

A Formal Approach for Modeling Software Agents Coordination

Lily Chang1, Junhua Ding2, Xudong He1 and Sol M. Shatz3

1 School of Computing and Information Sciences, Florida International University
Miami, FL 33199, USA

Email: {lchan003, hex}@cis.fiu.edu
2 Department of Computer Science, East Carolina University

Greenville, NC 27858, USA
Email: dingj@ecu.edu

3 Department of Computer Science, University of Illinois at Chicago
Chicago, IL60607, USA
Email: shatz@uic.edu

Abstract: In this paper, we propose a nested Petri net
approach to model the coordination of multi-agent systems. A
higher level net (called host net) defines the movements and
coordination mechanism of agents, while lower level nets
(called agent nets that are tokens of the host net) model the
behavior of individual agents. A dynamic channel concept
and the notation are introduced for modeling the
communications and coordination between the host net and
agent nets. We demonstrate our modeling approach through
an e-market example. Our approach promotes the
extensibility and flexibility of multiple agent system design
through dynamic channels.

Keywords: Modeling, Multi-Agent system, Coordination,
Petri nets.

1. Introduction

Multiple agent systems have become a new computing
paradigm in recent years [5]. An agent is an autonomous,
reactive and pro-active entity with social ability. The above
characteristics are typical in many software systems that are
distributed, concurrent and expected to interact with other
components or exploit services and resources dynamically on
the Internet. A critical issue in these systems is the
coordination of multiple agents to accomplish some global
tasks.

To model individual agents and the coordination of agents, a
well-defined approach is needed. An approach based on
formal methods is especially useful since it help analyze
properties and reveal system errors at an earlier stage of
development process.� In this paper, we propose a formal
approach for modeling the coordination of multiple agent
systems using a nested predicate transition net (PrT net) [2]
framework. PrT nets are a class of high level Petri nets, well
suited for describing data, control, functionality, and dynamic
behaviors of concurrent, asynchronous, and distributed
systems. In our nested PrT net framework, individual agents
are defined by agent nets, which capture individual agents’
local tasks. The environment where agents reside is defined
as a host net, which represents global plan with predefined

policies to coordinate agent nets. A two-level net-within-net
[8] structure is formed consisting of a host net at the higher
level and agent nets at the lower level, in which each agent
net becomes a token of the host net. We adapt the channel
commands in Hoare’s process algebra CSP [4] and provide a
new definition of channels to model the communications and
coordination between the host net and agent nets. The
channel communication consists of synchronous control and
unidirectional information flow. Synchronous control
addresses the issue of agent task synchronization.
Unidirectional information flow models the reactiveness of
agent through input command and pro-activeness through
output command. By allowing resource tokens and agent
tokens in the higher level net, the coordination mechanism
and the movements of agents within a multi-agent system can
be naturally modeled.

The remainder of this paper is structured as follows. Section
2 discusses the related works compare to ours. Section 3
provides the formal definitions of our framework. Section 4
presents an e-market example for the demonstration of
modeling method and steps by applying our framework.
Conclusion and discussion are drawn in Section 5.

2. Related Works

In this section, we discuss some of the research works that
are related to ours.

2.1 Agent System Modeling

Agent-oriented paradigm has become an active research area
in recent years [9]. Since object-oriented paradigm has gained
popularity among developers, most of the agent-oriented
methodologies were extended from object-oriented paradigm
and used informal models that did not support formal
analysis. In [1] and [7], formal specification languages
(temporal logic and Z respectively) were used for specifying
agent models, but no behavior models were provided. In [17],
G-nets, an object-based Petri nets, were further extended for
agent-based systems and used to model the message
processing mechanism of agents.

