sequence which re-
produces the empty marking and fires the goal transition
t, in N iff N has a T-invariant X such that X = 0 and X(1g)
0.

(The following proof is highly technical and thus the
casual reader may wish to skip this proof for the first read-
ing.)

Proof: The necessity is obvious since if such a firing
sequence exists, its firing count vector is a T-invariant X
= 0, X(,) # 0.

The sufficiency can be proved as follows. Since N has
a T-invariant X = 0, by Lemma 1 there exist a marking
M, and a firing sequence o from M, back to M, such that
o = X. Let B be the bag of transitions such that (B) =
X. Let ¢’ be any firing sequence satisfying the following
four conditions:

1) B’ = Bag (¢').

2) B’ < B (B’ is a subbag of B).

3) 0[o’ > M, where O is the empty marking.

4) No transitions t € (B — B’) are firable from M.

The following is a proof by contradiction that 7, ¢ (B
- B").

Assume that z, € (B — B’).
0" =da' t, - 0y, where Bag (0,) = (B - B — {1,})
Bag (¢”) = Bag (¢') + Bag (t,) + Bag (gy)

= gl + {tg} + (B - B - {tg})
" = 1//(Bag(o”)) =y(B)=X, .. My[o" > M,
Mo[ol, Ml, {tg}, Mz, o] > M3 = MO
M| = MO + M
3pe P, My(p) < My(p)

PETERKA AND MURATA: PROOF PROCEDURE AND ANSWER EXTRACTION 211

This is true because of the following: #, is not firable
from M because we assumed that 7, € (B — B'). Since ¢,
is firable from M, = M, + M, at least one of the tokens
from M, must be removed by firing 7, resulting in a place
p such that My(p) < My(p).

ap' e P, My(p') < My(p')

This is true for the following reason: no transitions in
o, are firable from M. Firing any transition will remove
at least one token from M, and will add at most one token
because outdegree < 1. Therefore, there will always ex-
ist at least one place p’ such that M3(p') < Mu(p').

.. M; # M, and a contradiction has been reached.
t, & (B~ B') = t, € B', i.e., t, is potentially firable.

Let 0” be a firing sequence satisfying the following
three conditions:

1) Bag (¢”) € B'.

2) 0[¢” > 0.

3) t, e Bag(a”).

Since all transitions have outdegree < 1, ¢” exists and
can be constructed by repeatedly removing the last occur-
rence of any transition from o’ which deposits a token into
a place p”, M(p”) # 0. By Lemma 1, since ¢” repro-
duces the empty marking, ¢” = X', X’ = 0, X" isa T-
invariant.

Corollary 1: | X']| < IX|.

Proof: Bag (¢”) © B.

Intuitive Explanation of Theorem 1: Since each tran-
sition can create at most one token, the net has the follow-
ing interesting property. Tokens are created by the source
transitions, propagated along by the interior transitions,
and removed by the goal transition. This can be viewed
as a flow of tokens from the sources to the goal. All of
the tokens in this flow are removed when they reach the
goal.

Since X = 0 is a T-invariant, by Lemma 1, there exists
a marking M, and a firing sequence o executable from M,
which reproduces M,. Any tokens in M, must remain at
the completion of ¢. The tokens in M, cannot participate
in the flow of tokens to the goal because all of the tokens
in this flow are removed. The flow of tokens to the goal
is totally independent of the tokens in M, and thus can
occur from M, = 0. This flow corresponds to the firing
sequence ¢’ which is executable from M, = 0 and repro-
duces My = 0. By Lemma 1, X’ = ¢’ is a nonnegative T-
invariant.

We can relax the condition of the empty marking re-
producibility in Theorem 1, and state the following cor-
ollary.

Corollary 2: Let N = (P, T, E, My, W) be a Petri net
having all transitions with outdegree < 1. Let z, be a goal
transition in T. ¢, is potentially firable from M, = 0 iff N
has a T-invariant X such that X = 0, X(z,) # 0.

