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Abstract: In this paper, we propose a nested Petri net 
approach to model the coordination of multi-agent systems. A 
higher level net (called host net) defines the movements and 
coordination mechanism of agents, while lower level nets 
(called agent nets that are tokens of the host net) model the 
behavior of individual agents. A dynamic channel concept 
and the notation are introduced for modeling the 
communications and coordination between the host net and 
agent nets. We demonstrate our modeling approach through 
an e-market example. Our approach promotes the 
extensibility and flexibility of multiple agent system design 
through dynamic channels.  
 
Keywords: Modeling, Multi-Agent system, Coordination, 
Petri nets. 
 
1. Introduction 
 
Multiple agent systems have become a new computing 
paradigm in recent years [5]. An agent is an autonomous, 
reactive and pro-active entity with social ability. The above 
characteristics are typical in many software systems that are 
distributed, concurrent and expected to interact with other 
components or exploit services and resources dynamically on 
the Internet. A critical issue in these systems is the 
coordination of multiple agents to accomplish some global 
tasks.  
 
To model individual agents and the coordination of agents, a 
well-defined approach is needed. An approach based on 
formal methods is especially useful since it help analyze 
properties and reveal system errors at an earlier stage of 
development process.� In this paper, we propose a formal 
approach for modeling the coordination of multiple agent 
systems using a nested predicate transition net (PrT net) [2] 
framework. PrT nets are a class of high level Petri nets, well 
suited for describing data, control, functionality, and dynamic 
behaviors of concurrent, asynchronous, and distributed 
systems. In our nested PrT net framework, individual agents 
are defined by agent nets, which capture individual agents’ 
local tasks. The environment where agents reside is defined 
as a host net, which represents global plan with predefined 

policies to coordinate agent nets. A two-level net-within-net 
[8] structure is formed consisting of a host net at the higher 
level and agent nets at the lower level, in which each agent 
net becomes a token of the host net. We adapt the channel 
commands in Hoare’s process algebra CSP [4] and provide a 
new definition of channels to model the communications and 
coordination between the host net and agent nets. The 
channel communication consists of synchronous control and 
unidirectional information flow. Synchronous control 
addresses the issue of agent task synchronization. 
Unidirectional information flow models the reactiveness of 
agent through input command and pro-activeness through 
output command. By allowing resource tokens and agent 
tokens in the higher level net, the coordination mechanism 
and the movements of agents within a multi-agent system can 
be naturally modeled.  
  
The remainder of this paper is structured as follows. Section 
2 discusses the related works compare to ours. Section 3 
provides the formal definitions of our framework. Section 4 
presents an e-market example for the demonstration of 
modeling method and steps by applying our framework. 
Conclusion and discussion are drawn in Section 5. 
 
2. Related Works 
 
In this section, we discuss some of the research works that 
are related to ours. 
 
2.1 Agent System Modeling  
 
Agent-oriented paradigm has become an active research area 
in recent years [9]. Since object-oriented paradigm has gained 
popularity among developers, most of the agent-oriented 
methodologies were extended from object-oriented paradigm 
and used informal models that did not support formal 
analysis. In [1] and [7], formal specification languages 
(temporal logic and Z respectively) were used for specifying 
agent models, but no behavior models were provided. In [17], 
G-nets, an object-based Petri nets, were further extended for 
agent-based systems and used to model the message 
processing mechanism of agents.  



2.2 Multi-Agent Coordination Modeling 
 
Since resource coordination is one of the essential tasks of a 
multi-agent system, various algorithms were proposed to deal 
with conflict controls of competing resources based on static 
avoidance approach ([12], [13], [14]) or negotiation approach 
([15], [16]).  Static avoidance approach, however, is 
impractical for dynamic interacting software systems since a 
tightly coupled global plan limits the flexibility and 
extensibility of the system and it is difficult and sometimes 
redundant to name all the possible conflicts during design 
time. On the other hand, negotiation approach has the 
flexibility and extensibility of designing the agents 
independently by solving the conflicts at runtime using 
predefined protocols, although there is a trade off for 
temporal efficiency. In [6], the concept of potential arc was 
proposed in colored Petri nets as an avoidance approach for 
solving conflicts among agents Potential arcs were 
transformed into coordinators, which included all possible 
alternate paths to coordinate shared resources. The approach 
is still considered as static since all agent plans were 
eventually concatenated together with the coordinators to 
form a global plan; therefore the system and agents are 
tightly coupled. Another work on agent coordination was the 
moderator coordination model proposed in [18]. This work 
focused on the agent interaction protocol and the ontology of 
the conversation. The moderator was separated from agent 
models specifically for handling the conversation among 
agents in an organizational view.  
 