2.2 Multi-Agent Coordination Modeling

Since resource coordination is one of the essential tasks of a
multi-agent system, various algorithms were proposed to deal
with conflict controls of competing resources based on static
avoidance approach ([12], [13], [14]) or negotiation approach
([15], [16]). Static avoidance approach, however, is
impractical for dynamic interacting software systems since a
tightly coupled global plan limits the flexibility and
extensibility of the system and it is difficult and sometimes
redundant to name all the possible conflicts during design
time. On the other hand, negotiation approach has the
flexibility and extensibility of designing the agents
independently by solving the conflicts at runtime using
predefined protocols, although there is a trade off for
temporal efficiency. In [6], the concept of potential arc was
proposed in colored Petri nets as an avoidance approach for
solving conflicts among agents Potential arcs were
transformed into coordinators, which included all possible
alternate paths to coordinate shared resources. The approach
is still considered as static since all agent plans were
eventually concatenated together with the coordinators to
form a global plan; therefore the system and agents are
tightly coupled. Another work on agent coordination was the
moderator coordination model proposed in [18]. This work
focused on the agent interaction protocol and the ontology of
the conversation. The moderator was separated from agent
models specifically for handling the conversation among
agents in an organizational view.

2.3 Agent Modeling with Net-within-Net Approach

As for modeling the movements of agents, several works
([11], [19]) also used layered net structures. These works
mainly focus on the mobility of agents with regard to location
changes. In [11], nested colored Petri nets were used to
define the synchronized communication through a fusion of
two enabled transitions where the information exchange was
bi-directional. In [19], a layered predicate transition net
approach was used to model the information flow between an
agent net and the system net through an internal connector.
The internal connectors had to be constantly updated
according to the changing number of agents to maintain
consistency with the system net.

3. A Nested Petri Net Framework

We define a nested Petri net framework based on predicate
transition nets for modeling various aspects of multi-agent
systems. Other than data and functionality, our framework
supports the modeling of communications, movements of
agents and real-time requirements by introducing channel
expression and time expression to transition constraints.

3.1 Predicate Transition Nets

We use the PrT net definition in [3]. A PrT net is a tuple (N,
Spec, ins), where:
(1) N= (P, T, F) is a net structure. P and T are finite sets of

places and transitions of N, where ∅≠∪∅=∩ TPTP , and

)()(PTTPF ×∪×⊆ is a set of arcs, which define the flow
relation,

(2) Spec is an algebraic specification used to define the sorts
and tokens of P, the labels of F and the constraints of T ,

(3) ins=),,,(0MRLϕ is an inscription that maps net

elements to their denotations in the algebraic
specification Spec. ϕ is a mapping from P to the set of
sorts; L is a sort-respecting mapping from F to the set of
labels; R is a mapping from T to the set of constraints;
and M0 is an initial marking – a mapping from P to the
set of tokens.

The dynamic semantics of a PrT net can be defined as
follows:
(1) A marking of a PrT net is a mapping from P to sorts

defined in Spec;
(2) An occurrence mode of N is a substitution α = {x1 ← c1,

…, xn ← cn}, which instantiates typed label variables.
We use e:α to denote the result of instantiating an
expression e with α, in which e can be either a label
expression or a constraint;

(3) Given a marking M, a transition t ∈ T, and an occurrence
mode α, t is α_enabled at M iff the following predicate is
true: ∀p: p ∈ P.(L (p,t):α) ⊆ M(p)) ∧ R(t):α; where

{ (,) (,)

(,)
L x y if x y F

L x y
otherwise

∈
=

∅

(4) If t is α_enabled at M, t may fire in occurrence mode α.
The firing of t with α returns the marking M’ defined by
M’(p) = M(p) − L (p,t):α ∪ L (t,p):α for p ∈ P. We use
M[t/α>M’ to denote the firing of t with occurrence α
under marking M. As in traditional Petri nets, two
enabled transitions may fire at the same time as long as
they are not in conflict;

(5) For a marking M, the set [M> of markings reachable
from M is the smallest set of markings such that M ∈
[M> and if M’ ∈ [M> and M’[t/α>M’’ then M’’ ∈ [M>,
for some t ∈ T and occurrence mode α (note: concurrent
transition firings do not produce additional new
reachable markings);

(6) An execution sequence M0T0M1T1… of N is either finite
when the last marking is terminal (no enabled transition
in the last marking) or infinite, in which case each Ti is
an execution step consisting of a set of non-conflict
firing transitions;

(7) The behavior of N is the set of all execution sequences
starting from the initial marking.