Proof: The sufficiency is proved in the proof of
Theorem 1. The necessity can be proved as follows. Let
o= < ‘- 1,> bea firing sequence such that 0[o > M.

If M = 0, then G is a desired T-invariant X = 0, X(¢7,)
0. If M # 0, then a firing sequence ¢’ such that 0[¢’
> 0 and 1, € Bag (0'), can be constructed from ¢ by
repeatedly removing the last occurrence of any transition
which deposits a token into a place p, M(p) # 0, since
all transitions have outdegree < 1. By Lemma 1, since
o' reproduces the empty marking, 0’ = X, X = Oisa T-
invariant.

Corollary 3: Let N = (P, T, C, M, W) be a high-
level Petri net having all transitions with outdegree < 1
and a finite number of colors, | C | < . Let t, be a goal
transition in 7. There exists a firing sequence which re-
produces the empty marking and fires the goal transition
t, in N iff N has a nonnegative T-invariant X such that
X(t) + -

Proof: A high-level Petri net N, with a finite number
of colors, can be unfolded [7], [8] into an equivalent finite
uncolored or ordinary Petri net N,. Each place p is un-
folded into a set of places (one of each kind of tokens
which p may hold). Likewise each transition 7 is unfolded
into a set of transitions (one for each way in which ¢t may
fire). If a transition has outdegree < 1 in N, then each of
the transitions into which it is unfolded in N, will have
outdegree < 1. The T-invariant X = O is unfolded into a
set of nonnegative T-invariants in N,. Since X(¢t,) # &
there will exist at least one T-invariant X' in the uncolored
net with X' (#,) # 0. Theorem 1 holds for X' and pro-
duces a firing sequence which reproduces the empty
marking. Therefore Corollary 3 follows from Theorem 1.

Theorem 2: Let N = (P, T, E, My, W) be the net rep-
resentation of a finite set R of Horn clauses with finitely
many literals. Let R contain one goal clause. R contains
a contradiction iff there exists a T-invariant X > 0, X(7,)
0, where ¢, is the goal.

Proof: All transitions in N will have outdegree < 1
because of the Horn clause form. Since R has exactly one
goal clause, N will have exactly one goal transition ¢,.
The proof follows directly from Lemma 2 and Corollary
2.

Remarks: The major difference between Lemma 2 and
Theorem 2 is that Theorem 2 requires only that a nonne-
gative T-invariant, X which includes the goal transition in
its support be found. Lemma 2 requires determining the
potential firability of the goal transition. (Reference [14],
which came to the authors’ attention several months after
submitting this paper, contains a different proof of basi-
cally the same theorem as Theorem 2.)

IV. ILLUSTRATIVE EXAMPLES

Example 1 (Theorem 1): Consider the Petri net N
shown in Fig. 1. Note that N has all transitions with out-
degree < 1. The incidence matrix 4 of this net and an
integer solution X = O for the homogeneous equation,
ATX = 0 is shown below. Note that X is a T-invariant
such that X = 0 and X(8) # 0, where T is the goal
transition.

212

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15, NO. 2.

FEBRUARY 1989

L LT, T T, T

pf0O1 1t o o o o0 o0
p{1 000 0 -1 0 0
p,lo o oo o o 1 -1
oo oo o o -1 -1
plo o o1 -1 o o o
plo o oo 0o -1 -1 o0
P00 000 1 1 0 0

Therefore, all conditions required by Theorem 1 are
satisfied. Theorem 1 implies that there exists another T-
invariant X’ = 0, X' (8) # 0 which would be executable
from M, = 0.

