Sidestepping verification complexity with supervisory control

Ugo Buy Houshang Darabi
Dept. of Computer Science Dept. of Mechanical and Industrial Engineering
University of lllinois at Chicago University of lllinois at Chicago
buy@uic.edu hdarabi@uic.edu

September 12, 2003

Abstract ducing, moving, and assembling parts on a shop floor.
Control systems for such plants must enforce a variety of
While the goal of verification is to check whether a model of theorrectness properties, including traditional concuyen
system under consideration has a desired property, supervisoingl timing properties.
control achieves correctness by adding a so-called supervisoSupervisory control methods for discrete event systems
that prevents the occurrence of incorrect behaviors to the orig}picany employ finite state automata or Petri nets to
nal system. Supervisory control methods are appealing becagistlel a DES [4, 13, 14, 17]. Here we focus on Petri-net-
they can be much more tractable than the corresponding veitfased models for two reasons. First, Petri nets support
cation problems. Here we first examine two supervisory conti@mputationally-tractable methods for supervisor synthe
algorithms, one for enforcing mutual exclusion properties args. We summarize two such methods below. These meth-
the other for enforcing real-time deadlines on Petri net modejgls use concepts specific to Petri nets, such as P-invariant
of the controlled system. Next, we argue that use of superviseiid net unfolding. Thus, these methods are not appli-
control methods may lead to a simpler and more effective caghble to discrete event systems modeled by finite-state
ing style for embedded software than current practices. Finabytomata. Existing supervisory control methods for au-
we highlight research issues that must be addressed in ordetoimata models usually resort to the cross-product of finite
permit widespread application of supervisory control methodsstate automata for supervisor synthesis, which is likely
to lead to state-space explosion. Second, Petri nets are
used extensively for specification and analysis of digcret
1 Introduction manufacturing systems. For instance, the language of Se-
quential Function Charts (SFCs) is a straightforward ex-

Embedded systems often exhibit features typical of cdgnsion of Petri nets. SFCs are part of the IEC 61131 stan-
current and real-time systems. The automatic verificatilad for manufacturing control languages; they are sup-
of concurrency and timing properties has been studied &@rted by popular commercial products such as Matlab
tensively for over two decades; however, progress in tf#8d RSLogix 5000 [8].
area has been slow. One reason for this state of affairs i&iven a Petri net and a set of correctness properties,
the computational intractability of most verification pro supervisory contromethods can enforce the given prop-
lems. Here we suggest that supervisory control can édies by cleverly disabling net transitions that coulddlea
a more practical approach than automatic verification ftora violation of the properties. Thus, the supervisory con-
a broad class of embedded systems. While verificatitsaller of a Petri neV is a subnes that is added tdV' in
seeks to determine whether a model of the system undegter to enforce the properties of interest. In this cASe,
consideration has a desired property, supervisory conigosaid to be theontrolled nef6]. A supervisor is said to
achieves correctness by adding a so-called supervisor thamaximally permissivé it does not disable any behav-
inhibits incorrect behaviors to the original system. ior that satisfies the property of interest while prevegtin
The supervisory control methods discussed here #ig occurrence of all behaviors that violate the property.
suitable for embedded systems that can be modeled afhe first method that we survey uses Petri net P-
a discrete event system (DES). We are specifically intémvariants to enforce a broad variety of mutual exclusion
ested in control systems for discrete manufacturing prenstraints of the controlled net [4, 11, 17]. An advantage
cesses, although the same supervisory control technigoiethis method, which has been studied extensively in the
are generally applicable to other DES models as well. past decade, is that its worst-case computational complex-
discrete manufacturing plant consists of machines for pity-is polynomial in the size of the controlled system. This



complexity is dramatically lower than the complexity oflirected bipartite graph, antlly : P — N is called the
the corresponding verification problems [16]. An addinitial marking of /', whereN denotes the set of nonneg-
tional advantage is that the method generates maximaitive integers. In general, a marking or staté\béssigns
permissive supervisors [17]. a nonnegative number of tokens to each P.

