
Sidestepping verification complexity with supervisory control

Ugo Buy
Dept. of Computer Science

University of Illinois at Chicago
buy@uic.edu

Houshang Darabi
Dept. of Mechanical and Industrial Engineering

University of Illinois at Chicago
hdarabi@uic.edu

September 12, 2003

Abstract

While the goal of verification is to check whether a model of the
system under consideration has a desired property, supervisory
control achieves correctness by adding a so-called supervisor
that prevents the occurrence of incorrect behaviors to the origi-
nal system. Supervisory control methods are appealing because
they can be much more tractable than the corresponding verifi-
cation problems. Here we first examine two supervisory control
algorithms, one for enforcing mutual exclusion properties and
the other for enforcing real-time deadlines on Petri net models
of the controlled system. Next, we argue that use of supervisory
control methods may lead to a simpler and more effective cod-
ing style for embedded software than current practices. Finally,
we highlight research issues that must be addressed in order to
permit widespread application of supervisory control methods.

1 Introduction

Embedded systems often exhibit features typical of con-
current and real-time systems. The automatic verification
of concurrency and timing properties has been studied ex-
tensively for over two decades; however, progress in this
area has been slow. One reason for this state of affairs is
the computational intractability of most verification prob-
lems. Here we suggest that supervisory control can be
a more practical approach than automatic verification for
a broad class of embedded systems. While verification
seeks to determine whether a model of the system under
consideration has a desired property, supervisory control
achieves correctness by adding a so-called supervisor that
inhibits incorrect behaviors to the original system.

The supervisory control methods discussed here are
suitable for embedded systems that can be modeled as
a discrete event system (DES). We are specifically inter-
ested in control systems for discrete manufacturing pro-
cesses, although the same supervisory control techniques
are generally applicable to other DES models as well. A
discrete manufacturing plant consists of machines for pro-

ducing, moving, and assembling parts on a shop floor.
Control systems for such plants must enforce a variety of
correctness properties, including traditional concurrency
and timing properties.

Supervisory control methods for discrete event systems
typically employ finite state automata or Petri nets to
model a DES [4, 13, 14, 17]. Here we focus on Petri-net-
based models for two reasons. First, Petri nets support
computationally-tractable methods for supervisor synthe-
sis. We summarize two such methods below. These meth-
ods use concepts specific to Petri nets, such as P-invariants
and net unfolding. Thus, these methods are not appli-
cable to discrete event systems modeled by finite-state
automata. Existing supervisory control methods for au-
tomata models usually resort to the cross-product of finite-
state automata for supervisor synthesis, which is likely
to lead to state-space explosion. Second, Petri nets are
used extensively for specification and analysis of discrete
manufacturing systems. For instance, the language of Se-
quential Function Charts (SFCs) is a straightforward ex-
tension of Petri nets. SFCs are part of the IEC 61131 stan-
dard for manufacturing control languages; they are sup-
ported by popular commercial products such as Matlab
and RSLogix 5000 [8].

Given a Petri net and a set of correctness properties,
supervisory controlmethods can enforce the given prop-
erties by cleverly disabling net transitions that could lead
to a violation of the properties. Thus, the supervisory con-
troller of a Petri netN is a subnetS that is added toN in
order to enforce the properties of interest. In this case,N
is said to be thecontrolled net[6]. A supervisor is said to
bemaximally permissiveif it does not disable any behav-
ior that satisfies the property of interest while preventing
the occurrence of all behaviors that violate the property.

The first method that we survey uses Petri net P-
invariants to enforce a broad variety of mutual exclusion
constraints of the controlled net [4, 11, 17]. An advantage
of this method, which has been studied extensively in the
past decade, is that its worst-case computational complex-
ity is polynomial in the size of the controlled system. This

complexity is dramatically lower than the complexity of
the corresponding verification problems [16]. An addi-
tional advantage is that the method generates maximally
permissive supervisors [17].

