LECTURE 10: THE WHITNEY EMBEDDING THEOREM

1. THE WHITNEY EMBEDDING THEOREMS

Let M be a smooth manifold of dimension m. A natural question is: which mani-
folds can be embedded into RY as smooth submanifolds?

Theorem 1.1 (The Whitney embedding theorem: easiest version). Any compact man-
ifold M can be embedded into RN for sufficiently large N.

Proof. Let {p;, Ui, Vi}1<i<k be a finite set of coordinate charts on M so that U =
{U; | 1 <i <k} is an open cover of M. Let {p; | 1 < i < k} be a partition of unity
subordinate to Y. Let ¢;(p) = pi(p)¢i(p), extended to 0 outside U. Define

o.M —>Rk(m+1), p—= (P1(p), -+, @), pr(p)s -+, P(D))-

We claim that @ is an injective map. In fact, suppose ®(p;) = ®(p2). Take an index i so

that pi(p1) = pi(p2) # 0. Then p1,pa € supp(pi) C Us. It follows that ;(p1) = wi(p2).
So we must have p; = p, since ; is bijective.

Next let’s prove that ® is an immersion. In fact, for any X, € T,M,

d®y(Xp) = (Xp(p1)er(p) + p1(p)(dip1)p(Xp), -+
Xp(or)r(D) + pr(P)(dr)p(Xp), Xp(p1), - Xp(pr))-
It follows that if d®,(X,) = 0, then X,(p;) = 0 for all ¢, and thus p;(p)(de;),(X,) =0

for all 4. Pick an index i so that p;(p) # 0. We see (dy;),(X,) = 0. Since y; is a
diffeomorphism, we conclude that X, = 0. So d® is injective.

Since ® is an injective immersion, and M is compact, ® must be an embedding. [J

Theorem 1.2 (The Whitney embedding theorem: median version). Any compact
manifold M of dimension m can be embedded into R*™ ! and immersed into R*™.

Proof. Suppose we already have an embedding ® : M — RY with N > 2m + 1. We
will show that we can produce an embedding of M in RV~

To do so, for any [v] € RPY ™!, we let
P[v] :{UERN | u-UZO}ERN_l

be the orthogonal complement of [v] in RY. Let ¥p, : RY — P, be the orthogonal
projection to this hyperplane. We claim that the set of [v]’s for which ®p,; = U,y 0 ®
is not an embedding has measure zero in RPY !, hence it is possible to choose [v] so
that @, is an embedding. Note that if @, fails to be an embedding, we must have
either @, is not injective, or P, is not an immersion.
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First let’s consider [v]’s so that ®p, is not injective. Then one can find p; # p,
so that @, (p1) = Pp(p2), i.e. 0# ®(p1) — (p2) lies in the line [v]. In other words,
[v] = [®(p1) — P(p2)]. So [v] must lie in the image of the map

a: (M x M)\ Ay — RPY (pr,pa) = [®(p1) — @ (p2)],

where Ay = {(p,p) | p € M} is the “diagonal” in M x M. Since (M x M)\ Ay, is of
dimension 2m < N — 1, Sard’s theorem implies that the image of « is of measure zero
in RPV .

Next let’s consider [v]’s so that ®p, is not an immersion. Then there exists some
p € M and some 0 # X, € T,M so that (d®p,),(X,) =0, i.e. (dVp))a@m) (dP),(X,) =
0. Since Wy, is linear, dV¥p) = V). It follows that 0 # (d®),(X,) is in [v], i.e.
[v] = [(d®),(X,)]. In other words, [v] lies in the image of

B:TM\A{0} — R]P)Nila (p, Xp) = [(dP),(Xp)],

where TM\ {0} = {(p, X,) | X, # 0} is an open submanifold of T'M. Again since T'M
has dimension 2m < N — 1, by Sard’s theorem, the image of 3 is of measure zero in
RPY!

To see that M can be immersed into R?™, we first embed M into R?"*!, then repeat
the last step, with the modification that we choose X, € T, M so that | X,| = 1. O

Theorem 1.3 (The Whitney embedding theorem: regular form). Any smooth manifold
of dimension m can be immersed into R*™ and embedded into R*™+1,

Proof. c.f. Lee’s book. O

Theorem 1.4 (The Whitney embedding theorem: strongest version). Any smooth
manifold of dimension m can be immersed into R*™~1 and embedded into R*™.

Remark. Well, there exists ever stronger results! e.g.

e Any compact orientable surface embeds to R3.

e For m # 2% any smooth m-manifold embeds to R**~!. (But if m = 2% RP™
cannot be embedded into R*™1).

e Any smooth m manifold can be immersed into R*™~%™) where a(m) is the
number of 1’s that appear in the binary expansion of m.

2. EXAMPLES
Example. (Embedding of T? = S x S! into R3:)
Recall that
T2 = §' x5 = {0, 0% 0 | () + (2 = L)+ ) = 1),
Then
f:T? =R (2h 2% 2% 2%) = (212 + 2%), 22(2 + ), 2*).
is an embedding from 72 to R3. In fact, one can decompose f as f = g o 1, where
¢ : T? < R* is the standard embedding, and

g:R* = R® (222 2% 2?) = (212 4+ 2%), 22(2 + %), ).
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So Im(de), at p = (2!, 22, 23, z?) is spanned by X, = (z?, —z',0,0) and Y, = (0,0, z*, —2?),
and
2423 0 a2t 0
dg = 0 2+a2% 22 0
1

Now it is easy to check that at any p = (2!, 2, 23, 2*) € T?,
dap(X,) = (a2 + %), (2 4 %), 0
dap(Yy) = (', %2, —o?)

are linearly independent.

Ezample. (Embedding of RP? into R*:)
Consider the map

f:8%~=RP* - R [(z' 2% 2%)] — ((2")? — (2% 2'2? 2'23 2%2?).
Obviously this is well-defined. It is not hard to check that f is injective.
To prove that f is immersion is a little it more complicated. Since the map
(zh, 22, 2%) s (2!, 2% 27)]
is a local diffeomorphism from S? to RP?, it is enough to check that the map
g:S? =R (22 2% = ((0h)? — (22)?, 2'2?, 2'2®, 2%%).
is an immersion. To prove this, we note that from the decomposition
g: 52 LR L R
we have Im(dg) = dh(Im(de)), where
h:R* =R (2822 2°) = ((21)? — (2%)% 2'2? 2'2®, 2%2?).
Obviously Im(de) is spanned by any two of the vectors X, = (2% —z',0), Y, =
(23,0, —2') and Z, = (0,23, —2?) at the point p = (2!, 2% 23) € S? and

2¢t =222 0

x? x! 0

dh = x3 0 !
0 3 x?

It follows that
dh(X,) = (42, (22)? — (a2, %%, —a'a?),

dh(Y,) = (2z'2® 223 (2°)? — (21)?, —2'2?),

dh(Z,) = (=22%2° o'2® —x'a?, (2%)? — (2%)?).
Now one can check that at any p = (2!, 22, 23) € 52, two of these vectors are linearly
independent.