The second mehod uses the conceptrafsition la- A transition isenabledwhen all its input places have at
tencyto enforce real-time deadlines in time Petri nets [2past one token. When an enabled transitias fired, a
This is a new method; however, it is one of few existoken is removed from each input placetdind a token
ing techniques for enforcing real-time properties in timad added to each output place; this gives a new marking
models. In brief, the latency of a transitioris the lat- (state). PetrineN = (P, T, F, M) is safeif M, : P —
est time whert can be fired while guaranteeing that th€0, 1}, and if all markings reachable by legal sequences
given deadline is met. Transition latencies are computefitransition firings from the initial marking have either 0
by unfoldingthe ordinary Petri net underlying the timeor 1 tokens in every place.

Petri net that models the controlled system [3, 9, 15]. TheA generalizedPetri net associates a positive weight
complexity of this method is dominated by the unfoldingyith each arcf € F. If f goes from an input transition
which is at worst exponential in the size of the controlled to an output place, thenw tokens are deposited m
net [3]. However, we believe that the average-case cowhenevert, fires. If f goes from input place to output
plexity will be polynomial. transitiont,, then at leasivtokens are needed gnin order

On the positive side, supervisory control methods nfatr ¢, to be enabled. In this case, the firingtefemovesv
only provide a tractable alternative to intractable vesdfi tokens fromy.
tion problems. Supervisory controllers can also lead to aA time Petri nef[1, 10] is a five-tuple(P, T, F, My, S)
novel programming paradigm for embedded and real-timéere (P, T, F, M) is an ordinary Petri net, anfl as-
systems. In contrast with current practices, in the nesmciates astatic (firing) intervalZ(¢) = [a, b] with each
paradigm a programmer would first code an embeddednsitiont, wherea and b are rationals in the range
system without the burden of building desired correctne$s< a < b < +o0, With a # oco.
properties (e.g., compliance with mutual exclusion or tim- Static intervals change the behavior of a time Petri net
ing constraints) directly into the code. The programmauaiith respect to an ordinary Petri net in the following way.
would then submit this code, along with a control spedf transition ¢ with Z(t) = [a,b] becomes enabled at
fication, to asupervisor generatomwhich would augment time 6y, then transitiore must fire in the time interval
the programmer’s code with a supervisor capable of €6y + a,6y + b], unless it becomes disabled by the re-
forcing the properties contained in the specification. moval of tokens from some input place in the meantime.

On the negative side, several issues may adversely Hiestatic earliest firing timeof transitiont is a; the static
fect the applicability of supervisory controllers. For inlatest firing timeof ¢ is b; the dynamic earliest firing time
stance, events in the controlled system may naitiserv- of ¢ is 6y + a; thedynamic latest firing timef ¢ is 6y + b;
ableandcontrollableto the extent needed for supervisathedynamic firing intervalof ¢ is [0y + a, 6y + b].
generation. Informally, an event is said to be observable ifThe state of a time Petri net is a triglé/, ©, I), where
its occurrence can be detected by the supervisor. An evéhis the marking of the underlying untimed Petri netis
is controllable if its occurrence can be inhibited by thie global time, and is a vector containing the dynamic
supervisor. Moreover, the integration of supervisors féiring interval of each transition enabled By. The ini-
different properties in order to guarantee correctneds wiial state of a time Petri net consists of its initial marking
respect to all properties considered must be explored. time 0, and a vector containing the static firing interval of

This paper is organized as follows. In Section 2 weach transition enabled by this marking.
introduce some required definitions. Section 3 summa-A firing schedulefor time Petri net\/ is a finite se-
rizes a method for enforcing mutual exclusion propertigsience of ordered pair$;, 6;) such that transition; is
of generalized Petri nets. In Section 4, we present direable at timef; in the initial state of\/, and transition
paradigm for generating deadline-enforcing supervisass fireable at time; from the state reached by starting
in time Petri nets. In Section 5, we discuss the potein-the initial state ofA/ and firing the transitions; for
tial advantages and disadvantages of supervisory confraf j < ¢ in the schedule at the given times.
methods in software development for embedded systems.

