
From Natural Language Requirements to Executable Models of Software
Components∗

Barrett R. Bryant, Beum-Seuk Lee, Fei Cao, Wei Zhao, Carol C. Burt

Department of Computer and Information Sciences
University of Alabama at Birmingham

Birmingham, AL 35294-1170, U. S. A.
{bryant, leebs, caof, zhaow, cburt }@cis.uab.edu

Rajeev R. Raje, Andrew M. Olson

Department of Computer and Information Science
Indiana University-Purdue University-Indianapolis

Indianapolis, IN 46202, U. S. A.
{rraje, aolson}@cs.iupui.edu

Mikhail Auguston

Department of Computer Science
Naval Postgraduate School

Monterey, CA 93943, U. S. A.
auguston@cs.nps.navy.mil

Abstract

The UniFrame approach to component-based software development assumes that concrete
components are developed from a meta-model, called the Unified Meta-component Model,
according to standardized business domain models. Implicit in this development is that there is a
Platform Independent Model (PIM) which is transformed into a Platform Specific Model (PSM)
under the principles of Model-Driven Architecture. This paper advocates natural language as the
starting point for developing the business domain models and the meta-model and shows how this
natural language may be mapped through the PIM to PSM using a formal system of rules
expressed in Two-Level Grammar. This allows software requirements to be progressed from
business logic to implementation of components and provides sufficient automation that
components may be modified at the model level, or even the natural language requirements level,
as opposed to the code level.

1. Introduction

Model-driven architecture (MDA) [Fran03] is an approach whereby software components are
expressed using models, typically in UML1. The basic approach is to define Platform Independent
Models (PIMs) which express the business logic of components conforming to some domain (e.g.
banking, telecommunications, etc.) and then to derive Platform Specific Models (PSMs) using a
specific component technology (e.g. CORBA2, J2EE3, etc.). Business logic is typically expressed

∗ This material is based upon work supported by, or in part by, the U. S. Army Research Laboratory and the U. S. Army
Research Office under contract/grant number DAAD19-00-1-0350, and by the U. S. Office of Naval Research under
award number N00014-01-1-0746.

1 UML – Unified Modeling Language, http://www.omg.org/uml
2 CORBA – Common Object Request Broker Architecture, http://www.corba.org
3 J2EE – Java 2 Enterprise Edition, http://java.sun.com/j2ee

http://www.omg.org/uml
http://www.corba.org/
http://java.sun.com/j2ee

in natural language before a model is developed. Standardization of business domains and
associated components is being undertaken by the Object Management Group (OMG)4. To
facilitate the MDA approach to be used in practice, automated tools are needed to develop the
business domain specifications from their requirements in natural language as well as to enable
transformation from PIMs into PSMs. Furthermore, if MDA is to be used for constructing
distributed software systems, then the models must consider not only functional aspects of
business logic, but also non-functional aspects, which we call Quality-of-Service (QoS). QoS
attributes are not currently considered in the MDA framework.

UniFrame [Raje01] is an approach for assembling heterogeneous distributed components,
developed according to MDA principles, into a distributed software system with strict QoS
requirements. Components are deployed on a network with an associated requirements
specification, expressed as a Unified Meta-component Model (UMM) [Raje00] in the Two-Level
Grammar (TLG) specification language [Brya02a]. The UMM is integrated with generative
domain models and generative rules for system assembly [Czar00] which may be automatically
translated into an implementation which realizes an integration of components via generation of
glue and wrapper code. Furthermore, the glue/wrapper code is instrumented to enable validation
of the QoS requirements [Raje02].

This paper describes a unified method of expressing business domain models in natural
language, translating these into associated business logic rules for that domain, application of the
business logic rules in building MDA PIMs, and maintaining these rules through development of
PSMs. The complete mapping takes place using a formal system of rules expressed in Two-Level
Grammar. This allows software requirements to be progressed from business logic to
implementation of components and provides sufficient automation that components may be
modified at the model level, or even the natural language requirements level, as opposed to the
code level. Section 2 describes our previous work with Two-Level Grammar and its use as a
specification language. The application of this to Model-Driven Architecture is discussed in
section 3. Finally we conclude in section 4.