2.3 Agent Modeling with Net-within-Net Approach 
 
As for modeling the movements of agents, several works 
([11], [19]) also used layered net structures. These works 
mainly focus on the mobility of agents with regard to location 
changes. In [11], nested colored Petri nets were used to 
define the synchronized communication through a fusion of 
two enabled transitions where the information exchange was 
bi-directional. In [19], a layered predicate transition net 
approach was used to model the information flow between an 
agent net and the system net through an internal connector. 
The internal connectors had to be constantly updated 
according to the changing number of agents to maintain 
consistency with the system net.  
 
3. A Nested Petri Net Framework 
 
We define a nested Petri net framework based on predicate 
transition nets for modeling various aspects of multi-agent 
systems. Other than data and functionality, our framework 
supports the modeling of communications, movements of 
agents and real-time requirements by introducing channel 
expression and time expression to transition constraints. 
 
3.1 Predicate Transition Nets 
 
We use the PrT net definition in [3]. A PrT net is a tuple (N, 
Spec, ins), where: 
(1) N= (P, T, F) is a net structure. P and T are finite sets of 

places and transitions of N, where ∅≠∪∅=∩ TPTP , and 

)()( PTTPF ×∪×⊆  is a set of arcs, which define the flow 
relation, 

(2) Spec is an algebraic specification used to define the sorts 
and tokens of P, the labels of F and the constraints of T , 

(3) ins= ),,,( 0MRLϕ  is an inscription that maps net 

elements to their denotations in the algebraic 
specification Spec. ϕ is a mapping from P to the set of 
sorts; L is a sort-respecting mapping from F to the set of 
labels; R is a mapping from T to the set of constraints; 
and M0 is an initial marking – a mapping from P to the 
set of tokens. 

 
The dynamic semantics of a PrT net can be defined as 
follows: 
(1) A marking of a PrT net is a mapping from P to sorts 

defined in Spec; 
(2) An occurrence mode of N is a substitution α = {x1 ← c1, 

…, xn ← cn}, which instantiates typed label variables. 
We use e:α to denote the result of instantiating an 
expression e with α, in which e can be either a label 
expression or a constraint; 

(3) Given a marking M, a transition t ∈ T, and an occurrence 
mode α, t is α_enabled at M iff the following predicate is 
true: ∀p: p ∈ P.( L (p,t):α) ⊆ M(p)) ∧ R(t):α; where 
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(4) If t is α_enabled at M, t may fire in occurrence mode α.  
The firing of t with α returns the marking M’  defined by 
M’(p) = M(p) − L  (p,t):α  ∪ L (t,p):α  for p ∈ P. We use 
M[t/α>M’ to denote the firing of t with occurrence α 
under marking M. As in traditional Petri nets, two 
enabled transitions may fire at the same time as long as 
they are not in conflict; 

(5) For a marking M, the set [M> of markings reachable 
from M is the smallest set of markings such that M ∈ 
[M> and if M’ ∈ [M> and M’[ t/α>M’’ then M’’ ∈ [M>, 
for some t ∈ T and occurrence mode α (note: concurrent 
transition firings do not produce additional new 
reachable markings); 

(6) An execution sequence M0T0M1T1… of N is either finite 
when the last marking is terminal (no enabled transition 
in the last marking) or infinite, in which case each Ti is 
an execution step consisting of a set of non-conflict 
firing transitions; 

(7) The behavior of N is the set of all execution sequences 
starting from the initial marking. 

