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Abstract

There is considerable interest in mining neuroimage
data to discover clinically meaningful connectivity pat-
terns to inform an understanding of neurological and
neuropsychiatric disorders. Subgraph mining models
have been used to discover connected subgraph pat-
terns. However, it is di�cult to capture the complicated
interplay among patterns. As a result, classification per-
formance based on these results may not be satisfactory.

To address this issue, we propose to learn non-linear
representations of brain connectivity patterns from deep
learning architectures. This is non-trivial, due to the
limited subjects and the high costs of acquiring the data.
Fortunately, auxiliary information from multiple side

views such as clinical, serologic, immunologic, cognitive
and other diagnostic testing also characterizes the states
of subjects from di↵erent perspectives. In this paper, we
present a novel Multi-side-View guided AutoEncoder
(MVAE) that incorporates multiple side views into
the process of deep learning to tackle the bias in the
construction of connectivity patterns caused by the
scarce clinical data. Extensive experiments show that
MVAE not only captures discriminative connectivity
patterns for classification, but also discovers meaningful
information for clinical interpretation.

1 Introduction

In many neurological and neuropsychiatric disorders,
ongoing neural changes may be clinically silent in the
earliest stages. By the time clinical symptoms present,
injury to the brain may be irreversible. Early detec-
tion has transformative potential for preservation of the
brain cognitive function and for alleviating the burden
of neural injury and associated disability. For brain in-
terrogation and detection of early anomalies, the last
several decades have witnessed rampant progress in non-
invasive imaging technologies for acquiring quantitative
brain data in vivo, including unprecedented capabili-
ties for generating vast data concerning structural (Dif-
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fusion Tensor Imaging, abbreviated as DTI) and func-
tional (resting state fMRI) brain connectivities.

The potential of mining the vast image data for
the detection of alterations in neurological disorders has
been demonstrated in many studies [3, 8, 15, 16, 19, 24].
However, connectivities of brain regions are not investi-
gated in these studies. Thus, the results are usually hard
to interpret and they cannot help practicing clinicians to
better understand the underlying disease mechanisms.
Therefore, discovering clinically meaningful patterns as-
sociated with disrupted brain connectomes has recently
emerged as a potentially powerful strategy for identify-
ing early changes in neurological disorders [6, 9, 13].

Brain connectomes are often represented as graphs,
where nodes represent brain regions and edges represent
connections between pairs of regions. Subgraph pattern
mining has been used to discover connected subgraph
patterns [6, 9, 13]. However, connections between
brain regions are characterized by massive complexity.
It is di�cult for traditional subgraph mining models
to capture the complicated interplay among patterns.
When the selected subgraph patterns are employed
for disease diagnosis, the classification performance is
often not satisfactory (e.g., around 60% of accuracy
for HIV disease [13]). Hence, existing approaches are
unable to find both discriminative and clinically useful
connectivity patterns for the study of brain disorders.

To address this issue, we propose to learn non-
linear representations of brain connectivity patterns
from deep learning architectures. This is non-trivial
because imaging studies of neurologic disorders often
involve small samples due to the limited number of
available patients of interest and the high costs of
acquiring the data. Nevertheless, available patients
may be very well-characterized with many other sources
of auxiliary data from clinical, serologic, immunologic,
cognitive and other diagnostic testing. This auxiliary
information characterizes the state of subjects from
di↵erent perspectives that may also be meaningful for
brain status, providing multiple side views.

In this paper, we devise a deep architecture named
Multi-side-View guided AutoEncoder (MVAE), which
can e↵ectively discover useful patterns by exploiting
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the auxiliary information associated with brain con-
nectomes. We first apply a stacked autoencoder in
MVAE to learn non-linear representations of connectiv-
ity patterns from labeled data. Because the autoencoder
alone can overfit the scarce training data, we further ex-
ploit the multiple side views to guide the representation
learning process.

Note that a simple concatenation of the side views
and the brain connectome data is undesirable, since the
non-linear features learned in the autoencoder would be
mixtures of both brain region connectivities and other
auxiliary features, making the learned features more
di�cult to interpret by clinical researchers. On the
contrary, we propose a principled method to infer the
pairwise similarities between instances from auxiliary
data, such that the stacked autoencoder can learn
complex connectivity patterns w.r.t the geometry of the
data on a low-dimensional manifold [20]. By properly
incorporating side views into the autoencoder method,
MVAE can discover both discriminative and clinically
useful connectivity patterns even with a limited number
of brain connectomes.