o 3 Enforcing mutual exclusion
2 Definitions
This supervisory control method enforces sets of linear
An ordinary Petri netis a four-tupleN = (P, T, F, My) mutual exclusion constraints on the reachable markings of
where P andT are the node sets anfd the edges of a the controlled netV. For instance, if\" hasm transitions



/—? Py /—(? P, /—(? Py /—? P, /—(? Pg

Pe Pz Pg Py P10

\_j- tg \_j_ t7 \_j_ tg \_j- t9 \_j_ t10

Figure 1: Example of controlled Petri net for readers and writergepia.

andn places, each constraint may take the following fornof sizek and D is the incidence matrix of the net consist-
N ing of A" and the supervisory controller. Clearly has
Z li-u; < B @ " + k rows, wheren is the nu_mber of places iV, andm
Pl columns, one for each transition.:

Variable i; represents the marking of plage, /; is an D= { Dy ] (5)
integer coefficient, an@ is an integer constant [4, 11, 17]. Dc

Given controlled nef\ and a set of linear constraintHere D is then x m incidence matrix of\" and D¢ is
similar to inequality (1) above, this supervisory contrahek x m incidence matrix of the supervisor ng&t From
method exploits a property of Petri net P-invariants. A Rguations (4) and (5), we can fidd as follows:
invariant is a subseP; of N’s place setP such that the Do ——L.D 6
weighted sum of the tokens residing in plages P; re- c= TN ©6)
mains constant in all reachable markings\of Inequal-  Thus, the desired supervisory controller can be found
ity (1) can be transformed into a P-invariant equality kyy a simple matrix multiplication involving the incidence

adding a slack variablgc: matrix of the controlled net and the coefficients appearing
" in the inequality constraints to be enforced. The elements
Z L i+ pe = B @) of D¢ will be integers, as required, becausandDy are

integer matrices. Yamalidou et al showed that the super-
_ ) visory controllers generated in this fashion are maximally
Variableu o represent; the marking of a control plggg permissive [17].
that enforces inequality (1). Consequently, a sét bi- e jliustrate the potential benefits of P-invariant-based
ear inequalities can be enforced by a supervisory cQijpervisory control by applying this method to the readers
troller consisting ofc contrql places and zero transitions 5 nq writers problem, a classical example of mutual exclu-
The arc subset connectirfy;, the set of control places,gjon. Wwe consider a version with 3 readers and 2 writers.
to P, the place setin the controlled net, can be easily coRs ysyal, multiple readers are allowed in the buffer when
puted by a simple matrix multiplication. LdD be the g wyriter is in the buffer; however, each writer excludes
nxm incidence matrix of a Petri né{ with m transitions  poth other writers and all readers from the buffer. Figure 1
andn places. Entryl; ; is a positive (negative) integer  ghows a Petri net for a version in which the mutual exclu-
if V contains a weight arc from transitiort; to placep; gjon constraints are not enforced. Plaggs, andp; rep-
to (fromp; tot;). In general, the place invariants 8fare esent the three readers in the idle state. Whep; and
the integer solutions to the following vector equation: ps have a token, the three readers are in the buffer. Like-
2. D =07 ?) Wige, placey, andp5 represent the idle states of t_he tyvo
writers; a token in placeg or p;o means that a writer is
Herez” is a transposed-vector representing the integein the buffer. To enforce the mutual exclusion constraints
coefficients of the net’s place invariants aifdis a trans- we write the following three inequalities:
posedm-vector filled with zeros.
Therefore, the P-invariants induced by a setkoh-
equalities (1) must satisfy the following equation: pr+po+pro =1
ps+pg+pio <1

The first constraint stipulates that at most one of the first
where L represents & x n matrix containing the coef- reader and the two writers can be in the buffer simul-
ficients of inequality constraints (1), is the unit matrix taneously. The remaining two constraints stipulate the