 
3.2 Modeling Time Concepts  
 
It is well known that a high-level Petri net model can handle 
time concepts adequately by representing time information as 
an additional element of tokens and adding time constraints 
as additional conjuncts to transitions [10]. Here we introduce 
a special variable τ, and use it exclusively as part of a 
transition constraint. A time expression has the following 
general form: a ≤ τ ≤ b, where a and b indicate the lower and 
upper time bounds respectively. This time expression has the 
same meaning as a time interval [a, b] associated with a 



transition in classical time Petri nets; such that an enabled 
transition t with time constraint a ≤ τ ≤ b is fireable within 
the relative time interval [a, b] or the absolute time interval [θ 
+ a, θ + b]. θ denotes the moment (absolute time) that 
transition t was enabled. Furthermore, we adopt the strong 
fireability rule, i.e., a fireable transition must fire by the time 
limit θ + b. Transitions without timing constraints can be 
viewed to have fireable intervals of [0, ∞].  
 
To model timing concept, we need to modify the dynamic 
semantics of PrT nets. Since tokens now carry timing 
information, we do not explicitly add a time element into the 
definition of markings. Thus we only need to make the 
following changes to the definitions of dynamic semantics of 
PrT nets: 
(3) Given a marking M, a transition t ∈ T, and an occurrence 

mode α, t is α_enabled at M iff the following predicate is 
true: ∀p: p ∈ P.( L (p,t):α) ⊆ M(p)) ∧ Ru(t):α; where R(t) 
= Ru(t) ∧ Rτ(t). Ru(t) is a non-timing constraint, and Rτ(t) 
= a ≤ τ ≤ b is a timing constraint. We do not explicitly 
write the time interval [0, ∞] for non-timed transitions; 

(4a) An enabled transition t with timing constraint Rτ(t) = a ≤ τ ≤ b under marking M with occurrence α is fireable within 
time interval [θ + a, θ + b], and must fire at θ + b if it is 
continually enabled; 
(4b) The firing of fireable transition t under M with α returns 
the marking M’  defined by M’(p) = M(p) − L  (p,t):α  
∪ L (t,p):α  for p ∈ P. We use M[t/α>M’ to denote the firing 
of t with occurrence α under marking M. As in traditional 
Petri nets, two fireable transitions may fire at the same time 
as long as they are not in conflict. 
 
3.3 Nets within Nets 
 
Although we can define a general structure of deeply nested 
nets as in other works, here we elect to just define a two-level 
net structure that is adequate for our study and is much 
simpler. The lower level nets are used to model the behaviors 
of individual computation entity and thus PrT nets are 
appropriate. Since lower level nets serve as tokens of the 
higher level net, some care must be taken to ensure the higher 
level net are well defined. First, the higher level net has its 
own data abstraction and processing capabilities; thus we still 
need to have the full description power of PrT nets. Second, 
individual computation entities have their own behaviors and 
logics that cannot be described by static data. As a result, we 
have to treat net tokens as black boxes. Only their identities 
are visible and accessible in the higher level net. This 
treatment allows these net tokens to be grounded and thus 
well-defined. This treatment also respects the autonomy 
characteristic of the net tokens. Third, the creation and 
removal of a net token can be done through some boundary 
transitions without input places and transitions without output 
places respectively. We can leave the functionality 
(constraints) of these transitions open and view these as the 
responsibilities of an external environment. Fourth, we only 
model the logical mobility of an net token and thus do not 
consider the implementation details with regard to whether to 

use value semantics or reference semantics in passing an 
agent’s information from one location to another.  
 
To model synchronized communications between nets at the 
different levels, we extend the constraint definition to include 
channel expressions. We borrow the input and output 
commands in CSP [7] for representing channel expressions. 
Thus a channel expression is n!e (output) or n?x (input), 
where n is a channel name, e is an expression, and x is a 
variable. Channel names are the identifications of net tokens 
and the identification of the system net. A synchronized 
communication occurs when two fireable transitions at two 
different net levels have a matching pair of input and output 
channel expressions, i.e, a transition in the system net with 
identification sys-id contains net-id ! exp (or net-id ? x), and a 
fireable transition in a net token with identifier net-id 
contains sys-id ? x (or sys-id ! exp). To enforce well-
definedness of communications, the channel names in agent 
nets must be constants; however, a channel name n in the 
system net can be a variable ranging over the net tokens’ 
identifications, which is instantiated with an enabling net 
token identification. This allows great flexibility and concise 
representation of synchronized communications.  
 
During the synchronization, a unidirectional information flow 
occurs such that the value in e of the output command is 
assigned to the variable x of the input command. 
 