Our contributions can be summarized as follows:

• We formulate the problem of learning deep connec-
tivity patterns of brain connectomes with the help
of multiple side views (Section 4). To the best of
our knowledge, this is the first work that mines dis-
criminative and clinically significant brain connec-
tome patterns using non-linear deep architectures.

• We derive the pairwise relationships between in-
stances from multiple side views and verify the
importance of such relationships in real-world
datasets (Section 3). Based on the derived geomet-
ric information, we propose MVAE and incorporate
side views into the process of deep learning to tackle
the bias in the construction of connectivity patterns
caused by the scarce clinical data.

• Through extensive empirical studies on real brain
connectomes, we demonstrate that MVAE outper-
forms all the baseline methods with an improve-
ment of 28% and 22% of accuracy on average for
fMRI and DTI, respectively (Section 5.2).

• We visualize the discriminative patterns learned
from MVAE (Section 5.6). The rich information
embedded within these patterns can be used to
discover clinically meaningful patterns associated
with disrupted brain connectivities.

2 Preliminary

In this section, we first describe the neuroimage datasets
and the auxiliary information used in this study. We
then present the notations and the problem formulation

Table 1: Important Notations
Symbols

Definitions

X feature representations of brain connectomes

y class labels

Z multiple side views for X
A learned features for X

N number of data instances

M number of features for X
Dk dimension of the k-th view

sk
pairwise similarity under the k-th view

K number of side views associated with X
T number of learned features

W weight parameters for autoencoder

b bias parameters for autoencoder

L number of layers for autoencoder

hl number of hidden features for layer l

of learning deep connectivity patterns of brain connec-
tomes with the help of multiple side views. Table 1 lists
the main notations we use through this paper.

2.1 Data Description In this work, we focus on
datasets collected from the Chicago Early HIV Infection
Study at Northwestern University [17]. This study
consists of records of 56 patients with HIV (positive)
and 21 normal controls (negative). Both fMRI and
DTI images are included. In addition to neuroimages,
hundreds of other variables are available for each subject
in this study, including clinical, immunologic, serologic,

cognitive measures. While many brain image datasets1

are publicly available, usually rich side view information
is not included. Therefore, it is not possible to evaluate
the e↵ectiveness of incorporating multiple side views
into deep learning on these public datasets.

We derive brain connectomes from fMRI and DTI
images following the construction steps in [5]. In addi-
tion, we study seven groups of measurements associated
with brain connectomes. They are neuropsychological

tests, flow cytometry, plasma luminex, freesurfer, over-

all brain microstructure, localized brain microstructure

and brain volumetry. Each group can be considered as a
distinct view that partially reflects the status of a sub-
ject. Di↵erent groups of measurements provide comple-
mentary information from di↵erent perspectives. More-
over, we normalize both the brain connectome features
and the side view features to the range of [0, 1] before
employing the proposed model.

2.2 Problem Description Let X = {X
1

, ...,XN}
denotes the brain connectome dataset of N subjects.
Xp = {xp

1

, ..., xp
M} is the p-th set of features in X ,

which represents the brain connectome of the p-th
subject. The features in Xp denote the connections

1
http://en.wikipedia.org/wiki/List_of_neuroscience_

databases
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between regions of interest (ROIs) in a brain. The
values of these features derived from fMRI describe the
functional correlations between ROIs, while those from
DTI describe the structural connectivities (in terms
of the number of connecting fibers) between ROIs.
y = {y

1

, ..., yN} denotes the class labels, where yp 2
{�1,+1} is the binary class label of Xp. +1 means a
brain is abnormal with a neurological disorder while �1
means a normal brain connectome.

Suppose we have K side views associated with a
brain connectome. Given the p-th brain connectome
Xp 2 X , we use Zp = {zp

1

, ..., zp
K} to represent the side

view information. The k-th side view zp
k contains a set of

features zp
k = {zp

k1, ..., z
p
kDk

}, where Dk is the dimension
of this view. We denote the multiple side views for X
as Z = {Z1, ..., ZN}.

Given the brain connectomes X , our goal is to
learn deep latent representations A = {A

1

, ...,AN}
by exploring multiple side views. Ap = {ap1, ..., apT }
is the set of the hidden features for the p-th subject,
where each hidden feature can represent a non-linear
combination of brain region connections and T is the
number of hidden features. From A, we can discover
various deep connectivity patterns of brain connectome.