3.2 Modeling Time Concepts

It is well known that a high-level Petri net model can handle
time concepts adequately by representing time information as
an additional element of tokens and adding time constraints
as additional conjuncts to transitions [10]. Here we introduce
a special variable τ, and use it exclusively as part of a
transition constraint. A time expression has the following
general form: a ≤ τ ≤ b, where a and b indicate the lower and
upper time bounds respectively. This time expression has the
same meaning as a time interval [a, b] associated with a

transition in classical time Petri nets; such that an enabled
transition t with time constraint a ≤ τ ≤ b is fireable within
the relative time interval [a, b] or the absolute time interval [θ
+ a, θ + b]. θ denotes the moment (absolute time) that
transition t was enabled. Furthermore, we adopt the strong
fireability rule, i.e., a fireable transition must fire by the time
limit θ + b. Transitions without timing constraints can be
viewed to have fireable intervals of [0, ∞].

To model timing concept, we need to modify the dynamic
semantics of PrT nets. Since tokens now carry timing
information, we do not explicitly add a time element into the
definition of markings. Thus we only need to make the
following changes to the definitions of dynamic semantics of
PrT nets:
(3) Given a marking M, a transition t ∈ T, and an occurrence

mode α, t is α_enabled at M iff the following predicate is
true: ∀p: p ∈ P.(L (p,t):α) ⊆ M(p)) ∧ Ru(t):α; where R(t)
= Ru(t) ∧ Rτ(t). Ru(t) is a non-timing constraint, and Rτ(t)
= a ≤ τ ≤ b is a timing constraint. We do not explicitly
write the time interval [0, ∞] for non-timed transitions;

(4a) An enabled transition t with timing constraint Rτ(t) = a ≤ τ ≤ b under marking M with occurrence α is fireable within
time interval [θ + a, θ + b], and must fire at θ + b if it is
continually enabled;
(4b) The firing of fireable transition t under M with α returns
the marking M’ defined by M’(p) = M(p) − L (p,t):α
∪ L (t,p):α for p ∈ P. We use M[t/α>M’ to denote the firing
of t with occurrence α under marking M. As in traditional
Petri nets, two fireable transitions may fire at the same time
as long as they are not in conflict.

3.3 Nets within Nets

Although we can define a general structure of deeply nested
nets as in other works, here we elect to just define a two-level
net structure that is adequate for our study and is much
simpler. The lower level nets are used to model the behaviors
of individual computation entity and thus PrT nets are
appropriate. Since lower level nets serve as tokens of the
higher level net, some care must be taken to ensure the higher
level net are well defined. First, the higher level net has its
own data abstraction and processing capabilities; thus we still
need to have the full description power of PrT nets. Second,
individual computation entities have their own behaviors and
logics that cannot be described by static data. As a result, we
have to treat net tokens as black boxes. Only their identities
are visible and accessible in the higher level net. This
treatment allows these net tokens to be grounded and thus
well-defined. This treatment also respects the autonomy
characteristic of the net tokens. Third, the creation and
removal of a net token can be done through some boundary
transitions without input places and transitions without output
places respectively. We can leave the functionality
(constraints) of these transitions open and view these as the
responsibilities of an external environment. Fourth, we only
model the logical mobility of an net token and thus do not
consider the implementation details with regard to whether to

use value semantics or reference semantics in passing an
agent’s information from one location to another.