We further revise the definitions of dynamic semantics of PrT 
nets to capture the synchronized communications as follows: 
(3)  Given a marking M, a transition t ∈ T, and an occurrence 
mode α, t is α_enabled at M iff the following predicate is 
true: ∀p: p ∈ P.( L (p,t):α) ⊆ M(p)) ∧ Ru(t):α; 
where R(t) = Ru(t) ∧ Rτ(t) ∧ Rc(t). Ru(t) is a non-timing 
constraint, Rτ(t) = a ≤ τ ≤ b is a timing constraint, and Rc(t) =  
n!e | n?x is a channel expression. We do not explicitly write 
the time interval [0, ∞] for non-timed transitions; 
(4a-1) An enabled transition t with a channel expression Rc(t) 
is ready if a transition with a matching channel expression is 
also ready; 
(4a-2) A ready transition t with timing constraint Rτ(t) = a ≤ τ 
≤ b under marking M with occurrence α is fireable within 
time interval [θ + a, θ + b], and must fire at θ + b if it is 
continuously  enabled. 
Note: The effect of information flow during a synchronized 
communication has been reflected in the arc label expressions 
and thus no change to the definition of (4b) from Section 2.2 
is needed. 
 
It is obvious that this modified semantics is only meaningful 
in the context of a net model that consists of multiple levels. 
The synchronized communications only happen vertically not 
horizontally (i.e., no direct communication between two 
agent nets.) The above one-to-one communications can be 
extended to one-to-many (broadcasting) communications. 
With the input and output commands, we can naturally define 
the reactivity and pro-activeness of an agent. 
 
 

 



4. Multi-Agent System Coordination Modeling 
 
4.1 An Agent Model  
 
Distributed and heterogeneous software systems can be 
naturally modeled as multi-agent systems where distributed 
agents are autonomous and encapsulated computation entities. 
Agents rely on communications to perceive external states 
and participate in activities such as resource sharing and 
subtask execution. To build an agent model, a component that 
associates the communications with other members in the 
system is mandatory (Figure 1). As a receiver, agent receives 
message from the environment and performs actions based on 
its decision logic. As a sender, agent sends request or 
responds to the environment. A series of communication acts 
is called a conversation, which is defined as an Interaction 
Protocol [20] that helps designers to effectively implement 
agent models.  
 Decision LogicAgent TasksCommunicationKnowledge Base PolicyEnvironment

 
 

Fig. 1 Generic components of an agent model. 
 
4.2 Coordination Model 
 
Since agents can be geographically distributed and possibly 
running in heterogeneous systems, a coordination mechanism 
in multi-agent systems ensures over all system consistency. 
Although coordination strategies may vary with regard to 
different application domains and system objectives [21], 
some component responsible for coordination service is 
always needed. A coordination component usually has to 
provide up to date information about the system states and to 
coordinate agents based on predefined policy and system 
states. A communication component is also needed to 
facilitate the interactions between agents. (Figure 2)  
 

 
 

Fig. 2 Generic components of a coordination model. 

Agents evolve constantly in a distributed and heterogeneous 
environment; separation of the coordination logic eases the 
complexity of agent models and allows the flexibility to 
modify a coordination mechanism. The coordination model 
also simplifies the interactions among agents. As long as 
agents obey the interaction protocol that complies with the 
coordination model, they can easily join the conversations. 
 
4.3 A Modeling Approach 
 
While many agent-oriented engineering methodologies have 
been proposed [9], few of them dealt with the coordination 
modeling using formal methods.  In [22], the construction of 
a skeleton for individual autonomous agent was studied. 
Agents’ externally visible events relevant to coordination 
were first identified. Based on the events, the skeleton was 
defined using finite state automata. The approach started 
from building a Dooley graph based on the conversations 
among agents. Then, the histories of agents in a conversation 
were analyzed to induce the agent skeleton. The resulting 
meta-model represented by finite state automata was then 
used to validate the specified coordination requirements, 
which was represented by temporal relationships. In [18], 
agent interaction protocols and the ontology of the 
conversation were investigated. The protocols were isolated 
from agent models and considered as resources and 
predefined processes that agents had to follow. A moderator 
encapsulated with a well-identified process was generated for 
each conversation between agents and a Conversation Server 
was defined to keep the information of all active 
conversations. The moderators were used as the coordination 
model to grant roles to agents and to control the ongoing 
conversation. The behavior model was specified using 
CoOperative Objects, a Petri net based formalism integrated 
with object-oriented features. 
 