Although taking the auxiliary information into con-
sideration is promising, how to use the tremendous
amount of side views and whether they are useful are
unclear. In the following section, we will introduce a
way of exploiting the multiple side views and conduct
a data analysis to verify whether valuable information
can be extracted to guide the process of deep learning.

3 Analysis of Multi-side-view Guidance

Brain connectomes are represented in complex graph
structures while the multiple side views exist in the form
of vector representations. This introduces the problem
of how to leverage the relationship between the graph
structures and multiple side views, and how to facili-
tate deep learning by exploring the vector-based auxil-
iary views. A simple way to utilize the side information
is to concatenate it with brain connectomes. However,
such transformation would fail to leverage the under-
lying correlations between di↵erent views. Moreover,
direct employment of deep learning methods on such
concatenation would discover non-linear features that
are mixtures of both brain connectivities and side view
features, making the learned features less interpretable
for clinical researchers.

In this paper, we take advantage of the pairwise re-
lationships between instances derived from the multiple
side views to guide the process of deep learning. Sim-
ilarity is typically an important type of pairwise rela-
tionship that measures the relatedness between any two

Table 2: The Max P-values of Hypothesis Testing for
Di↵erent View Combinations

Datasets

#views #combinations fMRI dataset DTI dataset

1 7 1.2700e-02 1.0400e-02

2 21 1.3000e-03 4.9674e-05

3 35 1.5999e-04 1.7004e-06

4 35 9.8788e-06 2.6410e-08

5 21 2.0746e-09 1.2150e-12

6 7 5.0407e-14 1.6554e-19

7 1 4.1716e-28 3.1066e-33

data instances. In this section, we investigate the con-
sistency of pairwise similarities between auxiliary views
and pre-specified label information. Our basic assump-
tion is that, if two instances are similar under all side
views, they should have higher probability to be with
the same class label (both positive or negative). We
form a two-sample one-tail t-test to validate the above
hypothesis in both fMRI and DTI datasets.

Give two data instances Xp and Xq and K (1 
K  K) side views, we denote sk

pq as the pairwise

similarity from the perspective of the k-th view. sk
pq

can be calculated according to zp
k and zq

k. For example,
we can utilize the radial basis function (RBF) kernel to
calculate the pairwise similarity:

sk
pq = exp(�kzp

k � zq
kk

2),

where � = � 1

Dk
. The similarities from multiple views

can be simply multiplied to denote the overall pairwise
similarity spq over K views: spq =

QK
k=1

sk
pq. The

resulting similarity will be high only if all of the base
similarities are high.

The pairwise similarity set over K views can be
denoted as S. In order to conduct a two-sample one-tail
t-test, we split S into two sets Ssim = {spq|ypyq = 1}
and Sdis = {spq|ypyq = �1}. We sample an equal
number of elements from each set, denoted as Ssim

and Sdis, and test whether there is su�cient evidence
to support the hypothesis, i.e., the pairwise similarity
value in Ssim is larger than that in Sdis. The null
hypothesis is H

0

: µsim � µdis  0, and the alternative
hypothesis is H

1

: µsim � µdis > 0. Here µsim and µdis

are the sample means of Ssim and Sdis, respectively.
We conduct a t-test on every combination of K side

views and present the maximum p-values in Table 2.
The results validate the hypothesis that the pairwise
similarity under multiple side views is clearly correlated
with that in the label space, with significance level ↵ =
0.05. Further, we observe that, as the number of side
views increases, the likelihood of having the same label
becomes increasingly stronger. This preliminary study
verifies the usefulness of multiple side views and also
paves the way for the design of the MAVE architecture.
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Figure 1: The procedure of MVAE. Xp and Xq rep-
resent two brain connectomes. Ap and Aq are deep
hidden features learned by MVAE.

4 Methodology

In this section, we first introduce the basic model of
the proposed MVAE with a shallow architecture (one
hidden layer) and the optimization algorithm. After
that, we describe how to stack MVAE to form a deep
architecture, where higher-level features can be learned.

4.1 MVAE Framework Before proceeding, we first
illustrate an example of the procedure of MVAE on two
brain connectomes (Xp and Xq) associated with their
multiple side views in Figure 1. The pairwise similarities
of the two brain connectomes are first extracted from
multiple side views and then encapsulated into MVAE
to help learn the hidden features Ap and Aq. Each hid-
den feature in Ap (or Aq) represents a non-linear com-
bination of brain region connections. Hence, MVAE can
discover various components of disconnected subgraph
patterns for the brain connectome from Ap (or Aq),
while traditional subgraph pattern mining approaches
cannot. Such patterns can help clinical neuroscientists
understand disrupted connectivities.