The T-invariant X is not executable from M, = 0. This
can be easily verified because X(12) # 0. T|, cannot be
fired without a token in P;. A token can only be placed
into P; by firing T (Ts cannot be fired because X(5) =
0). Ty, however, cannot fire until 7, fires and deposits a
token in P4. Thus, there is a deadlock condition and X
cannot be executed from M, = 0. '

Let us follow the proof of Theorem 1 in an attempt to
find X’ and the corresponding firing sequence ¢”. B
{Tl’ T17 T27 T27 T4’ T49 T4a T6’ TRa T‘)a T97 Tll9 TIZ}' Con-
struct the firing sequence ¢’ to satisfy the four conditions
stated in the proof of Theorem 1. This is very easy to do.
Simply rearrange as many of the transitions from B into
any firing sequence which would be firable from M, = 0
as is possible. Theorem 1 guarantees that T will be con-
tained in any such sequence. o' = <T,, T\, T», T», T4,
Ty, Ty, To, To, Tyy, T > .

When all the transitions in ¢’ are fired from M, = 0, it
produces the marking M = [0 1 0 0 1 0 0]".¢"
can be constructed by removing the last occurrence of
T, and the last occurrence of 7, from o', that is, ¢”
<T, 1,1, T, Ty, Ty, Ty, T\y, Tg >. 0" now reproduces
the empty marking. c” = X'
[1 202000 1 2 0 1 01" Itcan easily be

Ty T Ty Tp _
-1 0 0 0] [2] 0
0o 0 -1 0 2 0
1 0 -1 0 ol=1]0
0 -1 1 0 3 0
-1 1 0 -1 0 0
0 0 0 1 1 0
0 -1 o -1 (o Loj

t

2

0

.
|

verified that 47X’ = 0. X’ is therefore a T-invariant and
Ix 1< lixi

Example 2 (Propositional Logic):

Given the following set of clauses

A

2) B

3) ANB=C

4y BAC =D

Sy D= A4

6) D> C
we wish to prove that D A C.

So we add the negation of D A C to the set of clauses
and obtain the following set which is written in conjunc-
tive normal form.

1) A4

2) B

3)) CV

4) DV

5) Av °D

6) CVv D

7y -DvVv =C

We will now try to prove that this set of clauses contains
a contradiction.

The clauses are in Horn clause form. So we will apply
Theorem 2 to test for the existence of a contradiction.
Fig. 2 shows the net representation for this set of clauses.

- AV B
“BvVvV ~C

PETERKA AND MURATA: PROOF PROCEDURE AND ANSWER EXTRACTION 213

Fig. 2. Petri net model of the set of clauses for Example 2 illustrating
Theorem 2.

Below is the incidence matrix A for the net N and an
integer solution to the homogeneous equation 47X = 0.
Note that the incidence matrix can be obtained directly
from the set of clauses according to the following rule. If
a literal appears more than once in a clause, the clause
can be simplified until every literal appears at most once.
a;=1,-1,0r0 depending on whether literal j appears
in clause i in nonnegated form, negated form, or not at
all, respectively.

T, T, T, T,
At o -1 0
Blo 1 -1 -1
clo o 1 -1
plo o o 1 -

The above X is a T-invariant such that X = 0 and X(7)
0 (T is the goal). Therefore all conditions required by
Theorem 2 are met and the set of clauses contains a con-
tradiction. Consequently, D A C is proved to be true.

Remarks: This example illustrates how Theorem 2
transforms a propositional logic problem into a linear al-
gebra problem. Specifically, in propositional logic, proof
by contradiction (refutation) can be accomplished by
purely linear algebraic methods, or structural properties
of the net representation.

Example 3 (Predicate Logic): Consider the following
logic program, which is expressed in a notation similar to
PROLOG where each clause is interpreted as, for exam-
ple, A:— B,C,Dmean BA CAD = A.

