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Abstract

To be able to apply tools to verify properties of any system it is necessary to have
a formal model of that system, and a formal expression of the properties to be verified.
Linear Temporal Logic [5] is a common formalism for expressing properties of systems of
concurrent communicating processes, as found for example in embedded systems. To verify
these formulae (or attempt to derive test suites from them) for a system, the relevant
processes are modeled as automata, and algorithms are applied to the pair of the formulae
and the automata to find paths in the automata that satisfy certain properties pertaining to
the given specification. However, specifications begin as informal natural language concepts
(and maybe documents). It is generally these informal specifications that express the true
and fullest system requirements. Therefore, it is necessary to recognize the gap between the
informal and the formal specifications. In this paper we concentrate on the gaps that exist
between informal specification and formal specifications given in Linear Temporal Logic,
and some possibilities for controlling that gap. We also discuss the impact these methods
of handling the gap have on the system model.

1 Introduction

In the ideal world, a software programming project would begin with a user’s requirements
document, which would be expressed in terms that were meaningful to the user and which would
form the agreement between the user (or consumer) of the product and the producer [6]. System
specifications would then be created by refining the requirements to a description of just the
behavior of the system, using (and hopefully documenting) knowledge of the environment in
which the system would be deployed to factor out the aspects that rely on phenomena that are
not directly input to or output by the system. From here the specification would be decomposed
into functional components to provide a framework for the design of the software. Each functional
component would be refined to an operational model, possibly such as a finite state machine,
and from here coding could begin. After the software has been developed, the specification again
would be needed, this time to guide system testing.

Requirements and specifications begin their existence as ideas expressed in natural language.
Before automated tools may be applied to the specification, it must be captured in some formal
language processable by computers. If an operational model is to be demonstrated to satisfy the
specification, then the language capturing the specification must also have a rigorous semantics.
However, natural language is highly expressive, and highly ambiguous. Formal languages having
a rigorous semantics and admitting automated checking of properties are of limited expressive
power. Therefore, just as there is a gap between the implementation and the operational model,
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and between the operational model and the specification, there is a gap between the informal,
natural language specification and the formal specification.

Since the specification is the foundation of the software construction, it needs to satisfy var-
ious sanity criteria by itself. In addition, it must be possible to confirm that the composition of
the operational models for the system components together with the necessary domain knowl-
edge satisfy the specification, and that the individual code units implement the corresponding
operational models. At each step of this confirmation process there are concerns that must be
taken into consideration. Efforts to derive code automatically from operational models attempts
to address the problem of confirming that individual code units satisfy the operational models.
Program and temporal logics, and model checking are a very active area of research for demon-
strating that the operational models satisfy formal specifications. In this paper we wish to draw
attention to the step of capturing the specifications in a formal language suited to automatic
analysis and use in the subsequent stages of development and validation.

2 Examining Natural Language Specifications

As mentioned above, specifications begin there existence in human thought, which is typically
not expressed as logical formulae, automata, or mathematical expressions, but rather in natural
language. Natural language is at the same time on the one hand imprecise and ambiguous,
and on the other, highly expressive. In rendering a natural language specification in a formal
language, both aspects are hurdles to be overcome.

Ambiguities are removed by a careful reading of the natural language document by a reader
who is prepared to to challenge the precision of every statement, both individually and a compo-
nent of the whole document. The reader is greatly assisted in this process, if to aid their critical
reading, they are attempting to formalize the document as literally as possible in a language with
a clear and precise semantics. Eliminating ambiguities is done in an iterative process of recog-
nizing the ambiguity, seeking clarification from the author or authority, attempting to formalize
the clarified version, then uncovering new ambiguities which need clarification. This process is
inherently a human one; on one end the basic understanding of the meaning of the specification
resides in the minds of its authors, and on the other, the recognition of the ambiguity is done
by the human performing the translation. With time, the act of recognizing ambiguities may
become increasingly assisted by machine translators. However, by making use of a translator, in
effect, at the point we submit the “natural language” specification to the translator, the language
becomes a machine language and the question of whether the natural language expressions have
the same meaning as the meaning given by the translator still remains.

Because of the human factor, both the act of seeking clarification and rendering clarification
are subject to non-determinism. On the side of seeking clarification, the reader of the specification
may read a statement for which only one meaning occurs to them. However, there may have
been a different meaning, possibly the one intended by the author. On the other side, the author,
when asked for a clarification, may not understand the differences in the possible interpretations,
and may choose a possibility different from the one they truly meant.