In order to learn non-linear representations of con-
nectivity patterns, we adopt the classic autoencoder
(AE) using the self-reconstruction criterion [1]. Autoen-
coder is an unsupervised feedforward neural network
that applies backpropagation by fitting the input us-
ing the reconstructed output. It is often used to reduce
high-dimensional features and pre-train deep learning
models.

The basic AE has three layers: an input layer, a
hidden layer and an output layer. For simplicity, we
use A(l) and hl to denote features (neurons) and the
number of features in layer l, respectively. Suppose we
have L layers in total. Here L = 3. Given the p-th data

instance Xp = {xp
1

, ..., xp
M}, A

(1)

p = Xp is the input
layer (i.e., layer 1) and h

1

= M . We can learn a hidden

representation A
(2)

p = {a(2)p1 , ..., a
(2)

ph2
} by a feedforward

propagation, where h
2

= T is the number of features to

be learned. Each feature a
(2)

pi in A
(2)

p represents a non-
linear combination of brain region connections for Xp,
from which we can get a connectivity pattern for clinical

neurology research. After the feedforward pass, A
(2)

p is
mapped back to a reconstruction X̂p = {x̂p

1

, ..., x̂p
M}.

We denote the output as A
(L)

p = X̂p, where hL =

h
1

. In general, A
(l+1)

p is computed as: A
(l+1)

p =

f(W(l)A
(l)
p +b(l)), where W(l) 2 Rh(l+1)⇥hl is a weight

matrix, b(l) 2 Rh(l+1) is a hidden bias vector, and
f(·) is called the activation function, e.g., the sigmoid

function f(⌧) = 1

1+exp(�⌧) . Each element w
(l)
ij 2 W(l)

is a parameter associated with the connection between

a
(l)
pj and a

(l+1)

pi . Each element b
(l)
i 2 b(l) is the bias

term associated with a
(l+1)

pi . Here each hidden neuron

a
(2)

pi corresponds to a non-linear combination of brain

connectivities for Xp and each weight w
(1)

ij shows the
strength (contribution) of the connectivity xpj 2 Xp to
the combination.

Given N data instances X = {X
1

, ...,XN}, the
overall cost function of the classic AE is:

JAE(W,b) =
1

N

NX

p=1

1

2
kX̂p � Xpk2 +

�

2

L�1X

l=1

kW(l)k2,

where the first term is the average of reconstruction
error on dataset X using sum-of-squares. The second
term is a regularization term (also called a weight decay
term) to prevent over-fitting. � is the weight decay
parameter.

In order to reduce noise, we add a third term
�
Ph2

j=1

KL(⇢k⇢̂j) as a sparsity term on the hidden
layer. Here KL(⇢k⇢̂j) is the Kullback-Leibler (KL)
divergence between two Bernoulli random variables with
mean ⇢ and ⇢̂j , respectively. It aims to control the
sparsity of the weight and bias parameters W and b.
⇢ is the sparsity parameter that specifies the level of
sparsity. � is the weight of the sparsity term in the
overall cost function. We use KL(⇢k⇢̂j) = ⇢ log ⇢

⇢̂j
+

(1 � ⇢) log 1�⇢
1�⇢̂j

to penalize ⇢̂j deviating significantly

from the sparsity parameter ⇢. ⇢̂j = 1

N

PN
p=1

a
(2)

pj is
the average activation of the j-th hidden unit.

Since there are limited subjects due to the high
cost of clinical experiments, it is nontrivial to directly
apply AE to brain connectomes. Therefore, we take
advantage of the auxiliary information associated with
brain connectomes (i.e., multiple side views) to address
the issue of data scarcity. Our aim is to encapsulate
multiple side views into the overall cost function of
AE so that the pairwise relationship of the learned
features is consistent with that in the space of side
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views. Specifically, if two instances Xp and Xq are
similar under multiple side views (i.e., spq is high), we

hope the hidden representations A
(l)
p and A

(l)
q in layer

l are also close to each other. On the other hand, if two

instances are dissimilar under side views, A(l)
p and A

(l)
q

should be far away from each other. Since the basic AE

has only one hidden layer, we use Ap to denote A
(2)

p for
simplicity.