1) P(x,y):— F(x,y)

2) P(-x7 y) Ha M(X,)’)

3) G(x,y):— P(x,2), P(z,y)
4) Q(x,y):— M(x,2), F(y,2)
5) M(x,y):— Q(x,2), F(z, y)
6) F(x,y):— Q(x,2), M(z,y)
7) Q(xv y) e Q()’,x)

8.1) F(Bob, Bill) : —

TS
1
0
0
1

8.2) F(Bob, Amy) :—
8.3) F(Bill, John) :—
8.4) F(BIll, Jack) : —
8.5) F(Bill, Paul) : —
8.6) F(Jack, Larry) :—
8.7) F(Jack, Steve) :—
8.8) F(Andy, Janet) :—
8.9) F(Andy, Randy) :—
8.10) F(Randy, Tim) :—
8.11) F(Randy, Tom) :—
8.12) F(Tom, Linda) :—
8.13) F(Fred, Mary) : —
9.1) :— G(x, Steve)

Clauses 1-7 are procedure declarations. They involve five
predicates which are listed below:

F(x, y) means that x is the father of y

M(x, y) means that x is the mother of y
P(x, y) means that x is the parent of y

G(x, y) means that x is the grandparent of y
Q(x, y) means that x is married to y.

The program is a simplified model of normal family re-
lationships.
Clauses 8.1-8.13 are facts. The numbering was chosen

T, Ty

0 0 p) 0
0 0 3—\ =10
1 -1 2 0
-1 -1 1 0

to imply that these are actually only different colorings of
the same transition. For brevity of a high-level net rep-
resentation of the program, facts 8.1-8.13 will be re-
placed by a single transition denoted by

8) F(x,y):—

whose set of colors { < x, y >} is the set of 13 pairs of
names in the arguments of clauses 8.1-8.13. This method
of representing a logic program by a high-level net is dif-
ferent from that presented in [3] where the 13 source tran-
sitions are drawn corresponding to the 13 facts.

Clause 9 is the goal clause. The x in clause 9 represents
an unknown variable. The purpose of the program is to
find substitution(s) for x and thus determine who is(are)
Steve’s grandparent(s).

The variables x, y, z are used in the program. The scope
of each variable is the clause within which it occurs. When
a variable is instantiated, assigned a value, the same value
must be assigned to all instances of that variable within
the clause. A variable in a different clause, even though

214 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15, NO. 2, FEBRUARY 1989

Fig. 3. High-level Petri net model of the logic program for Example 3.

it has the same name, is a different variable and can be
assigned a different value.

The high-level Petri net model of the above program
can be drawn by a procedure similar to the one given in
[3] and is shown in Fig. 3.

The incidence matrix A for this net is given by

Step 6: Remove the predicate names and leave only the
arguments enclosed in < >.
Step 7: If any element of the matrix has more than one

---M--- —-F--- P---- -—--G---- Q-
T [0 - <x,y> <x,y> 0 0]
Ll —-—<x,y> 0 <x,y> 0 0
7510 0 —<x,> —<z,y> <x,y> 0
Ty —<x,z2> —<y,z> 0 0 <x,y>
A=Ts| <x,y> -<z,y> 0 0 - <x,z>
| - <z,y> <x,y> 0 0 - <x,z>
7510 0 0 0 +<x,y> - <y, x>
T3] 0 <x,y> 0 0 0
Tg_O 0 0 —<x, Steve> 0 N

In general, the incidence matrix A can be obtained (by
inspection or automatically on a computer) from a logic
program by the following procedure:

Step 1: Each clause in the program will be one row of
the incidence matrix.

Step 2: Each distinct predicate in the program will be
one column of the incidence matrix.

Step 3: In the logic program, prefix all entries to the
right of the : — with a minus sign. These entries are con-
sidered to be negative. The entries on the left of the : —
are considered positive.

Step 4: Eliminate the : — from the program.

Step 5: Rearrange each line of the program so that the
predicates are in the proper column of the matrix.

entry, express them as a formal sum to form a single en-
try.

The next step is to find a T-invariant X for the net shown
in Fig. 3. There have been proposed several methods for
finding T-invariants of high-level Petri nets [7], [9]-[12].
To describe these is beyond the scope of this paper. In
what follows, we use the example to illustrate some of the
procedures involved in finding T-invariants.

For the high-level Petri net shown in Fig. 3, it is veri-
fied below that there exists a T-invariant X such that A7X
=0,X = 0, X(9) # . For example, consider the fol-
lowing vector of substitutions.

