
Aggressive Model-Driven Development:
Synthesizing Systems from Models viewed as

Constraints

Tiziana Margaria1,2 and Bernhard Steffen2

1 METAFrame Technologies GmbH, Dortmund, Germany
{tmargaria}@METAFrame.de

2 Chair of Programming Systems, University of Dortmund, Germany
{Tiziana.Margaria, Steffen}@cs.uni-dortmund.de

Position Paper

1 Motivation

The Problem

According to several roadmaps and predictions, future systems will be highly
heterogeneous, they will be composed of special purpose code, perhaps written
in different programming languages, integrate legacy components, glue code,
and adapters combining different technologies, which may run distributed on
different hardware platforms, on powerful servers or at (thin and ultra-thin)
client sites. Already today’s systems require an unacceptable effort for deploy-
ment, which is typically caused by incompatibilities, feature interactions, and
the sometimes catastrophic behavior of component upgrades, which no longer
behave as expected. This is particularly true for embedded systems, with the con-
sequence that some components’ lifetimes are ‘artificially’ prolonged far beyond
a technological justification, since one fears problems once they are substituted
or eliminated.

Responsible for this situation is mainly the level on which systems are tech-
nically composed: even though high level languages and even model driven de-
velopment are used for component development, the system-level point of view
is not yet adequately supported. In fact, in particular the deployment of a het-
erogeneous systems is still a matter of assembly-level search for the reasons of
incompatibility, which may be due to minimal version changes, slight hardware
incompatibilities, or simply to hideous bugs, which come to surface only in a
new, collaborative context of application. Integration testing and the quest for
’true’ interoperability are indeed major cost factors and major risks in a system
implementation and deployment.

Hardware development faces similar problems with even more dramatic con-
sequences: hardware is far more difficult to patch, making failure of compatibility
a real disaster. It is therefore the trend of the late ’90s to move beyond VLSI to



M1

C1 Cn

Mn MnM1

Running System Running System

Compilation/Synthesis

Synthesis/Technology Mapping

Model Library

Component Library

Global Model

Integration Integration

Integration as
Consistency/Compatibility

AMDDComponent Based
Design

…

…

…

Fig. 1. The AMDD Process

Systems-on-a-Chip (SoC) to guarantee larger integration in both senses: physi-
cally, compacting complex systems on a single chip instead of on a board, but
in particular also projectually, i.e. integrating the components well before the
silicon level, namely at the design level: rather than combining chips (the classi-
cal way), hardware engineers start to combine directly the component’s designs
and to directly produce (synthesize) system-level solutions, which are homoge-
neous at the silicon level. Interestingly, they solve the problem of compatibility
by moving it to a higher level of abstraction.

AMDD: Aggressive Model-Driven Development

At the larger scale of (embedded) system development, moving the problem of
compatibility to a higher level of abstraction means moving it to the modelling
level (see Fig. 1): rather than using the models, as usual in today’s Component
Based Development paradigm, just as a means of specification, which

– need to be compiled to become a ‘real thing’ (e.g., a component of a software
library),

– must be updated (but typically are not), whenever the real thing changes
– typically only provide a local view of a portion or an aspect of a system,

models should be put into the center of the design activity, becoming the first
class entities of the global system design process. In such an approach, as shown
on the right side of Fig. 1,

– libraries should be established on the modelling level: building blocks should
be (elementary) models rather than software components,

– systems should be specified by model combinations (composition, configura-
tion, superposition, conjunction...), viewed as a set of constraints that the
implementation needs to satisfy,

2



– global model combinations should be compiled (synthesized, e.g. by solving
all the imposed constraints) into a homogeneous solution for a desired envi-
ronment, which of course includes the realization of an adequate technology
mapping,

– system changes (upgrades, customer-specific adaptations, new versions, etc.)
should happen only (or at least primarily) at the modelling level, with a
subsequent global recompilation (re-synthesis)

– optimizations should be kept distinct from design issues, in order to maintain
the information on the structure and the design decisions independently of
the considerations that lead to a particular optimized implementation.

With this aggressive style of model-driven development (AMDD), which strictly
separates compatibility, migration, and optimization issues from model/function-
ality composition, it would be possible to overcome the problem of incompati-
bility between

– (global) models and (global) implementations, which is guaranteed and later-
on maintained by (semi-) automatic compilation and synthesis, as well as
between

– system components, paradigms, and hardware platforms: a dedicated compi-
lation/synthesis of the considered global functionality for a specific platform
architecture avoids the problems of incompatible design decisions for the
individual components.