=1

P6 +po+pio <1

[L 1]-D=0 @



=]
[N
[

=]
[
N
~

AR RE RN

Pe P7 ? Pg Pg P10
t t t t t

Figure 2: Petri net for readers and writers example with supervisontroller.

same condition for the second and third reader. Figureifce the latest of the previous firing of and the be-
shows the Petri net for the readers and writers exampgianing of a firing sequence. Throughout this section we
with the supervisory controller obtained by formula (Gssume thad is a safe and live time Petri net.

above. Placesy, pio, pis, and their incident arcs are paradigm for generating deadline-enforcing super-

the supervisor. In particular, plage, enforces the mu- visory controllers consists of three steps. First, we com-
tual exclusion between the first reader and the two writers y pS. !

- Ute a so-calletransition latencyfor each transitiort in
Placesp,2 andp;3 play a similar role for the second an

third reader. The mutual exclusion among writers foIIonjg' Given a time Pe.tf' netv - (BT, F, MO’S)’ the
. atencyl(t) of a transitiont € T is the maximum delay
from each of the three constraints above.

S . . . between any firing of and the next firing ofp, along fir-
e b sl Scheduies permited by e stpenisory contoer for
o : net . Thus, the latency of is an upper bound on the
polynomial in the size of the controlled net and the sgtj- . . .
. . . ime required for p to fire aftert fires.
pervisor net. Therefore, the overall complexity will be
polynomial whenever a mutual exclusion problem can beSecond, we define a so-calletbck netC, a time Petri
translated into a linear system containing a number of imet whose places correspond to transition latencies iden-
equalities polynomial in the size of the controlled netified earlier. A place in a clock net is used to disable dy-
This performance is in sharp contrast with the verificaamically transitions whose firing may preveft from
tion of mutual exclusion properties, for which no generatreeting\. Of course, a transitionshould be allowed to
purpose polynomial-time algorithm is known. When fiire only whent’s latency is no greater than the time left
is applicable, the approach based on supervisory comil the deadline on the firing af, expires.
trol is Ilkely to be vastly more scalable than verifica- Third, we synthesize a supervisory controli@based
tion. This method has also been extended to the case . o )
) . on netsN andC. ControllerS disables transitions in/
of Petri nets with unobservable and uncontrollable trag- . .
. . , . -based on the marking of places ¢h In particular,S
sitions [11]. Yamalidou et al defined other extensions 'H' . . g .
. o N . .dynamically disables transitions whose latency is greater
cluding the case of “greater-than” constraints, constsairn . . . g
. . . .than the time left until the deadline on the firingigf.
expressed as logical formulas, and constraints involving
the firing vectors of the controlled net [17]. Finally, lor- Consider, for instance, the time Petri net appearing in
dache et al defined a method for enforcing net livendsigure 3. Suppose that target transitignmust be fired
(e.g., freedom from deadlock) in the controlled net [7]. within 51 time units from the initial state. In order for
t7 to fire, transitionty must fire first. Sincey is in con-
) ) . flict with ¢;, a supervisory controller must disablesome
4 Enforcing real-time deadlines time before the deadline expires. In this case, we can set
the latency oft; to 25 time units, the sum of the static
We report preliminary results on a method for enforcidgtest firing delays ots, t5, andt;. After t; fires, tran-
real-time deadlines in time Petri nets [10]. Given a tim®tionsts, t4, tg, t2, t3, t5 andt; must be fired in order
Petri net\/ = (P, T, F, My, S), a net transitiortp, and for the deadline to be met. The sum of their static latest
a deadline\, our method seeks to generate a supervisditing times is 48 time units. Thus, it is safe to fiteif at
controller that forcegp to fire no more tham\ time units least 48 time units remain unti} must be fired.



-F4[1,6] ts[27]
o

T2 e

Figure 3: Example of a time Petri net.