PETERKA AND MURATA: PROOF PROCEDURE AND ANSWER EXTRACTION

T,—{x=a,y=c}U{x=C,y=b}]
Lo
T |{x=ay=bz=c}
T, |{x=dy=ez=f}

X=Ts|{x=d y=fz=¢}
.| o
o
i|2{fx=e,y=f}U{x=ay=c}U{x=cy=b}
Tg_{x=a,y=b}]

The notation in which the above vector X (T-invariant)
is expressed is interpreted as follows. Transition T fires
2 times. During the first firing, the values a and ¢ are
assigned to the variables x and y for all the arcs incident
on 7). During the second firing, the values ¢ and b are
assigned to x and y. We have used the term first firing and
second firing but the order in which these transitions oc-
cur in a firing sequence is not known. The order in which
the firings are listed in the T-invariant is arbitrary. The
other transitions are interpreted analogously and the sym-
bol ¥ indicates that the transition does not fire at all. T-
invariants of a high-level Petri net are vectors of substi-
tutions and sometimes are referred to as object T-invari-
ants [11].

The multiplication of A”X is accomplished by substi-
tuting the values for the variables according to the substi-
tution rules stated in the T-invariant and adding all the
terms in each row. For our example, the multiplication of
A"X yields a zero vector as is illustrated below.

M[—<d, f>+ <d, f>

Fl—-<a,¢c> —<e¢,b> —<e,f> —<e,f>+2<e,f>+ <a,c> + <c,b>

Pl<a,c> + <¢,b> — <a,c> — <c¢,b>
Gl<a b> - <a, b>

Q _<d,e> —<d, e>

The scope of each variable in the logic program is the
entire clause in which it occurs. A clause corresponds to
a row in A or a column in 47 as was shown previously.
In multiplying 4”X each row of 4 is ‘‘multiplied”’ by a
single element of X, where this ‘‘multiplication’’ corre-
sponds to a substitution of values. Therefore, the same
substitutions will be made for all entries in a row. Thus,
the scope rules are preserved in the multiplication because
the same substitutions are made for all occurrences of a
variable within a clause.

The values {a, b, ¢, d, e, f } which were substituted
for the variables {x, y, z} are themselves variables but
from a different sort. They are variables from the T-in-

215

variant and their scope is the entire program. Thus, their
scope extends over the entire matrix 4 and the terms in
the multiplication of A”X can be added. This produces a
column vector which is all zeros. Thus A”X = 0 and X is
a T-invariant. It is important to understand the scope of
each variable and ensure that it is not violated during any
operation.

The T-invariant contains variables which must now be
instantiated (assigned values) from the set of colors. The
set of colors is defined for transitions T3 and Ty as shown
earlier in the logic program. The set of colors for the other
transitions is not defined. It would appear that the set of
colors for the other transitions is infinite but that is not
the case. The set of colors for the other transitions is finite
and can be found from unfolding the net into an uncolored
net and identifying which colors are possible in the other
transitions. Fortunately, the set of colors for the other

OOOO:

_ O]

transitions does not need to be determined. All that is re-
quired is to instantiate the variables in X.

The variables are instantiated by choosing appropriate
colorings for all transitions which have a set of colors in
an attempt to satisfy the requirements of X. This is shown
below:

from 9.1 and Ty b = “‘Steve”’
from 8.7 and Ty ¢ = “‘Jack™
from 8.4 and Ty a = ““Bill”’

The variables {d, e, f } cannot be uniquely identified.
From Ty, {e, f} can assume any coloring from 8.1 to

216 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15, NO. 2, FEBRUARY 1989

8.13. Let e = “‘Bob’’ and f = “‘Bill”’. The variable d is
totally unrestricted and can be assigned any value at all.
Letd = ““Wilma’’.

We now have a fully instantiated T-invariant X which
is shown below.