The second mehod uses the concept oftransition la-
tencyto enforce real-time deadlines in time Petri nets [2].
This is a new method; however, it is one of few exist-
ing techniques for enforcing real-time properties in timed
models. In brief, the latency of a transitiont is the lat-
est time whent can be fired while guaranteeing that the
given deadline is met. Transition latencies are computed
by unfolding the ordinary Petri net underlying the time
Petri net that models the controlled system [3, 9, 15]. The
complexity of this method is dominated by the unfolding,
which is at worst exponential in the size of the controlled
net [3]. However, we believe that the average-case com-
plexity will be polynomial.

On the positive side, supervisory control methods not
only provide a tractable alternative to intractable verifica-
tion problems. Supervisory controllers can also lead to a
novel programming paradigm for embedded and real-time
systems. In contrast with current practices, in the new
paradigm a programmer would first code an embedded
system without the burden of building desired correctness
properties (e.g., compliance with mutual exclusion or tim-
ing constraints) directly into the code. The programmer
would then submit this code, along with a control speci-
fication, to asupervisor generator, which would augment
the programmer’s code with a supervisor capable of en-
forcing the properties contained in the specification.

On the negative side, several issues may adversely af-
fect the applicability of supervisory controllers. For in-
stance, events in the controlled system may not beobserv-
ableandcontrollableto the extent needed for supervisor
generation. Informally, an event is said to be observable if
its occurrence can be detected by the supervisor. An event
is controllable if its occurrence can be inhibited by the
supervisor. Moreover, the integration of supervisors for
different properties in order to guarantee correctness with
respect to all properties considered must be explored.

This paper is organized as follows. In Section 2 we
introduce some required definitions. Section 3 summa-
rizes a method for enforcing mutual exclusion properties
of generalized Petri nets. In Section 4, we present our
paradigm for generating deadline-enforcing supervisors
in time Petri nets. In Section 5, we discuss the poten-
tial advantages and disadvantages of supervisory control
methods in software development for embedded systems.

2 Definitions

An ordinary Petri netis a four-tupleN = (P, T, F,M0)
whereP andT are the node sets andF the edges of a

directed bipartite graph, andM0 : P → N is called the
initial markingof N , whereN denotes the set of nonneg-
ative integers. In general, a marking or state ofN assigns
a nonnegative number of tokens to eachp ∈ P .

A transition isenabledwhen all its input places have at
least one token. When an enabled transitiont is fired, a
token is removed from each input place oft and a token
is added to each output place; this gives a new marking
(state). Petri netN = (P, T, F,M0) is safeif M0 : P →
{0, 1}, and if all markings reachable by legal sequences
of transition firings from the initial marking have either 0
or 1 tokens in every place.

A generalizedPetri net associates a positive weightw
with each arcf ∈ F . If f goes from an input transition
t1 to an output placep, thenw tokens are deposited inp
whenevert1 fires. If f goes from input placeq to output
transitiont2, then at leastw tokens are needed inq in order
for t2 to be enabled. In this case, the firing oft2 removesw
tokens fromq.

A time Petri net[1, 10] is a five-tuple(P, T, F,M0, S)
where(P, T, F,M0) is an ordinary Petri net, andS as-
sociates astatic (firing) intervalI(t) = [a, b] with each
transition t, where a and b are rationals in the range
0 ≤ a ≤ b ≤ +∞, with a 6= ∞.

Static intervals change the behavior of a time Petri net
with respect to an ordinary Petri net in the following way.
If transition t with I(t) = [a, b] becomes enabled at
time θ0, then transitiont must fire in the time interval
[θ0 + a, θ0 + b], unless it becomes disabled by the re-
moval of tokens from some input place in the meantime.
Thestatic earliest firing timeof transitiont is a; thestatic
latest firing timeof t is b; thedynamic earliest firing time
of t is θ0 + a; thedynamic latest firing timeof t is θ0 + b;
thedynamic firing intervalof t is [θ0 + a, θ0 + b].

The state of a time Petri net is a triple(M,Θ, I), where
M is the marking of the underlying untimed Petri net,Θ is
the global time, andI is a vector containing the dynamic
firing interval of each transition enabled byM . The ini-
tial state of a time Petri net consists of its initial marking,
time 0, and a vector containing the static firing interval of
each transition enabled by this marking.