Figure 4. Unfolding of the Petri net appearing in Figure 3.
4.1 Computing transition latencies

We believe that various approaches can be followed wheB. O is acyclic.

defining the latency of\ transitions. Here we discuss a

technique calledet unfoldind3, 5, 9, 15]. We choose this 3. Each node € PoUTy is finitely preceded, meaning

technique for two reasons. First, net unfolding explicitly ~ that the number of nodeg € Po U Tp such that

captures the causal relationship on transition firings for y < z is finite.

the Petri net under consideration. Thus, by unfolding net

N we can define reasonably tight latency values. Secondt. No noder € Po U Ty is in self-conflict.

unfolding \" allows us to identify\ transitions that need ] ) )

not be disabled in order for deadlineto be met. In gen- _ Given a controlled netV, considerM, the ordinary

eral, \ can be enforced by disabling only a small subsBtri net underlyingV, so thatM = (P, T, F, Mo).

of transitions in the controlled net. For instance, it is-sufin unfoldingof M is a marked, labeled occurrence net

ficient to disable transition; in a timely manner in order Y = (Pv. v, Fu, Mou, lr), wherely is a function map-

to force transitiort; to fire in Figure 3. This fact can leadPing €ach node € Py U Ty to a nodely (z) in M. In

to reductions in the size of subnetsandsS below. brief, each element d# is an “occurrence” of its image
We require the following definitions. Consider nodes N /. The formal definition of a net unfolding can be

andy in an (untimed) ordinary Petri net. Noseprecedes found _elsewhere _[3] along Wlth algorithms fo_r generating

y, denoted by: < y if there is a directed path from to unfoldings of ordinary Petr_l nets. Here we simply report

y in the Petri net. Nodes andy arein conflict, denoted 1 €xample of a net unfolding.

by z#y, if the Petri net contains two distinct paths origi- Figure 4 shows an unfolding of the ordinary Petri net

nating at the same plapahat diverge immediately aftgr Underlying the time Petri net in Figure 3. Places

and lead ta: andy. Whenz#x holds, noder is said to be P2, andps, which are initially marked, are mapped to

in self-conflict Nodesz andy areconcurrentif they are the homonymous places . Transitionst; andt, are

not in conflict with each other and neither node preced@@pped similarly. However, plage; in V is in self-

the other. conflict because it can be reached frpmeither through
An occurrence nets an unmarked ordinary Petri nefransitiont, or¢;. Thus, this place is represented by two
O = (Po, To, Fo) subject to these conditions [3]: placesp, andp), in Figure 4. Transitiort; and placep;

are also split into two nodes for the same reason. Finally,
1. Vp € Py, p has at most one input arc. placesp!, ph, p4, andps, represent the so-callexit-off



points of the unfolding. When these places are markedhck net for the controlled net appearing in Figure 3.
the net returns to its initial state. Here setl'y consists of transitions;, andt.; placespss

We define transition latencies from the unfolding of thendp,s map the latencies of these transitions in the clock
untimed net underlying controlled naf. First, for each subnet. Placgs; models deadling.
transitiont,, € Ty, the transition set of unfoldingy, we ~ We define the transition séf-, static delay intervals
associate the static latest firing timelgf(t,,), the image Sc, and flow relationF¢ of C as follows. First, we insert
of t,, in A/, with ¢,,. Second, we examine backward pattstransition between pairs of clock net places with consec-
from each occurrence df, in I/ to the initial places of utive index values. The static delay of each such transition
U and forward paths fromp occurrences to the cut-offis the difference between the index values of its input and
places oft/. We add the static latest firing times of theutput place. In Figure 5 this yields transitiofgsandtg
transitions that we find along these paths and we associsités delays of 3 and 23. Next, we define an arc from
the partial sums with such transitions. Defineo be the topp, and we add a group ¢f-| — 1 zero-delay transi-
longest backward path fromta, occurrence iri{ to the tions to7, one transition for each plagg € Pc, except
initial places of{. Defined to be the longest forward pattfor pp. A token inpp enables one of these transitions
from atp occurrence to the cut-off placesiaf Third, we immediately aftetp fires. The transition removes the to-
consider paths from initial places to the cut-off places thsen frompp and from one of the other places R; it
do notinclude/ transitions mapping inttp. These paths deposits a token ip, and in a suitable number &f con-
may correspond to cyclic behaviors of ngt in which trol places described below. This completes the resetting
tp is not fired (e.g., iftp is disabled along these paths)of C andS. In Figure 5, transitionsg, o, 11, andt;» reset
We addc to the combined delays along such paths. Titee clock subnet and supervisor afterfires. Additional
resulting values yield the latencies fof transitions. details can be found elsewhere [2].