Given the cost function of AE with a sparsity
constraint, we propose to add the fourth term as a multi-
side-view guidance term and the goal of the proposed
MVAE framework is to minimize the following objective
function:

J (W,b) =
1

N

NX

p=1

1

2
kX̂p � Xpk2 +

�

2

L�1X

l=1

kW(l)k2

+ �

h2X

j=1

KL(⇢k⇢̂j) +
µ

2

NX

p=1

NX

q=p+1

spqkAp � Aqk2.

The multi-side-view guidance term is designed to help
the learned hidden featuresA follow the geometric of the
side view information as in [20]. Here spq is employed
to control the pairwise distance of the learned hidden
features. A higher spq indicates that two instances
are similar under multiple side views. By minimizing
the multi-side-view guidance term, Ap and Aq would
become closer to each other. Conversely, a lower spq

will help Ap and Aq be far away from each other if
we minimize the multi-side-view guidance term. In
J (W,b), µ is a guiding parameter to control the
influence of multiple side views. The objective of the
proposed MVAE framework is to minimize J (W,b)
with respect to the parameters � = {W,b}.

4.2 Optimization Algorithm In order to solve the
objective function of MVAE, we apply the batch gradi-
ent descent algorithm to learn W and b. During each

iteration, the parameters are updated as follows: w(l)
ij =

w
(l)
ij � ↵ @

@w(l)
ij

J (W,b) and b
(l)
i = b

(l)
i � ↵ @

@b(l)i

J (W,b),

where ↵ is the learning rate.
To compute the partial derivatives, we apply the

backpropagation algorithm. The basic idea is to com-
pute an error term for each neuron after the feedforward
step. The error term measures how much a neuron is
responsible for any errors in the output. Given a data
instance Xp = {xp

1

, ..., xp
M}, we denote the error term

�(l)
i (p) for the i-th neuron in the l-th layer. For the

output layer (i.e., l = L), the error terms can be di-

rectly measured by the reconstruction error: �(L)

i (p) =
@

@g(L)
pi

�
1

2

k xp
i � x̂p

i k2
�
= (x̂p

i � xp
i ) · x̂

p
i · (1� x̂p

i ), where

Algorithm 1 The MVAE algorithm
Input: A set of brain connectomes X = {X1, ...,XN} and mul-

tiple side views Z = {Z1, ..., ZN} associated with X , learning
rate ↵, weight decaying parameter �, sparsity parameter ⇢,
weight of the sparsity term �, and multi-side-view guidance
parameter µ.

Output: An optimized parameter set � = {W,b}.
1: Calculate pairwise similarities for X under each side view
2: Multiply the similarities under di↵erent side views together
3: Initialize � = {W,b} randomly
4: while NOT converged do
5: Perform a feedforward pass on X
6: Perform the backpropagation on X
7: Update �
8: end while

g
(l)
pi is the i-th element in g

(l)
p = W(l�1)A

(l�1)

p +b(l�1).

Specifically, g(l)pi =
Ph(l�1)

j=1

w
(l�1)

ij a
(l�1)

pj + b
(l�1)

i .

For the error term �(l)
i (p) of the hidden neuron i

in the l-th layer, we can compute it according to the
weighted average of the error terms of neurons that use

a
(l)
pi as an input:

�(l)
i (p) =

2

4
h(l+1)X

j=1

w
(l)
ji �

(l+1)

j (p) + �

✓
� ⇢

⇢̂i
+

1� ⇢

1� ⇢̂i

◆

+µN
NX

q=1,q 6=p

spq(a
(l)
pi � a

(l)
qi )

3

5 · a(l)pi · (1� a
(l)
pi ).

With the error terms, we can rewrite the it-

erative update of parameters: w
(l)
ij = w

(l)
ij �

↵
h⇣

1

N

PN
p=1

a
(l)
pj �

(l+1)

i (p)
⌘
+ �w

(l)
ij

i
and b

(l)
i = b

(l)
i �

↵
⇣

1

N

PN
p=1

�(l+1)

i (p)
⌘
.

The overall procedure of our proposed MVAE is
summarized in Algorithm 1.