A firing schedulefor time Petri netN is a finite se-
quence of ordered pairs(ti, θi) such that transitiont1 is
fireable at timeθ1 in the initial state ofN , and transition
ti is fireable at timeθi from the state reached by starting
in the initial state ofN and firing the transitionstj for
1 ≤ j < i in the schedule at the given times.

3 Enforcing mutual exclusion

This supervisory control method enforces sets of linear
mutual exclusion constraints on the reachable markings of
the controlled netN . For instance, ifN hasm transitions

p1

p6

t1

t6

p2

p7

t2

t7

p3

p8

t3

t8

p4

p9

t4

t9

p5

p10

t5

t10

Figure 1: Example of controlled Petri net for readers and writers example.

andn places, each constraint may take the following form:

n
∑

i=1

li · µi ≤ β (1)

Variable µi represents the marking of placepi, li is an
integer coefficient, andβ is an integer constant [4, 11, 17].

Given controlled netN and a set of linear constraints
similar to inequality (1) above, this supervisory control
method exploits a property of Petri net P-invariants. A P-
invariant is a subsetPI of N ’s place setP such that the
weighted sum of the tokens residing in placespi ∈ PI re-
mains constant in all reachable markings ofN . Inequal-
ity (1) can be transformed into a P-invariant equality by
adding a slack variableµC :

n
∑

i=1

li · µi + µC = β (2)

VariableµC represents the marking of a control placepC

that enforces inequality (1). Consequently, a set ofk lin-
ear inequalities can be enforced by a supervisory con-
troller consisting ofk control places and zero transitions.

The arc subset connectingPC , the set of control places,
toP , the place set in the controlled net, can be easily com-
puted by a simple matrix multiplication. LetD be the
n×m incidence matrix of a Petri netN with m transitions
andn places. Entrydi,j is a positive (negative) integerw
if N contains a weightw arc from transitiontj to placepi

to (frompi to tj). In general, the place invariants ofN are
the integer solutions to the following vector equation:

xT · D = 0T (3)

HerexT is a transposedn-vector representing the integer
coefficients of the net’s place invariants and0T is a trans-
posedm-vector filled with zeros.

Therefore, the P-invariants induced by a set ofk in-
equalities (1) must satisfy the following equation:

[L I] · D = 0 (4)

whereL represents ak × n matrix containing the coef-
ficients of inequality constraints (1),I is the unit matrix

of sizek andD is the incidence matrix of the net consist-
ing of N and the supervisory controller. ClearlyD has
n + k rows, wheren is the number of places inN , andm

columns, one for each transition inN :

D =

[

DN

DC

]

(5)

HereDN is then × m incidence matrix ofN andDC is
thek ×m incidence matrix of the supervisor netS. From
equations (4) and (5), we can findDC as follows:

DC = −L · DN (6)

Thus, the desired supervisory controller can be found
by a simple matrix multiplication involving the incidence
matrix of the controlled net and the coefficients appearing
in the inequality constraints to be enforced. The elements
of DC will be integers, as required, becauseL andDN are
integer matrices. Yamalidou et al showed that the super-
visory controllers generated in this fashion are maximally
permissive [17].

We illustrate the potential benefits of P-invariant-based
supervisory control by applying this method to the readers
and writers problem, a classical example of mutual exclu-
sion. We consider a version with 3 readers and 2 writers.
As usual, multiple readers are allowed in the buffer when
no writer is in the buffer; however, each writer excludes
both other writers and all readers from the buffer. Figure 1
shows a Petri net for a version in which the mutual exclu-
sion constraints are not enforced. Placesp1, p2 andp3 rep-
resent the three readers in the idle state. Whenp6, p7 and
p8 have a token, the three readers are in the buffer. Like-
wise, placesp4 andp5 represent the idle states of the two
writers; a token in placep9 or p10 means that a writer is
in the buffer. To enforce the mutual exclusion constraints
we write the following three inequalities:

p6 + p9 + p10 ≤ 1

p7 + p9 + p10 ≤ 1

p8 + p9 + p10 ≤ 1

The first constraint stipulates that at most one of the first
reader and the two writers can be in the buffer simul-
taneously. The remaining two constraints stipulate the

p1

p6

t1

t6

p2

p7

t2

t7

p3

p8

t3

t8

p4

p9

t4

t9

p5

p10

t5

t10

p11 p12 p13

Figure 2: Petri net for readers and writers example with supervisorycontroller.

