
Techniques for Improving Test-Driven Design

Martin Wirsing, Hubert Baumeister, and Alexander Knapp
LMU München, Institut für Informatik, Oettingenstr. 67, D-80638 München

Email: {wirsing, baumeist, knapp}@informatik.uni-muenchen.de

Abstract

Early test development and specification enhance the quality and robustness of software as ex-
perience with new agile software development methods shows. The methods propagate test-first
techniques and early prototyping through executable design models. For UML, Model-Driven Ar-
chitecture is oriented towards executable models. Several authors propose scenarios specified by
sequence diagrams as test cases for state diagrams; more generally, using software model checking
one may automatically verify whether state diagrams or code satisfy properties defined by sequence
diagrams. Other approaches use OCL invariants and pre-/post-conditions for instrumenting Java
code with assertions.

Also, Extreme Programming (XP) requires to write tests before writing the code as a means
for making the software robust and more easily refactored. Popular tools for XP are the family of
xUnit tools—with JUnit as the most well known instance—for writing automated unit tests and
Fit for writing automated acceptance tests.

In this paper we propose techniques for extending and improving such test-driven development
methods, where executable tests drive the development process. Scenarios and properties serve
us as a combined basis for system specification and test cases. Scenarios are defined by sequence
diagrams written in a powerful sublanguage of UML 2.0 which allows us to specify not only possible
scenarios but also forbidden scenarios (failure traces). A forbidden scenario is a scenario where
one wants to say that after legally performing some steps, the next step should now occur. This
is not expressible UML 1.5 sequence diagrams. Further extensions w.r.t. other approaches are the
use of nested method invocations and state invariants.

Scenarios are examples of successful or un-successful system runs. By extracting common
properties of several scenarios we obtain invariants and pre-/post-conditions written in OCL or
JML. The behaviour of the system is described either by models such as state diagrams or activity
diagrams, or by code e.g. written in Java.

For testing we insert invariants and pre- and post-conditions as assertions in the code and the
behaviour models. Then we test the instrumented system behaviour with respect to the possible
and forbidden scenarios. This is done by translating possible and forbidden scenarios to Fit tests
for scenarios involving user interaction and to JUnit tests for system scenarios.

Due to the addition of the assertions to the system behaviour we obtain a more complete test
coverage and further possibilities for checking dynamically the internal consistency of the system
specification.

For verification, we propose two approaches: interactive theorem proving combined with sym-
bolic evaluation and model checking. To be successful with the latter technique we have to restrict
the models to finite domains. Therefore we construct suitable abstractions of the scenarios and
the system behaviour and verify the abstractions using a model checker. For verifying the general
case, symbolic evaluation helps to reduce considerably the number of necessary interactions with
an interactive theorem prover.

Currently we are integrating these techniques into a user-oriented collaborative development
environment.

1