As an example of the need to recognize and eliminate ambiguities, let us consider a sample
statement that might be found in a user requirements (or system specification) document of a
system that must monitor and regulate a device that includes a pressure reading:

Once the pump has been turned been on, an initial pressure reading will be taken
and displayed, and thereafter the displayed value for the pressure will be updated
every 2 seconds.

At first reading, this may seem like quite a precise statement. Let’s look at it a bit. What
does it mean for the displayed value to be updated? The first answer is that the displayed value
is made to be the same as the actual pressure value. But since we are talking about time, are we



insisting that the displayed value is made to be the same as the actual value at exactly the same
time? Are we insisting that there is no time allowed for the data to be read and the display to be
changed? If the underlying notion of time is course enough, and our sensors and processors are
fast enough, then this may be reasonable. However, this is really just sweeping the issue of time
for computation under the rug and assuming that the machine is fast enough to meet whatever
the real unwritten requirements are. Thus “updated” really means something more like that the
display value is the same as the actual pressure value of not more than some allowed amount
of time ago. As the reader has probably also noticed, we can’t realistically require the display
value to be “the same” as the actual pressure value. We can’t measure the actual pressure value,
we can only measure an approximate value for it. Another question is what does it mean for
the display to be updated every 2 seconds? Does it mean that the reading upon which the
display is based should be taken exactly every 2 seconds, or that the new display value would
be generated exactly every 2 seconds (or perhaps they really wanted to know that the displayed
valued was never more than 2 seconds old, which isn’t really the same as updating the display
every 2 seconds). If the time to read the pressure value and update the display is constant, then
the first two options above amount to the same thing. However, if for example, the time to read
the pressure is variable, then they are not. And lastly (for now), what should happen if the
system fails to be able to update the displayed value at the appropriate time? Saying that this
should be impossible means claiming there will never be any faults in the environment or with
the system interface to the environment.

The points made above about the given example are relevant regardless of the choice of logic
in which to model the specification. However, attempting to formalize this statement in various
frameworks would tend to show up at least some of these issues. For example, if we tried to
capture the specification with an extended finite state machine, we would likely end up with a
guarded transition labeled by something like:

seconds(current_time — last_update_time) > 2 =
display_value := pressure_value

If the model is interpreted in a setting where, for each transition, in addition to the actions
committed by the machine, the environment is allowed to arbitrarily change all values it supplies
(e.g. [7]), then, with each transition, pressure_value potentially will change its value. Therefore,
we can not guarantee that there is ever a time when display_value = pressure_value. All we
can guarantee is that the current value of display_value is the same as some previous value of
pressure_value.

3 From Natural Language to LTL

As discussed above, natural language specifications are subject to considerable ambiguity. How-
ever, even if they are rendered with the utmost care and precision, before they can become
the grist for the mill of automatic analysis, they must be faithfully translated into a machine-
processable formal language, with a rigorous semantics. Moreover, that formal language must
admit the kinds of automated analysis desired.

Linear Temporal Logic (LTL) is a common language used for specifying properties that are
to hold of concurrent systems. One advantage of LTL is that it has a fairly simple and intuitive
syntax with a simple and well-defined semantics. However, the driving motivation behind the
use of LTL is that it is possible to effectively check whether a given LTL formula holds of a
given system expressed as an automaton. However, these factors are at odds with LTL being a
highly expressive language. LTL has a limited ability to express a set of states within a sequence
where a property is to hold. Perhaps an even bigger impediment in practice, at least by anecdotal
evidence, is the inability in LTL to express desired relations between state components at different
points in time.



In LTL, time is not explicit, and thus, if it is necessary to talk about time, this must be
done by making time an explicit component of the states tested by the base sub-formulae in
the LTL formula. Then time is also added explicitly to any model of the system being checked.
(As an example, see [1].) As an example, consider the requirement given earlier concerning the
monitoring of the pump pressure. To be able to rendered the clause “updated every 2 seconds”
in LTL, requires a variable to monitor the passage of time so that we know when two seconds
has passed. However, there are properties of time to which any system model must conform. For
example, time can not decrease. (If it could, most implementations of the pump monitor would
not provably satisfy the update requirement.) These properties cannot in general be expressed in
LTL, so checking that time has been correctly modeled is generally outside the scope of what can
be verified by model checking LTL formulae. Just as it is important to document what domain
knowledge is used in refining user requirements into a system specification, it is also important
to document these extra-logical facts that are required to hold, and upon which the correctness
of the system may be depended.