To model synchronized communications between nets at the
different levels, we extend the constraint definition to include
channel expressions. We borrow the input and output
commands in CSP [7] for representing channel expressions.
Thus a channel expression is n!e (output) or n?x (input),
where n is a channel name, e is an expression, and x is a
variable. Channel names are the identifications of net tokens
and the identification of the system net. A synchronized
communication occurs when two fireable transitions at two
different net levels have a matching pair of input and output
channel expressions, i.e, a transition in the system net with
identification sys-id contains net-id ! exp (or net-id ? x), and a
fireable transition in a net token with identifier net-id
contains sys-id ? x (or sys-id ! exp). To enforce well-
definedness of communications, the channel names in agent
nets must be constants; however, a channel name n in the
system net can be a variable ranging over the net tokens’
identifications, which is instantiated with an enabling net
token identification. This allows great flexibility and concise
representation of synchronized communications.

During the synchronization, a unidirectional information flow
occurs such that the value in e of the output command is
assigned to the variable x of the input command.

We further revise the definitions of dynamic semantics of PrT
nets to capture the synchronized communications as follows:
(3) Given a marking M, a transition t ∈ T, and an occurrence
mode α, t is α_enabled at M iff the following predicate is
true: ∀p: p ∈ P.(L (p,t):α) ⊆ M(p)) ∧ Ru(t):α;
where R(t) = Ru(t) ∧ Rτ(t) ∧ Rc(t). Ru(t) is a non-timing
constraint, Rτ(t) = a ≤ τ ≤ b is a timing constraint, and Rc(t) =
n!e | n?x is a channel expression. We do not explicitly write
the time interval [0, ∞] for non-timed transitions;
(4a-1) An enabled transition t with a channel expression Rc(t)
is ready if a transition with a matching channel expression is
also ready;
(4a-2) A ready transition t with timing constraint Rτ(t) = a ≤ τ
≤ b under marking M with occurrence α is fireable within
time interval [θ + a, θ + b], and must fire at θ + b if it is
continuously enabled.
Note: The effect of information flow during a synchronized
communication has been reflected in the arc label expressions
and thus no change to the definition of (4b) from Section 2.2
is needed.

It is obvious that this modified semantics is only meaningful
in the context of a net model that consists of multiple levels.
The synchronized communications only happen vertically not
horizontally (i.e., no direct communication between two
agent nets.) The above one-to-one communications can be
extended to one-to-many (broadcasting) communications.
With the input and output commands, we can naturally define
the reactivity and pro-activeness of an agent.

4. Multi-Agent System Coordination Modeling

4.1 An Agent Model

Distributed and heterogeneous software systems can be
naturally modeled as multi-agent systems where distributed
agents are autonomous and encapsulated computation entities.
Agents rely on communications to perceive external states
and participate in activities such as resource sharing and
subtask execution. To build an agent model, a component that
associates the communications with other members in the
system is mandatory (Figure 1). As a receiver, agent receives
message from the environment and performs actions based on
its decision logic. As a sender, agent sends request or
responds to the environment. A series of communication acts
is called a conversation, which is defined as an Interaction
Protocol [20] that helps designers to effectively implement
agent models.
 Decision LogicAgent TasksCommunicationKnowledge Base PolicyEnvironment

Fig. 1 Generic components of an agent model.

4.2 Coordination Model

Since agents can be geographically distributed and possibly
running in heterogeneous systems, a coordination mechanism
in multi-agent systems ensures over all system consistency.
Although coordination strategies may vary with regard to
different application domains and system objectives [21],
some component responsible for coordination service is
always needed. A coordination component usually has to
provide up to date information about the system states and to
coordinate agents based on predefined policy and system
states. A communication component is also needed to
facilitate the interactions between agents. (Figure 2)

Fig. 2 Generic components of a coordination model.

Agents evolve constantly in a distributed and heterogeneous
environment; separation of the coordination logic eases the
complexity of agent models and allows the flexibility to
modify a coordination mechanism. The coordination model
also simplifies the interactions among agents. As long as
agents obey the interaction protocol that complies with the
coordination model, they can easily join the conversations.