same condition for the second and third reader. Figure 2
shows the Petri net for the readers and writers example
with the supervisory controller obtained by formula (6)
above. Placesp11, p12, p13, and their incident arcs are
the supervisor. In particular, placep11 enforces the mu-
tual exclusion between the first reader and the two writers.
Placesp12 andp13 play a similar role for the second and
third reader. The mutual exclusion among writers follows
from each of the three constraints above.

The significance of this method is that it can enforce
mutual exclusion constraints of a Petri net model in time
polynomial in the size of the controlled net and the su-
pervisor net. Therefore, the overall complexity will be
polynomial whenever a mutual exclusion problem can be
translated into a linear system containing a number of in-
equalities polynomial in the size of the controlled net.
This performance is in sharp contrast with the verifica-
tion of mutual exclusion properties, for which no general-
purpose polynomial-time algorithm is known. When it
is applicable, the approach based on supervisory con-
trol is likely to be vastly more scalable than verifica-
tion. This method has also been extended to the case
of Petri nets with unobservable and uncontrollable tran-
sitions [11]. Yamalidou et al defined other extensions in-
cluding the case of “greater-than” constraints, constraints
expressed as logical formulas, and constraints involving
the firing vectors of the controlled net [17]. Finally, Ior-
dache et al defined a method for enforcing net liveness
(e.g., freedom from deadlock) in the controlled net [7].

4 Enforcing real-time deadlines

We report preliminary results on a method for enforcing
real-time deadlines in time Petri nets [10]. Given a time
Petri netN = (P, T, F,M0, S), a net transitiontD, and
a deadlineλ, our method seeks to generate a supervisory
controller that forcestD to fire no more thanλ time units

since the latest of the previous firing oftD and the be-
ginning of a firing sequence. Throughout this section we
assume thatN is a safe and live time Petri net.

Our paradigm for generating deadline-enforcing super-
visory controllers consists of three steps. First, we com-
pute a so-calledtransition latencyfor each transitiont in
N . Given a time Petri netN = (P, T, F,M0, S), the
latencyl(t) of a transitiont ∈ T is the maximum delay
between any firing oft and the next firing oftD, along fir-
ing schedules permitted by the supervisory controller for
netN . Thus, the latency oft is an upper bound on the
time required fortD to fire aftert fires.

Second, we define a so-calledclock netC, a time Petri
net whose places correspond to transition latencies iden-
tified earlier. A place in a clock net is used to disable dy-
namically transitions whose firing may preventtD from
meetingλ. Of course, a transitiont should be allowed to
fire only whent’s latency is no greater than the time left
until the deadline on the firing oftD expires.

Third, we synthesize a supervisory controllerS based
on netsN andC. ControllerS disables transitions inN
based on the marking of places inC. In particular,S
dynamically disables transitions whose latency is greater
than the time left until the deadline on the firing oftD.

Consider, for instance, the time Petri net appearing in
Figure 3. Suppose that target transitiont7 must be fired
within 51 time units from the initial state. In order for
t7 to fire, transitiont2 must fire first. Sincet2 is in con-
flict with t1, a supervisory controller must disablet1 some
time before the deadline expires. In this case, we can set
the latency oft2 to 25 time units, the sum of the static
latest firing delays oft3, t5, andt7. After t1 fires, tran-
sitions t3, t4, t6, t2, t3, t5 andt7 must be fired in order
for the deadline to be met. The sum of their static latest
firing times is 48 time units. Thus, it is safe to firet1 if at
least 48 time units remain untilt7 must be fired.

t1 [0,3]

t3 [6,12]

p6

p7

p1

p2

p4

p8 p9

p3

t2 [0,3]

t4 [1,6] t5 [2,7]

t6 [0,2] t7 [3,6]

p5

Figure 3: Example of a time Petri net.