T, F{x = Bill,y = Jack} U {x = Jack, y = Steve}
.| o
T; {x = Bill, y = Steve, z = Jack}
T, | {x = Wilma, y = Bob, z = Bill}
X = T5| {x = Wilma, y = Bill, z = Bob}
T, | &
| o
Ty

2
Ty| {x = Bill, y = Steve}

All conditions required by Theorem 2 are satisfied. The
problem is solved and Bill is Steve’s grandparent.

Suppose that in addition to providing the answer *‘Bill”’
the computer is asked to show the line of reasoning which
proves that Bill is Steve’s grandparent. For this, a firing
sequence needs to be found which will correspond to the
T-invariant X and be executable from the empty marking.
No such firing sequence exists as can be easily verified by
attempting to find one. Theorem 1 or Corollary 3 states
that there exists a T-invariant X' and a corresponding fir-
ing sequence ¢' which is firable from the empty marking
and which fires the goal transition. The proof of Theorem
1 gives a procedure by which this firing sequence can be
easily constructed. This construction is illustrated in Ex-
ample 1. Only the answer is presented here.

T, [{x = Bill, y =
T, @
Ty| {x = Bill, y =
T,|o
X =T|o
Iyl o
Lo
Ty | 2{
Ty| {x = Bill, y = Steve}

The firing sequence can be expressed as a sequence of
instantiated clauses from the original logic program. This
is shown below.

x = Bob, y = Bill} U {x = Bill, y = Jack} U {x = Jack, y = Steve}

Jack} U {x = Jack, y = Steve}

Steve, z = Jack }

x = Bill, y = Jack} U {x = Jack, y = Steve}

F(Bill, Jack) : —

F(Jack, Steve) : —

P(Bill, Jack) : — F(BIll, Jack)

P(Jack, Steve) : — F(Jack, Steve)

G(Bill, Steve) : — P(BIll, Jack), P(Jack, Steve)

:— G(BIll, Steve)

Resolution can now be used to show that this set of
clauses contains a contradiction and thus prove that Bill
is Steve’s grandparent.

V. CONCLUSION
In summary, the present high-level Petri net method has
converted the processes involved in logic programming

o =< Tg{ = Bill,y = Jack}, Tg{x = Jack, y = Stevc},

Tl{x

Bill, y = Jack}, T\{x = Jack, y = Steve},

T;{x = Bill, y = Steve, z = Jack}, To{x = Bill, y = Steve} >

PETERKA AND MURATA: PROOF PROCEDURE AND ANSWER EXTRACTION 217

such as binding, unification, substitution, and resolution
into a problem of solving a system of homogeneous equa-
tions for a particular kind of solutions called T-invariants.
The main motivation of this work is to provide new in-
sights and control strategies for parallel processing of
logic programs and automatic theorem proving.

From a practical standpoint, the key step is obviously
finding the T-invariant for the high-level net. This is a
topic of current research which has already produced some
practical results [7], [9]-[12], which can be used to find
a T-invariant. However, a general method and computa-
tional cost of finding T-invariants applicable to logic pro-
gramming are unknown and suggested for further study.

REFERENCES

[1] J. W. Lloyd, Foundations of Logic Programming.
Verlag, 1984.

[2] N. J. Nilsson, Principles of Artificial Intelligence.
Tioga, 1980.

[3] T. Murata and D. Zhang, ‘*A predicate-transition net model for par-
allel interpretation of logic programs,”” I[EEE Trans. on Software Eng .,
vol. 14, no. 4, pp. 481-497, Apr. 1988; also, an earlier version, A
high-level Petri net model for parallel interpretation of logic pro-
grams,”’ in Proc. 1986 Int. Conf. Computer Languages, IEEE Com-
put. Soc., Oct. 27-30, 1986, pp. 123-132.

[4) K. Lautenbach, ‘‘On logical and linear dependencies,’” Sankt Augus-
tin, Germany, GMD Rep. 147, 1985.

{5] J. L. Peterson, Petri Net Theory and the Modeling of Systems. En-

glewood Cliffs, NJ: Prentice-Hall, 1981.