4.3 A Modeling Approach

While many agent-oriented engineering methodologies have
been proposed [9], few of them dealt with the coordination
modeling using formal methods. In [22], the construction of
a skeleton for individual autonomous agent was studied.
Agents’ externally visible events relevant to coordination
were first identified. Based on the events, the skeleton was
defined using finite state automata. The approach started
from building a Dooley graph based on the conversations
among agents. Then, the histories of agents in a conversation
were analyzed to induce the agent skeleton. The resulting
meta-model represented by finite state automata was then
used to validate the specified coordination requirements,
which was represented by temporal relationships. In [18],
agent interaction protocols and the ontology of the
conversation were investigated. The protocols were isolated
from agent models and considered as resources and
predefined processes that agents had to follow. A moderator
encapsulated with a well-identified process was generated for
each conversation between agents and a Conversation Server
was defined to keep the information of all active
conversations. The moderators were used as the coordination
model to grant roles to agents and to control the ongoing
conversation. The behavior model was specified using
CoOperative Objects, a Petri net based formalism integrated
with object-oriented features.

Our approach is to use the generic models described in
Section 4.1 and to provide steps to build interaction models
for multi-agent systems. The coordination model is conceived
as a broker that matches up agents that exhibit the same
interests (resources or services) based on predefined
matching mechanism and published information of agents.
The agents are therefore categorized into two types, one is the
requestor, and the other is the provider. The requestors and
providers register their interests in a public directory
provided by the broker, who deals with the coordination logic
that includes public directory service, collecting requests and
available resources, and matching requestors and providers.
Based on these assumptions, a two layered multi-agent
system’s hierarchy is depicted in Figure 3.

Fig. 3 Hierarchy of multi-agent coordination.

To model the coordination of a multi-agent system with
layered hierarchy, we use the nested Petri net paradigm
defined in Section 3. A higher level net describes the
coordination behaviors with the participation of both active
and passive tokens. In this case, requestors and providers are
active tokens, resources and services are passive tokens.
Active tokens are modeled as agent nets with their own
interaction models. The communications and information
flows between nets at different levels are through the channel
concepts defined in Section 3.

4.4 Constructing Interaction Models

We define an Interaction Model to handle the coordination
behaviors of a set of possible agent conversations. A
Conversation is an execution sequence, which is initiated by
a requestor and ended with a successful commitment or
terminated by failure resulted from any participant that
engaged in the conversation. It is obvious that an ongoing
conversation will affect an agent’s local behavior, thus an
interaction model must comply with certain predefined
interaction protocols or the conversation will not be
meaningful.

We use an e-market example to demonstrate the application
of the net-within-net paradigm to model the coordination of
multi-agent system. Let us consider a simple conversation
scenario at an e-market where seller and buyer auctioning
goods. The conversation is in a format that includes sender:
communicative act, message content and receiver.

Seller: request, ‘sell book 30’, broker
Broker: agree, ‘posted book 30’, seller
Buyer: request,’ buy book 25’, broker
Broker: inform, ‘sell book 25’, seller
Seller: commit, ‘commit book 25’, broker
Broker: inform, ‘buy book 25’, buyer
Buyer: commit, ‘commit book 25’, broker

We use higher level of abstraction to represent the message
for demonstration purpose and abstract away the negotiation
process about the payment transaction and shipping detail
between seller and buyer, since it is not relevant to the
coordination behavior. The conversation starts from a request
of a seller who wants to sell book for 30 dollars, the broker
agree the request and posts the information. A buyer sends a
request to broker for buying book. The broker informs the
seller that there is someone wants to buy book for 25 dollars
and seller agrees the price. The broker informs the buyer and
the deal is committed by the buyer.

First of all, there are three entities engaged in the
conversation: broker, seller and buyer. The broker is served
as the coordinator thus modeled as the higher level host net.
The host net provides the information service of auctioning
goods. The buyer and seller are participants in the activity of
auctioning goods, therefore modeled as agent nets at lower
level. Follow the generic model in Figure 1 and 2; each
communication component is specified with transitions and
places as in Figure 4.

Fig. 4 Transformation of communication net.