In addition to concepts such as time, which are possibly implicit in the system or inherited
from the system environment, but which may need to be made explicit in the model, it is also
often necessary to add “history variables” to our model to enable us to express requirements
pertaining to past values of components of the state. LTL is a logic for expressing properties of
sequences of states. However, the base formulae are only over a single state. There is no ability
to express relations between the values of the state at one point in time and another. We can
say that the value of a given variable is always 5, but we cannot say the value of a given variable
is constant, or monotonically increasing. To be able to capture the idea that the value of x is
monotonically increasing, we would introduce an auxiliary variable, say previousx and require
that

Always x > previous_x.

This only captures the notion that x is monotonically growing if we have the additional knowledge
that every transition updates previous_x to the previous value of x. This is a fact that can not be
expressed in LTL, so it must be verified in the augmented system model by some means other
than LTL model checking.

In concurrent and embedded systems, there is an additional difficulty with the use of the
temporal operator Next. To be able to prove properties of a system, it is generally necessary to
decompose the system into modules and abstract out those components that do not contribute
to the property currently being verified. If specifications are given with the Next operator, they
may be checked as true in the subcomponent deemed relevant, but the property may be false in
the larger system where all the components are composed. Let us consider the LTL specification

Always (seconds(current_time — last_pressure_reading_time) > 2 =
Next (display_value = previous_pressure_value)).

In natural language, this tells us that anytime the system sees that it’s been at least 2 seconds
since the last time the display was updated, then the system must update the display to the
current pressure value (what will be the previous pressure value, once we complete the transition
doing the update). This specification may very well hold for the subsystem composed only of the
system (or environment) clock, the pressure monitor, and the display, but if the system is more
complex with other values to be monitored and perhaps controlled, when the other components
are put in parallel with the particular subsystem (with an interleaving semantics), it is not
automatic that the specification still holds, and indeed, unless there are some kinds of locks
preventing other parts of the system from progressing, this specification is likely to be false. At
the first point at which seconds(current_time — last_pressure_reading_time) > 2, it is possible for
some other part of the system to be busy doing something. The problem with Next, as well as
other constructs such as Always and Until, is that they are not compositional.

Unfortunately, the most obvious alternative to the use of Next is the use of Eventually. This
is generally much weaker than is intended by a natural language specification where Next seems



appropriate. If one can identify a property ¢ that holds of states of the subsystem prior to the
transition being taken and that fail to holds as soon as it is taken, then it might be possible
to use a formula of the form ¢ Until ¢ in place of Next psi. What we would like to use for ¢
is a statement that the state of the subsystem doesn’t change. However, being able to express
this directly requires being able to compare values for variables from one state with those from
another state (the “successor” state), and as we have said above, this is outside the expressive
power of LTL. A non-solution is to add a variable to our state for each transition (or each state)
in our subsystem. For each transition, we add the action of setting the corresponding variable
to true, and setting all of the variables representing the other transitions (or out-states) to false.
Then one can attempt to capture that the subsystem hasn’t changed by enumerating all the
transitions (or states) and saying that each variable has an explicit fixed value until the property
that is to hold next holds. Something like this might be workable in the setting of system models
using only plain finite state machines. But this is generally not a solution because it does not
allow us to detect when change has occurred in the subsystem through taking a transition that
is a loop. In extended finite state machines, where there is a notion of “program states” given
by variable values, in addition to the states of the finite state machine, one may enter the same
finite state machine state many times having a different program state each time. Thus the very
values that we are interested in not changing may change anyway.

Let us return to the example of the display update. Below is a “clarification” of the original
specification given.

Once the pump has been turned been on, an initial pressure reading will be taken
and, if the value read is not an error, it is displayed. Thereafter, provided there are
no errors in pressure readings, the display will never be more than 2 seconds old.

