

Model-driven Development
From Object-Oriented Design to Actor-Oriented Design

Edward A. Lee, UC Berkeley

Abstract:

Most current software engineering is deeply rooted in procedural abstractions. Objects in
object-oriented design present interfaces consisting principally of methods with type
signatures. A method represents a transfer of the locus of control. Much of the talk of
"models" in software engineering is about the static structure of object-oriented designs.
However, essential properties of real-time systems, embedded systems, and distributed
systems-of-systems are poorly defined by such interfaces and by static structure. These
say little about concurrency, temporal properties, and assumptions and guarantees in the
face of dynamic invocation.

Actor-oriented design contrasts with (and complements) object-oriented design by
emphasizing concurrency and communication between components. Components called
actors execute and communicate with other actors. While interfaces in object-oriented
design (methods, principally) mediate transfer of the locus of control, interfaces in actor-
oriented design (which we call ports) mediate communication. But the communication is
not assumed to involve a transfer of control.

By focusing on the actor-oriented architecture of systems, we can leverage structure that
is poorly described and expressed in procedural abstractions. Managing concurrency, for
instance, is notoriously difficult using threads, mutexes and semaphores, and yet even
these are extensions of procedural abstractions. In actor-oriented abstractions, these low-
level mechanisms do not even rise to consciousness, forming instead the "assembly-
level" mechanisms used to deliver much more sophisticated models of computation. In
this talk, I will outline the models of computation for actor-oriented design that look the
most promising for embedded systems.