Next step is the transformation of the actions. The agent tasks
component in Figure 2 is the set of actions that agent possibly
perform. Similarly, the coordinate component in Figure 3 is
the set of actions that the broker possibly used to coordinate
agents. In the conversation scenario, the communicative acts
in verb represent actions. These actions are transformed into
transitions. For example, seller has actions ‘request’ and
‘commit’, which imply proactive and reactive behavior
respectively and should be linked to a message outgoing
place. Upon messages received, seller’s decision logic
decides further action to be taken according to local
knowledge and policy. Here, we abstract the decision logic
into one transition, knowledge and policy into two places. As
a result, Figure 5 shows the action net of the seller.

Fig. 5 Seller’s action net.

Finally, let us reconsider the communication part of the
model. Since the agent communication is to the upper level
host net, the information is sent to external entities and not to
local. Thus, the transitions for the communications must be
differentiated from regular transitions to represent external
communications. From Figure 4, the transition ‘send’ is for
output messages; we add the output channel notation to
represent information flows toward outside of the model. On
the other hand, transition ‘receive’ is augmented with input
channel notation to represent information flows from outside
of the model. We concatenate the nets in Figure 4 and 5; a
resulting interaction model for seller is shown in Figure 6.
Note that we use dash line to represent a transition
augmented with channel notations. The interaction models
for broker and buyer can be built in the same manner.

Fig. 6 Seller’s abstract interaction model.

The interaction model in Figure 6 is incomplete in the sense
of deriving from a simple conversation, while a set of

conversations is possible. Designer would want to list as
many scenarios as possible and extract the verb imbedded in
a conversation as the actions to build a more complete model.
It is preferable that a set of standard interaction protocols is
predefined for agent model designers to follow. In the
following section, we give a more detail model by adding
exception handling and semantics definitions.

4.5 Interaction Models of Simple Conversation Scenario

There is only one goods in this example, thus we abstract
away the knowledge component, which is not relevant. The
preset price of the goods is the policy of agent. In this
example, seller and buyer have the same interaction model
(Figure 7) and the broker’s interaction model is shown in
Figure 8.

Fig. 7 Seller’s and buyer’s interaction model.

Token Types:

PRICEp

MESSAGEppp

RECEIVERPRICEACTSENDERMIDMESSAGE

=
====

××××=

)3(

)5()4()2()1(

ϕ
ϕϕϕϕ

// Type MESSAGE is a Cartesian product of predefined type
which can represent message id, sender id, action, price and
receiver id. PRICE is a preset price defined by an integer.

Transition Constraints:

}'','','{']2[)(

]2[]5[]4[]4[''']3[

]5[]2[]1[]1['']3[]1[]1[)(

)'']2[

)]3['']2[()]3['']2[(()(

!)(

?)(

postedcommitrequestmfailR

mommomsellom

mommomcommitmmpmcommitR

immcommitmimm

pimsellimpimbuyimreasoningR

omSsendR

imSreceiveR

∉=
=∧=∧=

∧=∧=∧=∧==
=∨=∧=

∧≤∧=∨≥∧==
=

=

25)3(

)5()2()1(

}}1,30,,1,1{{)4(

'']2[)(

'']2[)(

0

300

0

=
∅===

=
=∨==

=∧==

pM

pMpMpM

ssellapM

mpmpostedmpostR

momrequestmrequestR

//Transition ‘receive’ and ‘send’ are used to input messages
and output messages through channels respectively.
Transition commit is enabled when there is a previous request
exists in place p5 and a response message for that request is
also available. If the message content can not be identified,
the message is discarded through transition ‘fail’. Transition
‘set request’ inputs message token from outside of the model.
Transition ‘reasoning’ decides what actions to be taken next
based on received message. The initial markings M0 assuming
that an agent id a1 request to sell book for 30 dollars and the

message with id #1 goes to broker id s1, the minimum
acceptance price is set to 25 dollars.

 sendreceive p2commit informp1 p3p4participate unparticipateimim om omD’D Da aD D’im agreea aim om

Fig. 8 Broker’s interaction model.