4.1 Computing transition latencies

We believe that various approaches can be followed when
defining the latency ofN transitions. Here we discuss a
technique callednet unfolding[3, 5, 9, 15]. We choose this
technique for two reasons. First, net unfolding explicitly
captures the causal relationship on transition firings for
the Petri net under consideration. Thus, by unfolding net
N we can define reasonably tight latency values. Second,
unfoldingN allows us to identifyN transitions that need
not be disabled in order for deadlineλ to be met. In gen-
eral,λ can be enforced by disabling only a small subset
of transitions in the controlled net. For instance, it is suf-
ficient to disable transitiont1 in a timely manner in order
to force transitiont7 to fire in Figure 3. This fact can lead
to reductions in the size of subnetsC andS below.

We require the following definitions. Consider nodesx

andy in an (untimed) ordinary Petri net. Nodex precedes
y, denoted byx < y if there is a directed path fromx to
y in the Petri net. Nodesx andy arein conflict, denoted
by x#y, if the Petri net contains two distinct paths origi-
nating at the same placep that diverge immediately afterp
and lead tox andy. Whenx#x holds, nodex is said to be
in self-conflict. Nodesx andy areconcurrentif they are
not in conflict with each other and neither node precedes
the other.

An occurrence netis an unmarked ordinary Petri net
O = (PO, TO, FO) subject to these conditions [3]:

1. ∀p ∈ PO, p has at most one input arc.

t1

t3 p
6

p7

p1
p2

p4

p8 p9

p3

t2

t4 t5

t6 t7

p5 t’3

p’7

p’4

p’1 p’2 p’’2
p’3

Figure 4: Unfolding of the Petri net appearing in Figure 3.

2. O is acyclic.

3. Each nodex ∈ PO∪TO is finitely preceded, meaning
that the number of nodesy ∈ PO ∪ TO such that
y < x is finite.

4. No nodex ∈ PO ∪ TO is in self-conflict.

Given a controlled netN , considerM, the ordinary
Petri net underlyingN , so thatM = (P, T, F,M0).
An unfoldingof M is a marked, labeled occurrence net
U = (PU , TU , FU ,M0U , lU), wherelU is a function map-
ping each nodex ∈ PU ∪ TU to a nodelU (x) in M. In
brief, each element ofU is an “occurrence” of its image
in M. The formal definition of a net unfolding can be
found elsewhere [3] along with algorithms for generating
unfoldings of ordinary Petri nets. Here we simply report
an example of a net unfolding.

Figure 4 shows an unfolding of the ordinary Petri net
underlying the time Petri net in Figure 3. Placesp1,
p2, and p3, which are initially marked, are mapped to
the homonymous places inN . Transitionst1 andt2 are
mapped similarly. However, placep4 in N is in self-
conflict because it can be reached fromp2 either through
transitiont1 or t2. Thus, this place is represented by two
places,p4 andp′

4
, in Figure 4. Transitiont3 and placep7

are also split into two nodes for the same reason. Finally,
placesp′

1
, p′

2
, p′′

2
, andp′

3
, represent the so-calledcut-off

points of the unfolding. When these places are marked,
the net returns to its initial state.

We define transition latencies from the unfolding of the
untimed net underlying controlled netN . First, for each
transitiontu ∈ TU , the transition set of unfoldingU , we
associate the static latest firing time oflU (tu), the image
of tu in N , with tu. Second, we examine backward paths
from each occurrence oftD in U to the initial places of
U and forward paths fromtD occurrences to the cut-off
places ofU . We add the static latest firing times of the
transitions that we find along these paths and we associate
the partial sums with such transitions. Definec to be the
longest backward path from atD occurrence inU to the
initial places ofU . Defined to be the longest forward path
from atD occurrence to the cut-off places ofU . Third, we
consider paths from initial places to the cut-off places that
do not includeU transitions mapping intotD. These paths
may correspond to cyclic behaviors of netN in which
tD is not fired (e.g., iftD is disabled along these paths).
We addc to the combined delays along such paths. The
resulting values yield the latencies forN transitions.