Our approach is to use the generic models described in 
Section 4.1 and to provide steps to build interaction models 
for multi-agent systems. The coordination model is conceived 
as a broker that matches up agents that exhibit the same 
interests (resources or services) based on predefined 
matching mechanism and published information of agents. 
The agents are therefore categorized into two types, one is the 
requestor, and the other is the provider. The requestors and 
providers register their interests in a public directory 
provided by the broker, who deals with the coordination logic 
that includes public directory service, collecting requests and 
available resources, and matching requestors and providers. 
Based on these assumptions, a two layered multi-agent 
system’s hierarchy is depicted in Figure 3.  
 

 
 

Fig. 3 Hierarchy of multi-agent coordination. 
 



To model the coordination of a multi-agent system with 
layered hierarchy, we use the nested Petri net paradigm 
defined in Section 3. A higher level net describes the 
coordination behaviors with the participation of both active 
and passive tokens. In this case, requestors and providers are 
active tokens, resources and services are passive tokens. 
Active tokens are modeled as agent nets with their own 
interaction models. The communications and information 
flows between nets at different levels are through the channel 
concepts defined in Section 3.  
 
4.4 Constructing Interaction Models 
 
We define an Interaction Model to handle the coordination 
behaviors of a set of possible agent conversations. A 
Conversation is an execution sequence, which is initiated by 
a requestor and ended with a successful commitment or 
terminated by failure resulted from any participant that 
engaged in the conversation. It is obvious that an ongoing 
conversation will affect an agent’s local behavior, thus an 
interaction model must comply with certain predefined 
interaction protocols or the conversation will not be 
meaningful.  
 
We use an e-market example to demonstrate the application 
of the net-within-net paradigm to model the coordination of 
multi-agent system. Let us consider a simple conversation 
scenario at an e-market where seller and buyer auctioning 
goods.  The conversation is in a format that includes sender: 
communicative act, message content and receiver.  
 
Seller: request, ‘sell book 30’, broker 
Broker: agree, ‘posted book 30’, seller 
Buyer: request,’ buy book 25’, broker 
Broker: inform, ‘sell book 25’, seller 
Seller: commit, ‘commit book 25’, broker 
Broker: inform, ‘buy book 25’, buyer 
Buyer: commit, ‘commit book 25’, broker 
 
We use higher level of abstraction to represent the message 
for demonstration purpose and abstract away the negotiation 
process about the payment transaction and shipping detail 
between seller and buyer, since it is not relevant to the 
coordination behavior. The conversation starts from a request 
of a seller who wants to sell book for 30 dollars, the broker 
agree the request and posts the information. A buyer sends a 
request to broker for buying book. The broker informs the 
seller that there is someone wants to buy book for 25 dollars 
and seller agrees the price. The broker informs the buyer and 
the deal is committed by the buyer. 
 
First of all, there are three entities engaged in the 
conversation: broker, seller and buyer. The broker is served 
as the coordinator thus modeled as the higher level host net. 
The host net provides the information service of auctioning 
goods. The buyer and seller are participants in the activity of 
auctioning goods, therefore modeled as agent nets at lower 
level. Follow the generic model in Figure 1 and 2; each 
communication component is specified with transitions and 
places as in Figure 4. 

 

 
 

Fig. 4 Transformation of communication net. 
 
Next step is the transformation of the actions. The agent tasks 
component in Figure 2 is the set of actions that agent possibly 
perform. Similarly, the coordinate component in Figure 3 is 
the set of actions that the broker possibly used to coordinate 
agents. In the conversation scenario, the communicative acts 
in verb represent actions. These actions are transformed into 
transitions. For example, seller has actions ‘request’ and 
‘commit’, which imply proactive and reactive behavior 
respectively and should be linked to a message outgoing 
place. Upon messages received, seller’s decision logic 
decides further action to be taken according to local 
knowledge and policy. Here, we abstract the decision logic 
into one transition, knowledge and policy into two places. As 
a result, Figure 5 shows the action net of the seller. 
 