We can capture much of the intent of this specification with the following LTL formula:

Pump_on A—error(pressure_reading) =
Eventually
(display_value = previous_pressure_reading A
last_display_update_time = previous_current_time A
(error(pressure_reading)
Releases
(seconds(current_time — last_display_update_time) < 2
Until
(display_value = previous_pressure_reading A
last_display_update_time = previous_current_time))))

Some of the assumptions that are made for this to correctly express the desired specifi-
cation include that we can define error from just the value of pressure_reading, and that
last_display_update_time always contains the time when the display was last updated. These
requirements are extra-logical and need verifying by means other than LTL model checking.
The difficulties we have mentioned here are not specific to Linear Temporal Logic, but extent
to similar, more expressive logics such as CTL* (see [2]) and the u-Calculus (see [4]). Allowing
branching time constructs (along some path, or along all possible paths) does not address the
issues raised here. The additional expressiveness of the u-Calculus does allow greater ability to
describe a set of states for which a proposition is to hold. However, in all these systems, there is
still a lack of ability to relate values from different points in time, and a lack of compositionality.

4 Reflecting Assumptions in the System Model

In the previous section we discussed methodology for how we can use LTL formulae to indi-
rectly capture the meaning of natural language specifications. These methods have limitations



and come at an expense of imposing restrictions on the system models to be checked. These
restrictions often involve the addition of new variables and alterations to the set of transitions to
reflect the needed behavior of these variables. For example, when adding history variables, there
is the extra-logical (i.e., not expressible in Linear Temporal Logic) requirement that the history
values record the appropriate values at the appropriate times, and never take on any irrelevant
values. Not only must these extra variables appear in the LTL specifications, but they must
also occur throughout the system model to be verified with respect to the LTL specification,
in such a way as to guarantee the extra-logical requirements. Cluttering the system model by
modifying it everywhere needed with this additional information that is not explicitly present in
the actual implementation reduces the trustworthiness of the verification, and the increases the
gap between the system model and the implementation.

We propose that, where possible, the system model be left intact, and the model that is
verified be an automatically generated product of the original system model together with a
separate model capturing the added variables and transitions. Augmenting the model with
history variables, for example seem a prime candidate for such automation. For some notions of
automata and products, deriving the model needed for verification from the initial system model
via product may not be an appropriate thing to do. However, for extended finite state machines
(EFSM) with labeled transitions, this is possible. Briefly, an extended finite state machine with
labeled transitions is a finite state machine where the edges are labeled from a given alphabet,
but where we extend with a function mapping letters of the alphabet to guarded actions over a
fixed set of variables. In this setting, if the original system specification is deterministic to the
extent that no edges from the same start have the same label, then if we take the product of
the system EFSM with an EFSM with the same labeled finite state machine, but extended by
different guarded actions, the result will yield an extended finite state machine that has the same
underlying finite state machine, but where the guarded actions are now the pairwise composition
of the guarded actions from the two machines.

Let us see what this means in the example with the pressure display. Possible (pseudo-) code
for the pressure display is as follows:

if Pump_on then if not(pressure_value = error_value)

then {display_value := pressure_value;
last_display_time_update := current_time;}
else pressure_alarm := true;

while (pressure_alarm = false) do
{if not(pressure_value = error_value)
then (if seconds (current_time - last_display_time_update) >= 1.8

then {display_value := pressure_value;
last_display_time_update := current_time;})
else pressure_alarm := true;}

For reasons of space, we omit a detailed description of the EFSM that captures this process.
Briefly, the code can be compiled into a control flow graph [3] and then automatically translated
into an EFSM with ten states. Each state corresponds to either a conditional or an assignment.
All transitions are labeled distinctly. Each conditional state has two out transitions, each with a
guard but no real action, and each assignment state has one out transition with no guard, but an
action corresponding to the assignment. A more compact EFSM can undoubtedly be created,
but there is a simple algorithm to automatically generate this one. To add the information
about the previous_ variables, we create a new EFSM with exactly the same states, edges, and
transition labels, but now every transition has the same unguarded action associated with it:

previous_pressure_reading := pressure_reading;
previous_current_time := current_time



If we had more previous_ variables to be kept track of we would add them in. The product of
this EFSM with the system EFSM yields an EFSM with the same states, edges, and labels, but
where the action component of the guarded action associated with each transition is augmented
by the additional assignments. By decomposing the problem this way, we separate out the task
of of verifying the “extra-logical” properties, so that they only need to be shown for the EFSMs
that were constructed solely to make them true. For the example of the history variables, by
this factorization, it is immediate that for each transition the value of each previous_ variable
is the same after the transition as the value of corresponding original variable was before the
transition. Moreover, by this factorization, we don’t have to worry about having accidentally
changed the system model in some unpredictable way since the system model makes no mention
of the previous_ variable and the history EFSM effects only them. At present, what is proposed
here is only methodology. However, it seems clear that at least in some limited but common
cases, this process of factoring and constructing auxiliary EFSMs, such as the history EFSMs,
could be automated.