2. From Natural Language Requirements to Formal Models

To achieve the conversion from requirements documents to formal models several levels of
conversions are required. First the original requirements written in natural language are refined as
a preprocessing of the actual conversion. This refinement task involves checking spellings,
grammatical errors, consistent use of vocabularies, organizing the sentences into the appropriate
sections, etc. The requirements are expected to be organized in a well-structured way, e.g. as laid
out in [Wils99] or as a collection of use-cases [Jaco99], and be part of an ontological domain
[Lee02b]. Since we are allowing for specification of components that will be deployed in a
distributed environment, Quality-of-Service attributes are also specified [Yang02]. Next the
refined requirements document is expressed in XML format. By using XML to specify the
requirements, XML attributes (meta-data) can be added to the requirements to interpret the role of
each group of the sentences during the conversion. The information of the domain-specific
knowledge is specified in XML. The domain-specific knowledge describes the relationship
between components and other constraints that are presumed in requirements documents or too
implicit to be extracted directly from the original documents [Lee02a].

Then a knowledge base is built from the requirements document in XML using natural
language processing (NLP) [Jura00] to parse the documentation and to store the syntax,

4 http://www.omg.org

http://www.omg.org/

semantics, and pragmatics information. In this phase, the ambiguity is detected and resolved, if
possible. Once the knowledge base is constructed, its content can be queried in NL. Next the
knowledge base is converted, with the information of the domain specific knowledge, into Two
Level Grammar by removing the contextual dependency in the knowledge base [Lee02c]. TLG is
used as an intermediate representation to build a bridge between the informal knowledge base and
the formal specification language representation. The name “two-level” in Two-Level Grammar
comes from the fact that TLG consists of two context-free grammars interacting in a manner such
that their combined computing power is equivalent to that of a Turing machine. Our work has
refined this notion into a set of domain definitions and the set of function definitions operating on
those domains. In order to support object-orientation, TLG domain declarations and associated
functions may be structured into a class hierarchy supporting multiple inheritance.

Finally the TLG code is translated into VDM++, an object-oriented extension of the Vienna
Development Method [Durr92], by data and function mappings. VDM++ is chosen as the target
specification language because VDM++ has many similarities in structure to TLG and also has a
good collection of tools for analysis and code generation. Once the VDM++ representation of the
specification is acquired we can do prototyping of the specification using the VDM++ interpreter.
Also we can convert this into a high level language such as Java or C++ or into a Rational Rose
model in UML [Quat00] using the VDM++ Toolkit [IFAD00]. Using XMI5 format, not only the
class framework but also its detailed functionalities can be specified and translated into OCL
(Object Constraint Language) [Warm99]. The structure of the system is shown in Figure 1.

3. Integration with Model-Driven Architecture

The method of translating requirements in natural language into UML models and/or
executable code described in the previous section may be used to translate business logic into
formal rules. Business domain experts from various application domains may express their
specification in natural language and then our system translates this into Two-Level Grammar
rules via natural language processing (NLP). These rules are encapsulated in a TLG class
hierarchy defining a knowledge base with domain ontology, domain feature models (specifying
the commonality and variability among the product instances in that domain), feature
configuration constraints, feature interdependencies, business operational rules, temporal
concerns, etc. TLG specifies the complete feature model including the structural syntax and
various kinds of semantic concerns [Zhao03]. For example, assume that our application domain is
banking. The business domain will then include a feature model of a bank, which includes
specification of the various attributes and operations a bank will have, such as account creation
and management, deposit, withdraw and balance checking operations on individual accounts, etc.
In related work [Cao03a], we have investigated the construction of Generative Domain Models
[Czar00] using the Generic Modeling Environment [GME01]. This tool may also be extended
with a natural language processor as a front end, i.e., by applying natural language processing to
the business domain model (which is represented in natural language), which can then extract
feature model representation rules and then interpret those rules to generate a graphical feature
diagram.