In essence, delaying the compilation/synthesis until all parameters are known
(e.g. all compatibility constraints are available), may drastically simplify this
task, as the individual parts can already be compiled/synthesized specifically
for the current global context. In a good setup, this should not only simplify the
integration issue (rather than having to be open for all eventualities, one can
concentrate on precisely given circumstances), but also improve the efficiency
of the compiled/synthesized implementations. In fact, AMDD has the potential
to drastically reduce the long-term costs due to version incompatibility, system
migration and upgrading, and lower risk factors like vendor and technology de-
pendency. Thus it helps protecting the investment in the software infrastructure.
We are therefore convinced that this aggressive style of model-driven develop-
ment will become the development style at least for mass customized software in
the future. In particular we believe that AMDD, even though being drastically
different from state of the art industrial embedded system design, which is very
much driven by the underlying hardware architecture right from the beginning,
will change accordingly: technology moves so fast, and the varieties are so man-
ifold that the classical platform-focussed development will find its limits very
soon.

The Scope of AMDD

Of course, AMDD will never replace genuine software development, as it assumes
techniques to be able to solve problems (like synthesis or technology mapping)

3



which are undecidable in general. On the other hand, more than 90% of the
software development costs arise worldwide for a rather primitive software de-
velopment level, during routine application programming or software update,
where there are no technological or design challenges. There, the major problem
faced is software quantity rather than achievement of very high quality, and au-
tomation should be largely possible. AMDD is intended to address (a significant
part of) this 90% ‘niche’.

What does this mean? AMDD aims at making things that inherently are simple
as simple as they should be. In particular this means that AMDD is (at least
in the beginning) characterized by abstractions, neglecting interesting, but at a
certain level of development unnecessary, details, like e.g. distribution of compu-
tation, methods of communication, synchronization, real time. General software
development practices can be replaced here by a model and pattern-based ap-
proach, adequately restricted to make AMDD effective. The challenge for AMDD
therefore is initially to characterize and then model specific scenarios where its
effectiveness can be guaranteed. Typically, these will be application-specific sce-
narios, at the beginning rather restrictive, which will then be generalized and
standardized in order to extend the scope of applicability.

Making AMDD work

In order to reach a practicable and powerful environment for AMDD there is
still a long way to go:

– adequate modelling patterns need to be designed,
– new analysis and verification techniques need to be developed,
– new compilation/synthesis techniques need to be devised,
– automatic deployment procedures need to be implemented,
– systems and middleware need to be elaborated to support automatic deploy-

ment, and,
– at the meta-level, we need a theory for the adequate specification of the

settings which support this style of development.

It should be noted, however, that there is an enormous bulk of work one can
build upon. Thus there is room also for quick wins and early success: AMDD is
a paradigm of system design, and as such, it inherently leaves a high degree of
freedom in the design of adequate settings, which, as described in Section 3, can
be successfully used already today.

In the following we will focus on the following main ingredients:

1. a heterogeneous landscape of models, to be able to capture all the particular-
ities necessary for the subsequent adequate product synthesis. This concerns
the system specification itself, the platforms it runs on together with their
communication topology, the required programming style, exceptions, real
time aspects, etc.

4



2. a rich collection of flexible formal methods and tools, to deal with the het-
erogeneous models, their consistency, and their validation, compilation, and
testing.

3. automatic deployment and maintenance support that are integrated in the
whole process and are able to provide ’intelligent’ feedback in case of late
problems or errors.

2 What we can build upon

2.1 Heterogeneous Landscape of Models

One of the major problems in software engineering is that software is multi-
dimensional: it comprises a number of different (loosely related) dimensions,
which typically need to be modelled in different styles in order to be treated
adequately. Important for simplifying the software/application development is
the reduction of the complexity of this multi-dimensional space, by placing it
into some standard scenario. Such reductions are typically application-specific.
Besides simplifying the application development they also provide a handle for
the required automatic compilation and deployment procedures.

Typical among these dimensions, often also called views, are

– the architectural view, which expresses the static structure of the software
(dependencies like nesting, inheritance, references). This should not be con-
fused with the architectural view of the hardware platform, which may indeed
be drastically different. - The charm of the OO-style was that it claimed to
bridge this gap.