In the example appearing in Figure 4, we associate de-
lays as follows:t; — 3,t; — 3,13 — 12,14 — 6, 4.3 Supervisory controllers
ts — 7,tg — 2, andt; — 6 during the first phase of the
algorithm. Next, we consider paths originating at targéupervisory controllers enforce deadliheon the firing
transitiont;. Sincet; feeds directly into cut-off placgsy Of transitiontp in net N = (P, T, F, My, S) with clock
andpj, we discard paths toward cut-off places. Backwai€tC = (Pc, Tc, Fo, Moc, Sc). Let Py = Po — {pp}.
paths from¢ to initial placesp, andps yield the follow- The supervisory control constraint is expressed by:
ing latenciesit; — 0, t5 — 6, t3 — 13, andt, — 25. ] ] .
Finally, we consider the cycle involving firing sequence Disablet € Ty if p, € Py marked withi(t) = v (7)
o =1y, t3,t4,tg. The sum of the static latest firing delays
alongo is 23. We add the latency of transitiepand the
latest firing delay of, to the delays computed on the cy
cle. This yields the following latency values; — 48,
ts — 36, t4 — 30, tg — 28. Transitionts is seemingl i L S
given two different latency values because this trags);tié aint (7) above states that a transitios A’ is disabled

is in self-conflict. When this happens, we define the 13- enever the tok,en If?, moves to a placg, whose in-
tency to be the least value exv is equal tot's latencyi(t). Therefore, control con-

straint (7) above will disable all transitions that might de
lay the firing oftp by more than units, the index of the
4.2 Clock nets marked state of. Moreover, once is disabledt is not al-
lowed to fire again until after target transitiop has been
We compute a clock nét = (Pc,Tc, Fo, Moc, Sc) for  fired. As a result, all the transitions that may result in the
a controlled netV' = (P, T, F, My, S) based on the tran-violation of deadline\ on the firing oft,, are disabled.
sition latencies and choice points previously defined withWe implement constraint (7) above by defining two
net unfolding. We specifically consider a sub%gt C T' places,q; andg., and one transitiom for eacht € Ty.
of A\ transitions that are involved in choice points (i.eThe rules for defining arcs incident an, ¢, andr are

We note that by construction, for any marking of clock
netC, all places inP,, combined will always contain ex-
actly one token. Unless; is fired, the token inP will
always move toward places with lower index values. Con-

because they share at least one input place). discussed elsewhere [2].
First, we add taP- one place for each distinct element Figure 5 shows the supervisory controller for the net
in the set of latency values = {v | 3t € Ty andv = in Figure 3. This controller disables transitionsandt

I(t)}. Given a latency value, we denote the place correwhen transitiongs andty are fired. For instance, wheg
sponding tov by p,. In addition, P contains a place, fires placec; becomes marked, which enables transition
corresponding to deadlineand a placep for resetting t;3. The firing oft,3 causes the removal of the token from
the clock net after the firing of,. Figure 5 shows the placec;; this action disables transition. Transitiontg



:)L\ltlo Psy
: _ tg[3,3]
Pag
?{_\ wtll
t3[6,12]: 13 ) j/ t9[23,23]
Ps 6 w L
™
P, Pos
t12
t,[1,6]: 30 |
4 t5[2,71: 6 ] %
Pg Py
t500,2]: 28 t,[3,6]:0