5 Conclusions

In this paper we have discussed the transition from an informal natural language specification
to a formal specification in Linear Temporal Logic and the construction of a model suited to the
specification, but still capturing the system design so that the system design can be verified to
have the desired properties. To formalize informal specifications, there is an iterative process
of clarification and rendering the specification more precise. Following, or interleaved with this,
is the process of trying to express the informal specification in a formal language. The more
expressive the language, the closer the formal specification can be to expressing exactly the intent
of the informal specification. However, the more expressive the language, the less likely there
is to be effective fully automated support for proving that the properties hold of the system
model. Since Linear Temporal Logic is a dominant language for formal specification, owing to
the ability to effectively model check LTL properties of finite models, we focus on translating
specifications into LTL. We discuss some of the ways LTL lacks expressive power, and we discuss
techniques for circumventing some of the difficulties resulting from this deficiency. A method for
capturing aspects of the environment, such as time, and information about past state involves
augmenting the state with additional variables. The properties to which these auxiliary variables
must adhere are typically not expressible in LTL. These auxiliary variables have no existence
in the system design (or only an existence for purpose of being read, if they represent input
to the system from the environment). To capture the additional needed restrictions on these
variables it is necessary for it to be added to the system model. We propose a methodology for
this addition that involves creating separate models capturing the needed behavior of just these
auxiliary variables, and then automatically composing these models with the existing system
model to generate the model used for model checking. This discipline allows us to isolate the
aspects of the model expressing the auxiliary information so that it can be verified by other
methods (such as informal proof through inspection). It also allows us to retain the system
model intact so that we can have confidence that the results of the model checking applied to
the composite model imply the intended meaning for the original system specification.

6 Hopes for the Future

In this paper we have identified three problems with transitioaning from natural language specif-
cations to formal language specifications:

e Natural language specifcations are generally more ambiguous than they first appear. There-
fore, there is a need to identify ambiguiutes and disambiguate. The process of rendering



the specifcations in a formal language can serve as a useful tool in identifying ambiguities.

e To date, formal langagues suitable for such automation as model checking are not ade-
quately expressive enough to directly capture the natural langague specifications. We have
proposed some methodologies for indirect capture through a combination of auxiliary vari-
ables and extra-logical requirements. This methodolgy handle common cases moderately
well, but at heart is only a collection of heuristics.

e Adding auxiliary notions to the system specification requires adding them to the system
model as well. Rather than clutter the system model with this auxiliary information not
explicit in the implemention, we propose that the auxiliary information be captured in a
auxiliary model constructed solely for this purpose, and then composed with the system
model to obtain the model used for verification.

The problem that we have indicated the best solution for is that of the augmenting the system
model. For certain methods of augmenting, it is clear that it is posible for this to be performed
autmatically. So do it. And apply it. See how well we can handle real world problems this way.

We have discussed some heuristics/methodologies for for capturing natural language concepts
in a language such as LTL. However, clearly we are contorting ourselves to fit the language. More
work needs to be done on constructing langagues with the expressive power to capture the ideas
needed in specifcations. Simply making the language more expressive, in the mathematical sense,
isn’t the answer. I do believe that a language such as Zermelo-Frankel set theory, or higher-
order logic, which are expressive enough to capture basic mathematics, are expressive enough to
capture system specifcations, and even user requirements. However, such languages cannot admit
the decision procedures necessary for system verification. It is not clear, however, that for “real”
system specification, the full expressive power of such langagues is required. One area of research
that is needed is to find languages, probably similar to LTL, but with expressivity extended in
directions that are those needed for capturing most commonplace specifcation constructs. An
example of this might be adding the notion of the next-state value for a variable, in addition
to the current value. Such constructs need to be chosen with consideration for both the extent
to which they will facilitate rendering specifications, and the abilty to automatically check that
they hold of system models.

Another possible partial answer is to translate the natural language into a highly expressive
formal language, and then derive approximaitons to these requirements in a less expressive
language suitable for automation such as model checking. In this scenario, at first derived
formulae that were stronger than the original would be checked. If they succeeded, then the
original requirement would be known to hold. If they failed to check, then counter-examples to
the derived formulae could be generated and if these

With experience of what kinds of auxiliary information can be a
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