 Platform Independent Models in MDA are based upon the business domains and associated
logic for the given application. TLG allows these relationships to be expressed via inheritance. If
a software engineer wants to design a server component to be used in bank account management
systems, then he/she should write a natural language requirements specification in the form of a
UMM (Unified Meta-component Model) describing the characteristics of that component. Our

5 XMI - XML Metadata Interchange, http://www.omg.org/technology/documents/formal/xmi.htm

http://www.omg.org/technology/documents/formal/xmi.htm

Knowledge Base

Two Level Grammar

Java

Requirements Document in XML

OCL or UML

Decontextualization

Informal

Formal

NL Requirements Document

KB in XML

Domain Knowledge in XML

Query in NL

Contextual Natural Language Processing

XMI

Functionality-based QoSUse Cases Component-based

Ontology, Formal restrictions

VDM++

Preprocessing

Data and Function translation

Figure 1. Natural Language Requirements Translation into Executable Models

natural language requirements processing system will use the UMM and domain knowledge base
to generate platform independent and platform specific UMM specifications expressed in TLG
(which we will refer to as UMM-PI and UMM-PS, respectively). UMM-PI describes the bulk of
the information needed to progress to component implementation. UMM-PS merely indicates the
technology of choice (e.g. CORBA). These effectively customize the component model by
inheriting from the TLG classes representing the business domain with new functionality added
as desired. In addition to new functionality, we also impose Quality-of-Service expectations for
our components. Both the added functionality and QoS requirements are expressed in TLG so
there is a unified notation for expressing all the needed information about components. The
translation tool described in the previous section may be used to translate UMM-PI into a PIM
represented by a combination of UML and TLG. Note that TLG is needed as an augmentation of
UML to define business logic and other rules that may not be convenient to express in UML
directly.

A Platform Specific Model is an integration of the PIM with technology domain specific

operations (e.g. in CORBA, J2EE, etc.). These technology domain classes also are expressed in
TLG. Each domain contains rules which are specific to that technology, including how to

construct glue/wrapper code for components implemented with that technology and architectural
considerations such as how to distinguish client code from server code. We express PSMs in TLG
as an inheritance from PIM TLG classes and technology domain TLG classes. This means that
PSMs will then contain not only the business-domain specific rules but also the technology-
domain specific rules. The PSM will also maintain the Quality-of-Service characteristics
expressed at the PIM level (a related paper [Burt02] explores the rules for this maintenance in
more detail and [Burt03] explores this issue for the QoS aspect of access control in particular).
Since the model is expressed in TLG, it is executable in the sense that it may be translated into
executable code in a high-level language (e.g. Java). Furthermore, it supports changes at the
model level, or even requirements level if the model is not refined following its derivation from
the requirements, since the code generation itself is automated.

Banking Domain knowledge
(in NL)

Bank server UMM
 (in NL)

NLP
NLP

Banking Domain knowledge
 (in TLG)

Bank server UMMPI

 (in TLG)
Bank server UMMPS

 (in TLG)

Tool support

Model Driven Architecture

 PIM

UML TLG

PSM (in UML and TLG)

Technology Domain
knowledge (in TLG)

Bank server implementation (in Java)

 Feature model, dictionary,
configuration constraints,
business rules ……….

Figure 2. Integration of Two-Level Grammar with Model Driven Architecture

Figure 2 shows the overall view of the model-driven development from natural language

requirements into executable code for the banking example we have just described.