– the process view, which describes the dynamic behavior of the system. How
does the system run under which circumstance (in the good case)

– the exception view, which addresses the system’s behavior under malicious
or even unforeseen circumstances

– the timing view, addressing real time aspects
– the various thematic views concerned with roles, specific requirements, ...

Of course, UML tries to address all these facets in a unifying way, but we
all know that UML is currently rather a heterogeneous, expressive sample of
languages, which lacks a clear notion of (conceptual) integration like consistency
and the idea of global dynamic behavior. Such aspects are dealt with currently
independently e.g. by means of concepts like contracts [1] (or more generally,
and more complicatedly, via business-rules oriented programming like e.g. in
[6]). The latter concepts are also not supported by systematic means for guaran-
teeing consistency. In contrast, AMDD views these heterogeneous specifications
(consisting of essentially independent models) just as constraints which must be
‘solved’ during the compilation/synthesis phase (see also [13]).

Another recently very popular approach is Aspect Oriented Programming
(AOP) [7, 2], which sounds convincing at first, but does not seem to scale for
realistic systems. The programmer treats different aspects separately in the code,

5



but has to understand precisely the weaving mechanism, which often is more
complicated than programming all the system traditionally. In particular, the
claimed modularity is only in the file structure but not on the conceptual side.
In other words, in the good case one can write down the aspects separately,
but understanding their mutual global impact requires a deep understanding of
weaving, and, even worse, of the result of weaving, which very much reminds of
an interleaving expansion of a highly distributed system.

2.2 Formal Methods and Tools

There are numerous formal methods and tools addressing validation, ranging
from methods for correctness-by-construction/rule-based transformation, cor-
rectness calculi, model checkers, and constraint solvers to tools in practical use
like PVS, Bandera, SLAM to name just a few. On the compiler side there are
complex (optimizing) compiler suites, code generators, and controller synthesiz-
ers, and other methods to support technology mapping. A complete account of
these methods would be far beyond the purpose of this paper. Here it is sufficient
to note that there is already a high potential of technology waiting to be used.

2.3 Automatic Deployment and Maintenance Support

At the moment, this is the weakest point of the current practice: the deploy-
ment of complex systems on a heterogeneous, distributed platform is typically
a nightmare, the required system-level testing is virtually unsupported, and the
maintenance and upgrading very often turn out to be extremely time consum-
ing and expensive, de facto responsible for the slogan ”never change a running
system”.

Still, also in this area there is a lot of technology one can build upon: the
development of Java and the JVM or the dotnet activities are well-accepted
means to help getting models into operation, in particular, when heterogeneous
hardware is concerned. Interoperability can be established using CORBA, RMI,
RPC, Webservices, complex middleware etc, and there are tools for testing and
version management. Unfortunately, using these tools requires a lot of expertise,
time to detect undocumented anomalies and to develop patches, and this for
every application to be deployed.

3 A Simple AMDD-Setting

The Application Building Center (ABC) developed at METAFrame Technologies
in cooperation with the University of Dortmund is intended to promote the
AMDD-style of development in order to move the application development for
certain classes of applications towards the application expert. Even though the
ABC should only be regarded as a first step of AMDD development, it already
comprises some important AMDD-essentials (Fig. 2.3):

6



SIB1

Macro 1

SIBn
FLGnFLG1

Running System

Compilation /Synthesis

Feature Library

Global SLG

uses

Integration as
Consistency/Compatibility

ABC‘s AMDD

.. …
Component Model Library

..Macro n

Heterogeneous Service Models

Temporal Constraints
and Types

Fig. 2. The AMDD Process in the ABC

1. Heterogeneous landscape of models: the central model structure of the ABS
are hierarchical Service Logic Graphs (SLGs)[14, 9]. SLGs are flow chart-
like graphs. They model the application behavior in terms of the intended
process flows, based on coarse granular building blocks called SIBs (Service-
Independent Building blocks) which are intended to be understood directly
by the application experts [14] – independently of the structure of the under-
lying code, which, in our case, is typically written in Java/C/C++. The com-
ponent models (SIBs or hierarchical subservices called Macros), the feature-
based service models called Feature Logic Graphs (FLGs), and the Global
SLGs modelling applications are all hierarchical SLGs.
Additionally, the ABC supports model specification in terms of

(a) two modal logics, to abstractly and loosely characterize valid behaviors
(see also [5]),

(b) a classification scheme for building blocks and types, and
(c) high level type specifications, used to specify compatibility between the

building blocks of the SLGs.