In the example appearing in Figure 4, we associate de-
lays as follows:t1 → 3, t2 → 3, t3 → 12, t4 → 6,
t5 → 7, t6 → 2, andt7 → 6 during the first phase of the
algorithm. Next, we consider paths originating at target
transitiont7. Sincet7 feeds directly into cut-off placesp′′

2

andp′
3
, we discard paths toward cut-off places. Backward

paths fromt7 to initial placesp2 andp3 yield the follow-
ing latencies:t7 → 0, t5 → 6, t3 → 13, andt2 → 25.
Finally, we consider the cycle involving firing sequence
σ = t1, t3, t4, t6. The sum of the static latest firing delays
alongσ is 23. We add the latency of transitiont2 and the
latest firing delay oft2 to the delays computed on the cy-
cle. This yields the following latency values:t1 → 48,
t3 → 36, t4 → 30, t6 → 28. Transitiont3 is seemingly
given two different latency values because this transition
is in self-conflict. When this happens, we define the la-
tency to be the least value.

4.2 Clock nets

We compute a clock netC = (PC , TC , FC ,M0C , SC) for
a controlled netN = (P, T, F,M0, S) based on the tran-
sition latencies and choice points previously defined with
net unfolding. We specifically consider a subsetTH ⊆ T

of N transitions that are involved in choice points (i.e.,
because they share at least one input place).

First, we add toPC one place for each distinct element
in the set of latency valuesL = {v | ∃t ∈ TH andv =
l(t)}. Given a latency valuev, we denote the place corre-
sponding tov by pv. In addition,PC contains a placepλ

corresponding to deadlineλ and a placepD for resetting
the clock net after the firing oftD. Figure 5 shows the

clock net for the controlled net appearing in Figure 3.
Here setTH consists of transitionst1 andt2; placesp25

andp48 map the latencies of these transitions in the clock
subnet. Placep51 models deadlineλ.

We define the transition setTC , static delay intervals
SC , and flow relationFC of C as follows. First, we insert
a transition between pairs of clock net places with consec-
utive index values. The static delay of each such transition
is the difference between the index values of its input and
output place. In Figure 5 this yields transitionst8 andt9
with delays of 3 and 23. Next, we define an arc fromtD
to pD, and we add a group of|PC | − 1 zero-delay transi-
tions toTC , one transition for each placepk ∈ PC , except
for pD. A token in pD enables one of these transitions
immediately aftertD fires. The transition removes the to-
ken frompD and from one of the other places inPC ; it
deposits a token inpλ and in a suitable number ofS con-
trol places described below. This completes the resetting
of C andS. In Figure 5, transitionst10, t11, andt12 reset
the clock subnet and supervisor aftert7 fires. Additional
details can be found elsewhere [2].

4.3 Supervisory controllers

Supervisory controllers enforce deadlineλ on the firing
of transitiontD in netN = (P, T, F,M0, S) with clock
netC = (PC , TC , FC ,M0C , SC). Let PV = PC − {pD}.
The supervisory control constraint is expressed by:

Disablet ∈ TH if pv ∈ PV marked withl(t) = v (7)

We note that by construction, for any marking of clock
netC, all places inPV combined will always contain ex-
actly one token. UnlesstD is fired, the token inPV will
always move toward places with lower index values. Con-
straint (7) above states that a transitiont ∈ N is disabled
whenever the token inPV moves to a placepv whose in-
dexv is equal tot’s latencyl(t). Therefore, control con-
straint (7) above will disable all transitions that might de-
lay the firing oftD by more thanv units, the index of the
marked state ofC. Moreover, oncet is disabled,t is not al-
lowed to fire again until after target transitiontD has been
fired. As a result, all the transitions that may result in the
violation of deadlineλ on the firing oftD are disabled.

We implement constraint (7) above by defining two
places,q1 andq2, and one transitionr for eacht ∈ TH .
The rules for defining arcs incident onq1, q2 and r are
discussed elsewhere [2].