4. Discussion

This paper has described an approach for unifying the ideas of expressing requirements in
natural language, constructing Platform Independent Models for software components, and
implementing the components via Platform Specific Models. The approach is specifically
targeted at the construction of heterogeneous distributed software systems where interoperability
is critical. This interoperability is achieved by the formalization of technology domains with rules
describing how those technologies may be integrated together via the generation of glue and
wrapper code. The processing of software requirements, construction of PIMs and PSMs, and
specification of technology domain rules are all expressed in Two-Level Grammar, thereby
achieving a unification of natural language requirements with the Model Driven Architecture
approach.

For future work, we will investigate aspect-oriented technology [Kicz97] as a mechanism for
specifying crosscutting relationships across components and hence improving reusability of
components and reasoning about a collection of components. Such aspects of components as
functional pre/post conditions and QoS properties crosscut component modules and specification
of these aspects spread across component modules. Preliminary work in defining an aspect-
oriented specification language is very promising [Cao03b].

We are also investigating the applicability of the UniFrame approach to real-time and
embedded systems. Real-time constraints are already one of the Quality-of-Service parameters we
are now validating. However, we expect that our current timing requirements will need
refinement to be applicable in a true real-time setting. We are also looking at applying our
modeling technology to the embedded system domain. Finally we are continuing our work in
model-driven security to assure that security issues are maintained in migration from PIMs to
PSMs.

5. References

[Brya02a] Bryant, B. R. and Lee, B.-S., “Two-Level Grammar as an Object-Oriented
Requirements Specification Language,” Proc. HICSS-35, 35th Hawaii Int. Conf. System Sciences,
2002, http://www.hicss.hawaii.edu/HICSS_35/HICSSpapers/PDFdocuments/STDSL01.pdf.

[Brya02b] Bryant, B. R., et al., “Formal Specification of Generative Component Assembly Using
Two-Level Grammar,” Proc. SEKE 2002, 14th Int. Conf. Software Engineering Knowledge
Engineering, 2002, pp. 209-212.

[Burt02] Burt, C. C., Bryant, B. R., Raje, R. R., Olson, A. M., Auguston, M., “Quality of Service
Issues Related to Transforming Platform Independent Models to Platform Specific Models,”
Proc. EDOC 2002, 6th IEEE Int. Enterprise Distributed Object Computing Conf., 2002, pp. 212-
223.

[Burt03] Burt, C. C., Bryant, B. R., Raje, R. R., Olson, A. M., Auguston, M., “Model Driven
Security: Unification of Authorization Models for Fine-Grain Access Control,” to appear in
Proc. EDOC 2003, 7th IEEE Int. Enterprise Distributed Object Computing Conf.

[Cao03a] Cao, F., Bryant, B. R., Burt, C. C., Huang, Z., Raje, R. R., Olson, A. M., Auguston,
M., “Automating Feature-Oriented Domain Analysis ,” to appear in Proc. SERP 2003, 2003 Int.
Conf. Software Engineering Research and Practice, 2003.

http://www.hicss.hawaii.edu/HICSS_35/HICSSpapers/PDFdocuments/STDSL01.pdf

[Cao03b] Cao, F., Bryant, B. R., Raje, R. R., Auguston, M., Olson, A. M., Burt, C. C.,
“Assembling Components with Aspect-Oriented Modeling/Specification,” to appear in Proc.
WiSME 2003, UML 2003 Workshop Software Model Engineering.

[Czar00] Czarnecki, K., Eisenecker, U. W., Generative Programming: Methods, Tools, and
Applications, Addison-Wesley, 2000.

[Durr92] Dürr, E. H., van Katwijk, J., “VDM++ - A Formal Specification Language for Object-
Oriented Designs,” Proc. TOOLS USA '92, 1992 Technology of Object-Oriented Languages and
Systems USA Conf., 1992, pp. 263-278.

[Fran03] Frankel, D. S., Model Driven Architecture: Applying MDA to Enterprise Computing,
Wiley Publishing, Inc., 2003.