Token Types:

DIRECTORYp

MESSAGEpp

AGENTNETp

RECEIVERPRICEACTSENDERMIDDIRECTORY

RECEIVERPRICEACTSENDERMIDMESSAGE

=
==

=
××××=

××××=

)4(

)3()2(

)1(

ϕ
ϕϕ

ϕ

//Type MESSAGE and DIRECTORY are of the same type that
is defined in the agent model. Type AGENTNET defines the
active token, which is also a net.

Transition Constraints:

)''']3[]1[]1[.()(

]2[]5[]4[]4[]3[]3[

]5[]2[]1[]1[]1[]1[.()(inf

])2[]5[]4[]4['']3[]5[]2[

]1[]1[)']1[]1[.(()(

!]5[)(

?)(

imDDcommitimdimDdcommitR

domdomdom

domdomimdDdormR

imomimompostedomimom

imomimDDimdDdagreeR

omaidomaidsendR

imaidreceiveR

−=∧=∧=∈∃=
=∧=∧=

∧=∧=∧=∈∃=
=∧=∧=∧=

∧=∧∪=∧≠∈∀=
∧==

=

// Transition ‘receive’ and ‘send’ are used to input messages
and output messages through channels respectively.
Transitions ‘participate’ and ‘unparticipate’ allow agent nets
enter and out of the system. Transition ‘agree’ sends a
successful posted information message back to agents.
Transition ‘inform’ notify agent that there is a match deal.
When the deal is committed, the information is deleted from
the directory through transition ‘commit’.

5. Concluding Remarks

We have provided a formal net-within-net paradigm and
demonstrated how to apply it to model the coordination of
multi-agent systems. A formal model enables us to better
understand system requirements and critical design issues and
facilitate formal analysis to detect potential problems in
system design at an earlier stage.

To extend our approach to model a complete multi-agent
system, there are several major research issues to be solved.
First, individual agent’s decision logic decides the degree of
autonomous and the behaviors of how an agent should react.
The decision logic largely depends on the knowledge base of
the agent. Thus, knowledge representation in a Petri net
model is a challenge issue. Second, all entities have to speak

the same language in order to understand each other and the
content of the exchanged information, which is usually
domain specific. Third, message exchanges in a multi-agent
system are often asynchronous, i.e. agents may not need to
respond immediately or wait for responses. On the other hand,
there may still be some temporal dependency among tasks.
Fourth, some of the methodologies for multi-agent systems
using the organization view, for instance in [23]. It is possible
for an agent to be assigned different roles based on the tasks
required.

Acknowledgements

We thank the anonymous reviewers for their comments to
improve the presentation of the paper. Lily Chang and
Xudong He’s research was partially supported by NSF grants
HRD-0317692 and IIP-0534428. Sol M. Shatz’s research was
partially supported by U.S. Army Research Office under
grant number W911NF-05-1-0573.

References

[1] H. Barringer, M. Fisher, D. Gabbay, G. Gough and R.

Owens, METATEM: A Framework for Programming in
Temporal Logic, Proceedings on Stepwise Refinement of
Distributed Systems: Models, Formalisms, Correctness.
LNCS, Vol. 430, pp.94-129.

[2] H. J. Genrich, Predicate/Transition nets. Advances in
Petri Nets 1986, pp. 207–247.

[3] X. He and Y. Deng, A Framework for Developing and
Analyzing Software Architecture Specifications in SAM.
The Computer Journal, Vol. 45, No. 1, 2002, pp. 111–
128.

[4] C. Hoare, Communicating Sequential Processes, Prentice
Hall, 1985.

[5] N. Jennings and M. Wooldridge, Agent-Oriented
Software Engineering. Proceedings of the 9th European
Workshop on Modeling Autonomous Agents in a Multi-
Agent World, 2000.