Figure 5 shows the supervisory controller for the net
in Figure 3. This controller disables transitionst1 andt2
when transitionst8 andt9 are fired. For instance, whent8
fires placec3 becomes marked, which enables transition
t13. The firing oft13 causes the removal of the token from
placec1; this action disables transitiont1. Transitiont9

t1 [0,3]: 48

t3 [6,12]: 13
p6

p
7

p1

p2

p
4

p8 p9

p3

t2 [0,3]: 25

t4 [1,6]: 30
t5 [2,7]: 6

t6 [0,2]: 28 t7 [3,6]: 0

p51

p5

p48

p25

t8 [3,3]

t9 [23,23]

pD

t11

t12

t10c1 c2

c3 c4

t13 t14[0,0] [0,0]

Figure 5: Supervisory controller and clock net of time Petri net appearing in Figure 3.

similarly disables transitiont2. Additional details can be
found elsewhere [2].

5 Assessment

The two methods discussed earlier indicate that supervi-
sory control may have significant benefits on the devel-
opment of software for concurrent and real-time systems.
The most significant advantage of supervisory control is
reduced computational complexity with respect to the cor-
responding verification algorithms. For instance, in Sec-
tion 3 we saw that a broad variety of mutual exclusion
constraints can be enforced in time polynomial in the size
of the system under consideration. This is in sharp con-
trast to the verification of mutual exclusion properties,
which is computationally intractable. Although we lack
empirical data on the real-time method discussed in Sec-
tion 4, we believe that on average this method will also be
tractable. The verification of real-time systems is gener-
ally considered even more complex than the case of un-
timed concurrent systems. When they are applicable, su-
pervisory control methods may provide greater help to de-
velopers of embedded systems than existing techniques.

However, the full potential of supervisory control in
software development is more far-reaching than just guar-
anteeing that certain correctness properties are met. The
availability of supervisory control tools could free pro-
grammers from the need to build compliance with correct-
ness properties directly into their code. The version of the
readers and writers example shown in Figure 1 is a case in

point. This version could be obtained by translation from
software that was deliberately written without paying at-
tention to its mutual exclusion constraints. However, a
supervisory controller can subsequently enforce these and
other properties that are expressed as linear equalities and
inequalities on net markings and firing vectors.

Thus, the use of supervisory control methods could lead
a new programming paradigm for concurrent and real-
time systems. In this paradigm, a programmer would
first write a version of the program without being con-
cerned about complying with mutual exclusion and real-
time properties. Next, the programmer would submit this
program along with a control specification to a supervi-
sory control tool. The tool would then translate the pro-
gram into a Petri-net model and generate suitable super-
visors. Finally, the tool would add code that enforces the
control specification to the original code.

While supervisory control methods hold considerable
promise for the development of concurrent and real-time
systems, the widespread application of these methods also
faces formidable obstacles. Petri net transitions may not
be observable and/or controllable to the extent needed for
supervisor definition. This could happen, for instance, in
wireless sensor networks, special kinds of embedded sys-
tems [12]. These networks often lack the ability for a node
(i.e., an embedded system equipped with sensors) to know
instantaneously and control events in different nodes.

Additional obstacles may arise when attempting to in-
tegrate multiple supervisory control methods in order to
enforce different properties. For instance, it is currently

unclear whether the two methods that we discussed ear-
lier can be effectively combined in an effort to guarantee
simultaneously mutual exclusionandreal-time properties.

Liveness properties, such as freedom from deadlock,
pose additional challenges to the application of supervi-
sory control methods. Although freedom from deadlock
is an intractable verification problem, this is considered
the “easiest” property to check through verification. The
same does not hold in the world of supervisory control;
the definition of supervisors for enforcing Petri net live-
ness is much more challenging than, say, enforcing mutual
exclusion properties expressed as linear constraints [7].A
method by He and Lemmon, who use net unfoldings to
enforce liveness, seems especially promising [5].

To date, several research issues must be investigated
in order to answer some of the questions regarding the
applicability of supervisory control to software develop-
ment. First, additional supervisory control methods must
be defined for enforcing different properties. In the case
of the readers and writers example, it is quite conceiv-
able to define versions in which the readers or the writers
have priority or in which read and write requests should
be handled in FIFO order. Supervisory control strategies
for these kinds of specifications are generally not avail-
able yet. Second, we must collect empirical data on the
applicability of supervisory control in software develop-
ment. At the very least, we should find out how often
mutual exclusion constraints can be expressed through a
small number of linear constraints in the form (1). The
complexity of net unfolding when applied to real-world
software problems must also be assessed empirically be-
cause this techique is crucial both to liveness-enforcing
and deadline-enforcing supervisors.