[GME01] GME 2000 User's Manual, Version 2.0. ISIS, Vanderbilt University, 2001.

[IFAD00] IFAD, The VDM++ Toolbox User Manual, http://www.ifad.dk, 2000.

[Jaco99] Jacobson, I., Booch, G., Rumbaugh, J., The Unified Software Development Process,
Addison-Wesley, 1999.

[Jura00] Jurafsky, D., Martin, J., Speech and Language Processing, Prentice-Hall, 2000.

[Kicz97] Kiczales, G., et al., “Aspect-Oriented Programming,” Proc. ECOOP ’97, European
Conf. Object-Oriented Programming, 1997, pp. 220-242.

[Lee02a] Lee, B.-S. and Bryant, B. R., “Contextual Knowledge Representation for Requirements
Documents in Natural Language,” Proc. FLAIRS 2002, 15th Int. Florida AI Research Symp.,
2002, pp. 370-374.

[Lee02b] Lee, B.-S. and Bryant, B. R., “Contextual Processing and DAML for Understanding
Software Requirements Specifications,” Proc. COLING 2002, 19th Int. Conf. Computational
Linguistics, 2002, pp. 516-522.

[Lee02c] Lee, B.-S., Bryant, B. R., “Automation of Software System Development Using Natural
Language Processing and Two-Level Grammar,” Proc. 2002 Monterey Workshop Radical
Innovations Software and Systems Engineering in the Future, 2002, pp. 244-257.

[Quat00] Quatrani, T., Visual Modeling with Rational Rose 2000 and UML, Addison-Wesley,
Reading, MA, 2000.

[Raje00] Raje, R. R., “UMM: Unified Meta-object Model for Open Distributed Systems,” Proc.
ICA3PP, 4th IEEE Int. Conf. Algorithms and Architecture for Parallel Processing, 2000, pp. 454-
465.

[Raje01] Raje, R. R., Auguston, M., Bryant, B. R., Olson, A. M., and Burt, C. C., “A Unified
Approach for the Integration of Distributed Heterogeneous Software Components,” Proc. 2001
Monterey Workshop Engineering Automation for Software Intensive System Integration, 2001,
pp. 109-119.

http://www.ifad.dk/

[Raje02] Raje, R. R., Auguston, M., Bryant, B. R., Olson, A. M., Burt, C. C., “A Quality of
Service-based Framework for Creating Distributed Heterogeneous Software Components,”
Concurrency and Computation: Practice and Experience 14, 12 (2002), 1009-1034.

[Warm99] Warmer, J., Kleppe, A., The Object Constraint Language: Precise Modeling with
UML, Addison-Wesley, 1999.

[Wils99] Wilson, W. M., “Writing Effective Natural Language Requirements Specifications,”
Naval Research Laboratory, 1999.

 [Yang02] Yang, C., Lee, B.-S., Bryant, B. R., Burt, C. C., Raje, R. R., Olson, A. M., Auguston,
M., “Formal Specification of Non-Functional Aspects in Two-Level Grammar,” Proc. UML 2002
Workshop Component-Based Software Engineering and Modeling Non-Functional
Aspects(SIVOES-MONA), 2002, http://www-verimag.imag.fr/SIVOES-MONA/uniframe.pdf.

[Zhao03] Zhao, W., Bryant, B. R., Burt, C. C., Gray, J. G., Raje, R. R., Olson, A. M., Auguston,
M. “A Generative and Model Driven Framework for Automated Software Product Generation,”
Proc. CBSE 6, 6th Workshop Component-Based Software Engineering, 2003,
http://www.csse.monash.edu.au/~hws/cgi-bin/CBSE6/Proceedings/papersfinal/p31.pdf.

http://www-verimag.imag.fr/SIVOES-MONA/uniframe.pdf
http://www.csse.monash.edu.au/~hws/cgi-bin/CBSE6/Proceedings/papersfinal/p31.pdf