The granularity of the building blocks is essential here as it determines the
level of abstraction of the whole reasoning: the verification tools directly con-
sider the SLGs as formal models, the names of the (parameterized) building
blocks as (parameterized) events, and the branching conditions as (atomic)
propositions. Thus the ABC focusses on the level of component composition
rather then on component construction: its compatibility, its type correct-
ness, and its behavioral correctness are under formal methods control [9].

2. Formal methods and tools: the ABC comprises a high-level type checker, two
model checkers, a model synthesizer, a compiler for SLGs, an interpreter, and
a view generator. The model synthesizer, the model checkers and the type
checker take care of the consistency and compatibility conditions expressed
by the four kinds of constraints/models mentioned above.

7



3. Automatic deployment and maintenance support: an automated deployment
process, system-level testing [10], regression testing, version control, and on-
line monitoring [3] support the phases following the first deployment.
In particular the automatic deployment service needs some meta-modelling
in advance. In fact, this has been realized using the ABC itself. Also the test-
ing services and the online monitoring are themselves strong formal methods-
based [11] and have been realized via the ABC.

In this sense, the ABC can be regarded as a simple and restrictive but work-
ing AMDD framework. In fact, in the ABC, composition/coordination of com-
ponents as well as their maintenance and version control happen exclusively at
the modelling level, and the compilation to running source code (mostly Java
and C++) and deployment of the resulting applications are fully automatic.

4 Conclusions and Perspectives

We have proposed an aggressive version of model-driven development (AMDD),
which moves most of the recurring problems of compatibility and consistency
from the coding and integration to the modelling level. Of course, AMDD re-
quires a complex preparation of adequate settings, where the required compi-
lation and synthesis techniques can be realized. Still, the effort to create these
settings and their (application dependent) restrictions can be easily paid off by
immense cost reductions in software mass construction and maintenance. In fact,
besides reducing the costs, aggressive model-driven development will also lead
(more or less automatically) to a kind of normed software development, making
software engineering a true engineering activity.

This direction is also consistent with the perspective indicated by the joint
GI-ITG position paper on Organic Computing1 [12]: the blurring of borders
between hardware and software (machines and programs) that initiated with
embedded systems and with hardware/software codesign is going to reach a
completely new dimension, where

– the systems are conceived, designed and implemented in terms of services,
– they are provided and used in a virtual space, and where
– the distinction on where (local, global, at which node, on which hardware)

and how (hardware, software, network, ...) the services are available is rela-
tively inessential information.

In particular, according to availability or convenience, the provider of services can
be changed and the provision of services is not a permanent contract anymore.2

1 GI, the Gesellschaft für Informatik and ITG, the Informationstechnikgesellschaft im
VDE, the Verband der Elektrotechnik, Elektronik und Informationstechnik are the
German counterparts of the ACM and IEEE, respectively.

2 This is a scenario that concretizes the idea of Sentient Computing [4].

8



We are convinced that this aggressive style of model-driven development -
which overcomes the problem of compatibility between model and implementa-
tion, as well as between system components, paradigms and hardware platforms
- will become the development style for most of the applications in the future.
AMDD is a paradigm of system design, and as such it inherently leaves a high
degree of freedom in the design of adequate settings. In particular, we do not
expect a single solution to emerge, but rather a collection of environments and
settings optimized and tailored for this design paradigm in a number of relevant
areas of application.

In particular, we envisage a coordinative design paradigm similar to the al-
ready successful paradigm of feature-oriented design [5]: in that setting, widely
adopted in the telecommunication industry, systems are composed of a thin skele-
ton of basic functionality, enriched at need and on demand via additional fea-
tures that deliver premium functionality (services) to the customers/end-users.
A well studied example is the combination of POTS (Plain Old Telephone Ser-
vice) functionality as a basic telephony service provided by a switch, enriched
and virtualized by features like Call Forwarding, Conference Call, Collect Billing
etc. In feature-oriented design, the structure that matters is not the technical
structure (objects, classes) of and under the system, but rather the structure of
the application-domain (what does the system do for me, when and under which
conditions), together with the capability of mapping the what into the how and
of changing the how on the fly. Indeed, the Intelligent Network standard is de-
fined in this optic: it defines which features exist in that application domain and
what they deliver to the user, and it says nothing about implementational issues,
which are left free to the single vendors.