[6] J. Lian and S. M Shatz, Potential arc: A Modeling
Mechanism for Conflict Control in Multi-agent Systems.
Proceedings of the 4th Symposium on Design, Analysis,
and Simulation of Distributed Systems (DASD-06) 2006,
pp. 467–474.

[7] M. Luck, N. Griffiths and M d’Inverno, From Agent
Theory to Agent Construction: A Case Study.
Proceedings of The ECAI’96 Workshop on Agent
Theories, Architectures, and Languages: Intelligent
Agents III 1997, Vol. 1193, Springer-Verlag:
Heidelberg, Germany, pp. 49–64.

[8] R. Valk, Petri nets As Token Objects: An Introduction to
Elementary Object Nets. Application and Theory of Petri
Nets, 1998, pp. 1–25.

[9] M. Wooldridge and P. Ciancarini, Agent-oriented
Software Engineering, The State of The Art. Lecture
Notes in Computer Science, Vol. 1957, 2001, pp. 1–28.

[10] C. Ghezzi, D. Madrioli, S. Morasca, M. Pezze, A Unified
High Level Petri Net Formalism for Time Critical
Systems, IEEE Transactions on Software Engineering,
Vol. 17, No. 2,(1991) 160-172.

[11] M. Kohler,. D. Moldt, H. Rolke, Modeling Mobility and
Mobile Agents Using Nets Within Nets, Proc. of
International Conf. on Application and Theory of Petri
Nets, LNCS vol. 2679 (2003), 121-139.

[12] K. S. Barber, T. H. Liu and S. Ramaswamy, Conflict
Detection during Plan Integration for Multi-agent
Systems. IEEE Transactions on Systems, Man, and
Cybernetics, Part B, Vol. 31, No. 4, 2001, pp. 616–628.

[13] S. Resmerita and M. Heymann, Conflict Resolution in
Multi-agent Systems. Proceeding of 42nd IEEE
Conference on Decision and Control, Vol. 3, 2003, pp.
2537–2542.

[14] P. Moraitis and A. Tsoukias, A Multi-criteria Approach
for Distributed Planning and Conflict Resolution for
Multi-agent Systems. Proceeding of International
Conference on Multi-Agent Systems, 1996, pp. 212 –
219.

[15] I. Loutchko and F. Teuteberg, An Agent-based
Electronic Job Marketplace: Conceptual Foundations and
Fuzzyman Prototype. International Journal of Computer
Systems Science and Engineering, Vol. 20, 2005, pp.
95–109.

[16] J. Sillince, Multi-agent Conflict Resolution: A
Computational Framework for an Intelligent
Argumentation Program. Knowledge Based Systems,
Vol. 7, 1994.

[17] H. Xu and S. M. Shatz, A Framework for Model-based
Design of Agent-oriented Software. IEEE Transactions
on Software Engineering, 2003, pp. 15–30.

[18] C. Hanachi and C. Blanc, “Protocol Moderators as
Active Middle-Agents in Multi-Agent Systems,”
Autonomous Agents and Multi-Agent Systems, Vol. 8,
No. 2, pp. 131-164, 2004.

[19] D. Xu, J. Yin, Y. Deng and J. Ding: A Formal
Architecture Model for Logical Agent Mobility. IEEE
Transactions on Software Engineering. Vol. 29, No. 1,
pp. 31-45, Jan. 2003

[20] FIPA, Interaction Protocol Library Specification, 2000.
[21] D. Deugo, M. Weiss and E. Kendall: Reusable Patterns

for Agent Coordination, Coordination of Internet agents:
models, technologies, and applications. 2001, pp. 347-
368.

[22] M. P. Singh, Synthesizing Coordination Requirements
for Heterogeneous Autonomous Agents, Autonomous
Agents and Multi-Agent Systems, Vol.3, No. 2. pp. 107-
132, 2000.

[23] F. Zambonelli, N. R. Jennings and M. Wooldridge:
Developing Multiagent Systems: The Gaia Methodology.
ACM Transactions on Software Engineering and
Methodology, Vol. 12, No.3, pp.417 – 470, 2003.