T. Murata, ‘‘Modeling and analysis of concurrent systems,”” in

Handbook of Software Engineering, C. R. Vick and C. V. Rama-

moorthy, Eds. New York: Van Nostrand Reinhold, 1984, pp. 39-

63.

[7] K. Jensen, ‘‘Coloured Petri nets and the invariant-method,”” Theo-
retical Comput. Sci., vol. 14, pp. 317-336, 1981.

[8] J. L. Peterson, ‘*A note on high-level Petri nets,’” Inform. Processing

Lernt., vol. 11, no. 1, pp. 40-43, Aug. 1980.

H. J. Genrich and K. Lautenbach, ‘*System modeling with high-level

Petri nets,”” Theoretical Comput. Sci., vol. 13, pp. 109-136, 1981.

[10] K. Jensen, ‘‘How to find invariants for coloured Petri nets,”” in Math-
ematical Foundations of Computer Science (Lecture Notes in Com-
puter Science, vol. 118), 1981, pp. 327-338.

[11] K. Lautenbach and A. Pagnoni, ‘‘Invariance and duality in predicate-
transition nets and coloured nets,”” Sankt Augustin, Germany, GMD
Rep. 132, 1985.

[12} M. Silva et al., ‘*Generalized inverses and the calculation of symbolic
invariants for coloured Petri nets,”” Technique et Saience Informa-
tiques, vol. 4, no. 1, pp. 113-126, 1985.

[13] G. Peterka, ‘‘Colored Petri net T-invariant method for logic pro-
grams,’’ Master’s thesis, Univ. Illinois at Chicago, 1986.

Berlin: Springer-

Palo Alto, CA;

16

9

—

[14] A. Sinachopoulos, ‘*Derivation of a contradiction by resolution using
Petri nets,”” Petri Net Newslett., vol. 26, pp. 16-29. Apr. 1987.

[15) D. Zhang and T. Murata, ‘*Fixpoint semantics for predicate-transi-
tion net model for Horn clause logic programs.”” Univ. Illinois at
Chicago, Tech. Rep. EECS-87-2. Apr. 1987: also to appear in Ad-
vances in Theory of Computation and Computational Mathematics.
vol. 1.

Norwood, NJ: Ablex, 1989.

George Peterka was born on January 29, 1960 in
Uhersky Brod. Czechoslovakia. and emigrated to
the United States in 1968. He received the B.S.
degree in electronic engineering and the M.S. de-
gree in computer science from the University of
Illinois at Chicago in 1981 and 1986. respec-
tively.

From 1981 through 1985 he held the position
of Development Engineer at AT&T Technolo-
gies, Network Systems. He left AT&T in 1985
and returned to the University of Illinois at Chi-
cago to work on the M.S. degree. He is currently employed as a Devel-
opment Engineer for Illinbis Advanced Design. Inc., Hillside. IL.

Tadao Murata (S°62-M’66-SM'77-F'85) re-
ceived the M.S. and Ph.D. degrees in Electrical
Engineering from the University of Illinois at Ur-
bana in 1964 and 1966, respectively.

He is presently a Professor of Electrical Engi-
neering and Computer Science at the University
of Illinois at Chicago. During occasional leaves
of absence from the University of Illinois, he
taught at the University of California at Berkeley
and Tokai University. Tokyo. Japan, and was in-
vited to visit Petri’s Institute of GMD mbH in
Germany and several other research institutes and universities in Europe.
His current research interests include applications and theory of Petri nets,
concurrent computer systems, and data flow and parallel computations. In
these areas, he has published extensively and been awarded several Na-
tional Science Foundation rescarch grants since 1976. Prior to that, he
worked in the area of circuits, systems, and applied graph theory. He has
served on the U.S. National Academy of Sciences/Computer Science and
Technology Board panels.

He is an editor for the IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
and served as the general chairman for the 1987 International Workshop of
Petri Nets and Performance Models. He is a member of the Association for
Computing Machinery, EATCS, IECE, and the Information Processing
Society of Japan. He is listed in Who's Who in Enginecring and Who's Who
in America.