Even though it is only a very first step, we consider the ABC a kind of proof
of concept motivating the design of more elaborate aggressive model-based devel-
opment techniques. In fact, we have already reapt the benefits of this modelling
style in one of our projects, in the Integrated Testing Environment projects (with
Siemens ICN, Witten (D)). In an initial project phase we built a system-level
test environment for complex Computer-Telephony Integrated applications that
covered client-server third party application interoperating with telecommuni-
cation switches and communicating over a LAN [10]. In a second phase we were
faced with the problem of the next generation of applications, that from the
engineering point of view had a completely different, and much more complex,
profile: we needed to capture internet-based applications that online, role-based,
and remotely (over internet) reconfigure e.g. the complete routing and call man-
agement settings on a virtual switch implemented as a fault tolerant cluster of
physical switches [8]. This meant a new quality of complexity along at least
three dimensions: testing over the internet, testing virtual clusters, and testing
a controlling system in a non-steady state (during reconfiguration). Thanks to
our AMDD approach, this did not affect at all the conceptual type of the models
we used in the ITE! Thus we were able to help the Siemens engineers to solve
their new problem within the existing modelling framework, just by compatibly

9



extending the libraries of models. In particular, they could reuse SIBs, features
and SLGs from the previous project phase with no change.

References

1. L.F. Andrade, J.L. Fiadeiro: Architecture Based Evolution of Software Systems,
http://www.atxsoftware.com/publications/SFM.pdf.

2. AspectJ Website: http://eclipse.org/aspectj/
3. A. Hagerer, H. Hungar, O. Niese, and B. Steffen: Model Generation by Moderated

Regular Extrapolation. Proc. of the 5th Int. Conf. on Fundamental Approaches to
Software Engineering (FASE 2002), Grenoble (F), LNCS 2306, pp. 80-95.

4. A. Hopper: The Royal Society Clifford Paterson Lecture: Sentient Computing, 1999.
5. B. Jonsson, T. Margaria, G. Naeser, J. Nyström, and B. Steffen. Incremental re-

quirement specification for evolving systems. Nordic Journal of Computing, vol.
8(1):65, Also in Proc. of Feature Interactions in Telecommunications and Software
Systems 2000, 2001.

6. JRules, ILOG. http://www.ilog.com/
7. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J.-M. Lo-

ingtier, J.Irwin: Aspect-Oriented Programming. Proc. of ECOOP, Springer-Verlag
(1997).

8. T. Margaria, O. Niese, B. Steffen, A. Erochok: System Level Testing of Virtual
Switch (Re-)Configuration over IP, Proc. IEEE European Test Workshop, Corfu
(GR), May 2002, IEEE Society Press.

9. T. Margaria, B. Steffen: Lightweight Coarse-grained Coordination: A Scalable
System-Level Approach, to appear in STTT, Int. Journal on Software Tools for
Technology Transfer, Springer-Verlag, 2003.

10. O. Niese, T. Margaria, A. Hagerer, M. Nagelmann, B. Steffen, G. Brune, and H. Ide.
An automated testing environment for CTI systems using concepts for specification
and verification of workflows. Annual Review of Communication, Int. Engineering
Consortium Chicago (USA), Vol. 54, pp. 927-936, IEC, 2001.

11. O. Niese, B. Steffen, T. Margaria, A. Hagerer, G. Brune, and H. Ide. Library-based
design and consistency checks of system-level industrial test cases. In H. Hußmann,
editor, Proc. FASE 2001, LNCS 2029, pages 233–248. Springer Verlag, 2001.

12. Organic Computing: Computer- und Systemarchitektur im Jahr 2010, posi-
tion paper of the VDE/ITG/GI. http://www.gi-ev.de/download/VDE-ITG-GI-
Positionspapier

13. B. Steffen. Unifying models. In R. Reischuk and M. Morvan, editors, Proc.
STACS’97, LNCS 1200, pages 1–20. Springer Verlag, 1997.

14. T. Margaria, B. Steffen: METAFrame in Practice: Design of Intelligent Network
Services, in ”Correct System Design - Issues, Methods and Perspectives”, LNCS
1710, Springer-Verlag, 1999, pp. 390-415.

10