 
 

Fig. 5 Seller’s action net. 
 

Finally, let us reconsider the communication part of the 
model. Since the agent communication is to the upper level 
host net, the information is sent to external entities and not to 
local. Thus, the transitions for the communications must be 
differentiated from regular transitions to represent external 
communications. From Figure 4, the transition ‘send’ is for 
output messages; we add the output channel notation to 
represent information flows toward outside of the model. On 
the other hand, transition ‘receive’ is augmented with input 
channel notation to represent information flows from outside 
of the model. We concatenate the nets in Figure 4 and 5; a 
resulting interaction model for seller is shown in Figure 6. 
Note that we use dash line to represent a transition 
augmented with channel notations. The interaction models 
for broker and buyer can be built in the same manner. 
 

 
 

Fig. 6 Seller’s abstract interaction model. 
 

The interaction model in Figure 6 is incomplete in the sense 
of deriving from a simple conversation, while a set of 



conversations is possible. Designer would want to list as 
many scenarios as possible and extract the verb imbedded in 
a conversation as the actions to build a more complete model. 
It is preferable that a set of standard interaction protocols is 
predefined for agent model designers to follow. In the 
following section, we give a more detail model by adding 
exception handling and semantics definitions. 

 
4.5 Interaction Models of Simple Conversation Scenario 
 
There is only one goods in this example, thus we abstract 
away the knowledge component, which is not relevant. The 
preset price of the goods is the policy of agent. In this 
example, seller and buyer have the same interaction model 
(Figure 7) and the broker’s interaction model is shown in 
Figure 8. 
 

 
 

Fig. 7 Seller’s and buyer’s interaction model. 
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// Type MESSAGE is a Cartesian product of predefined type 
which can represent message id, sender id, action, price and 
receiver id. PRICE is a preset price defined by an integer. 
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//Transition ‘receive’ and ‘send’ are used to input messages 
and output messages through channels respectively. 
Transition commit is enabled when there is a previous request 
exists in place p5 and a response message for that request is 
also available. If the message content can not be identified, 
the message is discarded through transition ‘fail’. Transition 
‘set request’ inputs message token from outside of the model. 
Transition ‘reasoning’ decides what actions to be taken next 
based on received message. The initial markings M0 assuming 
that an agent id a1 request to sell book for 30 dollars and the 

message with id #1 goes to broker id s1, the minimum 
acceptance price is set to 25 dollars. 

 sendreceive p2commit informp1 p3p4participate unparticipateimim om omD’D Da aD D’im agreea aim om
 

 
Fig. 8 Broker’s interaction model. 
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//Type MESSAGE and DIRECTORY are of the same type that 
is defined in the agent model. Type AGENTNET defines the 
active token, which is also a net. 
 
Transition Constraints: 
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// Transition ‘receive’ and ‘send’ are used to input messages 
and output messages through channels respectively. 
Transitions ‘participate’ and ‘unparticipate’ allow agent nets 
enter and out of the system. Transition ‘agree’ sends a 
successful posted information message back to agents. 
Transition ‘inform’ notify agent that there is a match deal. 
When the deal is committed, the information is deleted from 
the directory through transition ‘commit’.  
 
5. Concluding Remarks 
 
We have provided a formal net-within-net paradigm and 
demonstrated how to apply it to model the coordination of 
multi-agent systems. A formal model enables us to better 
understand system requirements and critical design issues and 
facilitate formal analysis to detect potential problems in 
system design at an earlier stage. 
 
To extend our approach to model a complete multi-agent 
system, there are several major research issues to be solved. 
First, individual agent’s decision logic decides the degree of 
autonomous and the behaviors of how an agent should react. 
The decision logic largely depends on the knowledge base of 
the agent. Thus, knowledge representation in a Petri net 
model is a challenge issue. Second, all entities have to speak 



the same language in order to understand each other and the 
content of the exchanged information, which is usually 
domain specific. Third, message exchanges in a multi-agent 
system are often asynchronous, i.e. agents may not need to 
respond immediately or wait for responses. On the other hand, 
there may still be some temporal dependency among tasks. 
Fourth, some of the methodologies for multi-agent systems 
using the organization view, for instance in [23]. It is possible 
for an agent to be assigned different roles based on the tasks 
required.  
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