6 Conclusions

We briefly summarized two supervisory control methods
for concurrent and real-time systems. Although these
methods have not reached the level of maturity needed
to permit the creation of tools for software development,
they hold considerable promise because they are generally
more tractable than the corresponding verification algo-
rithms. For these reasons, we should investigate research
directions that may lead to widespread applications of su-
pervisory control in software development for concurrent
and real-time systems, such as embedded systems.

References

[1] B. Berthomieu and M. Diaz. Modeling and verification of
time dependent systems using time Petri nets.IEEE Trans.
Softw. Eng., 17(3):259–273, Mar. 1991.

[2] U. Buy and H. Darabi. Deadline-enforcing supervisory
control for time Petri nets. InCESA’2003 – IMACS Multi-
conference on Computational Engineering in Systems Ap-
plications, Lille, France, July 2003. Available on CD-
ROM.

[3] J. Esparza, S. R̈omer, and W. Vogler. An improvement
of McMillan’s unfolding algorithm. Formal Methods in
System Design, 20(3):285–310, May 2002.

[4] A. Giua, F. DiCesare, and M. Silva. Generalized mutual
exclusion constraints for nets with uncontrollable transi-
tions. InProceedings IEEE Int. Conf. on Systems, Man,
and Cybernetics, pages 974–979, Chicago, Illinois, Oct.
1992.

[5] K. X. He and M. D. Lemmon. Liveness-enforcing su-
pervision of bounded ordinary Petri nets using partial or-
der methods.IEEE Transactions on Automatic Control,
47(7):1042–1055, July 2002.

[6] L. E. Holloway, B. H. Krogh, and A. Giua. A survey of
Petri net methods for controlled discrete event systems.
Discrete Event Dynamic Systems: Theory and Applica-
tions, 7:151–190, Apr. 1997.

[7] M. V. Iordache, J. O. Moody, and P. J. Antsaklis. Synthesis
of deadlock prevention supervisors using Petri nets.IEEE
Transactions on Robotics and Automation, 18(1):59–68,
2002.

[8] R. W. Lewis. Programming industrial control systems us-
ing IEC 1131-3. Technical report, The Institution of Elec-
trical Engineers, 1998.

[9] K. L. McMillan. A technique of state space search based
on unfolding.Formal Methods in System Design, 6(1):45–
65, Jan. 1995.

[10] P. M. Merlin and D. J. Farber. Recoverability of com-
munication protocols—implications of a theoretical study.
IEEE Trans. Communications, COM-24(9):1036–1043,
Sept. 1976.

[11] J. O. Moody and P. J. Antsaklis. Petri net supervisors
for DES with uncontrollable and unobservable transitions.
IEEE Transactions on Automatic Control, 45(3):462–476,
Mar. 2000.

[12] G. J. Pottie and W. J. Kaiser. Wireless integrated network
sensors.Commun. ACM, 43(5):51–58, May 2000.

[13] P. J. Ramadge and W. M. Wonham. Supervisory control
of a class of discrete event processes.SIAM Journal of
Control and Optimization, 25(1):206–230, 1987.

[14] A. S. Sathaye and B. H. Krogh. Supervisor synthesis for
real-time discrete event systems.Discrete Event Dynamic
Systems: Theory and Applications, 8, 1998.

[15] A. Semenov and A. Yakovlev. Verification of asyn-
choronous circuits using time Petri net unfolding. In
Proceedings of the 33rd Design Automation Conference
(DAC96), pages 59–62, Las Vegas, Nevada, June 1996.

[16] R. N. Taylor. Complexity of analyzing the synchroniza-
tion structure of concurrent programs.Acta Inf., 19:57–84,
1983.

[17] K. Yamalidou, J. Moody, M. Lemmon, and P. Antsaklis.
Feedback control of Petri nets based on place invariants.
Automatica, 32(1):15–28, 1996.