— ==

Figure 5: Supervisory controller and clock net of time Petri net appey in Figure 3.

similarly disables transitiot,. Additional details can be point. This version could be obtained by translation from

found elsewhere [2]. software that was deliberately written without paying at-
tention to its mutual exclusion constraints. However, a
supervisory controller can subsequently enforce these and

5 Assessment other properties that are expressed as linear equalitées an

) o inequalities on net markings and firing vectors.
The two methods discussed earlier indicate that supervi- :
o ; Thus, the use of supervisory control methods could lead

sory control may have significant benefits on the devel- . .
. a new programming paradigm for concurrent and real-
opment of software for concurrent and real-time systems, . :
o . time systems. In this paradigm, a programmer would
The most significant advantage of supervisory control IS . . ) .
. L first write a version of the program without being con-
reduced computational complexity with respect to the cor- . . .
. e : . : cerned about complying with mutual exclusion and real-
responding verification algorithms. For instance, in Sec- . oo
. : . time properties. Next, the programmer would submit this
tion 3 we saw that a broad variety of mutual exclusion ) e .
. o o .program along with a control specification to a supervi-

constraints can be enforced in time polynomial in the size

i X L sSory control tool. The tool would then translate the pro-
of the system under consideration. This is in sharp con-

trast to the verification of mutual exclusion pro ertiegram into a Petri-net model and generate suitable super-
brop Visors. Finally, the tool would add code that enforces the

which is computationally intractable. Although we lack A -
empirical data on the real-time method discussed in Sé:g_ntrol specification to the original code.
tion 4, we believe that on average this method will also beWhile supervisory control methods hold considerable
tractable. The verification of real-time systems is gendtomise for the development of concurrent and real-time
ally considered even more complex than the case of @¥Stems, the widespread application of these methods also
timed concurrent systems. When they are applicable, faces formidable obstacles. Petri net transitions may not
pervisory control methods may provide greater help to dee observable and/or controllable to the extent needed for
velopers of embedded systems than existing techmqueggpervisor definition. This could happen, for instance, in
However, the full potential of supervisory control ifyvireless sensor networks, special kinds of gmbedded sys-
software development is more far-reaching than just guf#ms [12]. These networks often lack the ability for a node
anteeing that certain correctness properties are met. fife; ah embedded system equipped with sensors) to know
availability of supervisory control tools could free prolnstantaneously and control events in different nodes.
grammers from the need to build compliance with correct- Additional obstacles may arise when attempting to in-
ness properties directly into their code. The version of thegrate multiple supervisory control methods in order to
readers and writers example shown in Figure 1 is a caseirforce different properties. For instance, it is curnentl



unclear whether the two methods that we discussed ed®] U. Buy and H. Darabi. Deadline-enforcing supervisory

lier can be effectively combined in an effort to guarantee
simultaneously mutual exclusi@mdreal-time properties.
Liveness properties, such as freedom from deadlock,
pose additional challenges to the application of supervi-
sory control methods. Although freedom from deadloc
is an intractable verification problem, this is considered
the “easiest” property to check through verification. Theyg;
same does not hold in the world of supervisory control,
the definition of supervisors for enforcing Petri net live-
ness is much more challenging than, say, enforcing mutual
exclusion properties expressed as linear constraint#\[7].
method by He and Lemmon, who use net unfoldings td°]

enforce liveness, seems especially promising [5].

To date, several research issues must be investigated
in order to answer some of the questions regarding th%]
applicability of supervisory control to software develop-
ment. First, additional supervisory control methods must
be defined for enforcing different properties. In the case
of the readers and writers example, it is quite conceiv{7]
able to define versions in which the readers or the writers
have priority or in which read and write requests should
be handled in FIFO order. Supervisory control strategies
for these kinds of specifications are generally not avail
able yet. Second, we must collect empirical data on the
applicability of supervisory control in software develop- 9
ment. At the very least, we should find out how often
mutual exclusion constraints can be expressed through a
small number of linear constraints in the form (1). ThgLo]
complexity of net unfolding when applied to real-world
software problems must also be assessed empirically be-
cause this techique is crucial both to liveness-enforcin

and deadline-enforcing supervisors.

6 Conclusions

We briefly summarized two supervisory control methods3s]
for concurrent and real-time systems. Although these

methods have not reached the level of maturity needed
to permit the creation of tools for software developmeni4]
they hold considerable promise because they are generally
more tractable than the corresponding verification alg
rithms. For these reasons, we should investigate resea
directions that may lead to widespread applications of su-
pervisory control in software development for concurrent

and real-time systems, such as embedded systems.

References

[1] B. Berthomieu and M. Diaz. Modeling and verification of

time dependent systems using time Petri N&EE Trans.
Softw. Eng.17(3):259-273, Mar. 1991.

control for time Petri nets. ITESA’2003 — IMACS Multi-
conference on Computational Engineering in Systems Ap-
plications Lille, France, July 2003. Available on CD-
ROM.

J. Esparza, S. &ner, and W. Vogler. An improvement
of McMillan’s unfolding algorithm. Formal Methods in
System Desigr20(3):285-310, May 2002.

A. Giua, F. DiCesare, and M. Silva. Generalized mutual
exclusion constraints for nets with uncontrollable transi-
tions. InProceedings IEEE Int. Conf. on Systems, Man,
and Cyberneticspages 974-979, Chicago, lllinois, Oct.
1992.

K. X. He and M. D. Lemmon. Liveness-enforcing su-
pervision of bounded ordinary Petri nets using partial or-
der methods.|EEE Transactions on Automatic Contyol
47(7):1042-1055, July 2002.

L. E. Holloway, B. H. Krogh, and A. Giua. A survey of
Petri net methods for controlled discrete event systems.
Discrete Event Dynamic Systems: Theory and Applica-
tions, 7:151-190, Apr. 1997.

M. V. lordache, J. O. Moody, and P. J. Antsaklis. Synthesis
of deadlock prevention supervisors using Petri nEtEE
Transactions on Robotics and Automatidr8(1):59-68,
2002.

8] R. W. Lewis. Programming industrial control systems us-

ing IEC 1131-3. Technical report, The Institution of Elec-
trical Engineers, 1998.

] K. L. McMillan. A technique of state space search based

on unfolding.Formal Methods in System Desidi{1):45—

65, Jan. 1995.

P. M. Merlin and D. J. Farber. Recoverability of com-
munication protocols—implications of a theoretical study.
IEEE Trans. CommunicationsgCOM-24(9):1036—1043,
Sept. 1976.

J. O. Moody and P. J. Antsaklis. Petri net supervisors
for DES with uncontrollable and unobservable transitions.
IEEE Transactions on Automatic Contrdl5(3):462—-476,
Mar. 2000.

G. J. Pottie and W. J. Kaiser. Wireless integrated network
sensorsCommun. ACM43(5):51-58, May 2000.

P. J. Ramadge and W. M. Wonham. Supervisory control
of a class of discrete event processédAM Journal of
Control and Optimization25(1):206-230, 1987.

A. S. Sathaye and B. H. Krogh. Supervisor synthesis for
real-time discrete event systeni3iscrete Event Dynamic
Systems: Theory and Applicatiorés 1998.

A. Semenov and A. Yakovlev. Verification of asyn-
choronous circuits using time Petri net unfolding. In
Proceedings of the 33rd Design Automation Conference
(DAC96) pages 59-62, Las Vegas, Nevada, June 1996.
R. N. Taylor. Complexity of analyzing the synchroniza-
tion structure of concurrent progran#scta Inf, 19:57-84,
1983.

K. Yamalidou, J. Moody, M. Lemmon, and P. Antsaklis.
Feedback control of Petri nets based on place invariants.
Automatica 32(1):15-28, 1996.