4.3 Building Deep Architectures In this section,
we stack the above shallow MVAE to build a deep archi-
tecture in a similar way of stacking autoencoders in [2].
The stacked MVAE applies a two-step procedure: an
unsupervised pre-training and a supervised fine-tuning,
to achieve e↵ective performances. In the unsupervised
pre-training step, a greedy layer-wise strategy is em-
ployed to train each layer as a MVAE as shown in Figure
2. We first learn the parameters for the first hidden layer
according to Algorithm 1, and then take the output of
the first hidden layer as the input of the second hidden
layer. Therefore, the parameters of the second hidden
layer can be optimized in a similar way by Algorithm 1.
We repeat such training for subsequent hidden layers in
our proposed stacked MVAE model. This greedy layer-
wise method has been proven to be very useful in pre-
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Figure 2: An example of MVAE-2.

training [7]. Unlike the pre-training of stacked autoen-
coder, in our model, we take advantage of multiple side
views during the training of each layer. In other words,
the information extracted from multiple side views helps
guide the next layer as well as the current layer to learn
accurate pairwise relationships between data instances.
In this paper, we denote the stacked MVAE (or AE)
with n hidden layers as MVAE-n (or AE-n).

Once the stacked MVAE is built, hidden represen-
tations in the top-level layer can be used as input to
any supervised learning algorithm as shown in Figure
2. In our proposed stacked MVAE, we add a logistic
regression model on top of the last layer, thereby yield-
ing an unsupervised deep model to supervised learning.
User-provided labels are considered as supervised infor-
mation in this supervised fine-tuning step and a super-
vised backpropagation technique is applied to fine tune
all the parameters of the whole system.

5 Experiments

In this section, we conduct extensive experiments to
evaluate the proposed MVAE on real-world fMRI and
DTI datasets as summarized in Section 2.1.

5.1 Compared Methods In order to demonstrate
the usefulness of the connectivity patterns identified
by the proposed MVAE, we compare our method with
several state-of-the-art models that aim at selecting
discriminative subgraph patterns. We summarize the
compared methods as follows:

• gSSC: It is a semi-supervised subgraph feature
selection method [12] based upon both labeled and
unlabeled graphs.

• Frequent Subgraphs (Freq): In this approach,
the top-k frequent subgraph features are selected. It
is totally unsupervised.

• Discriminative Subgraphs (Conf, Ratio, Gtest,
HSIC): They are supervised subgraph selection methods
[13] based upon confidence, frequency ratio, G-test

score and HSIC, respectively. The top-k discriminative
subgraph features are selected in terms of di↵erent
discrimination criteria.

• AE-1: It is AutoEncoder (AE) with one hidden
layer.

All the above baseline methods ignore the usefulness
of side views in learning discriminative patterns from
brain connectomes. The following two approaches use
multiple side views to facilitate learning connectivity
patterns.

• gMSV: It is a subgraph selection method using
multiple side views [5].

• MVAE-1: It is the proposed MVAE method with
one hidden layer.

In order to test the usefulness of the connectivity
patterns, we feed the learned features to a logistic
regression classifier for each compared method. For the
subgraph mining models, we select the top 100 features
as the input of the classifier. For a fair comparison, we
also set 100 as the number of hidden neurons (features)
for AE-1 and MVAE-1. The guidance parameter µ for
MVAE-1 is set as 10�2 and 10�3 for fMRI and DTI
datasets, respectively. Due to the limited number of
subjects in our experiments, we perform 3-fold cross
validations as in [4] on balanced datasets and report
the average results.

5.2 Performance for Detection of Brain Disor-
ders In this subsection, we study the e↵ectiveness of
the learned connectivity patterns by feeding them to
a binary classifier. Tables 3 presents the average clas-
sification performances with respect to four evaluation
metrics: accuracy, precision, recall and F1-measure. It
can be observed that MVAE-1 consistently outperforms
other baseline methods on every metric for both fMRI
and DTI datasets.

In particular, among the baselines without side
information, AE-1 can achieve similar performances
with the subgraph mining approaches. Therefore, the
connectivity patterns discovered by deep learning ap-
proaches are helpful in detecting brain disorders. Our
proposed MVAE-1 outperforms AE-1 because e↵ective
guidance can be extracted from multiple side views to
help discover better connectivity patterns. Further-
more, compared with the baseline method gMSV that
considers side views, the proposed MVAE-1 can again
have better performances on both datasets. Though
the side view information is leveraged in the subgraph
mining approach gMSV, its search space of candidate
patterns is limited to connected subgraphs. In contrast,
MVAE-1 is able to identify more complex connectivity
patterns. It supports our premise that more discrimina-
tive connectivity patterns can be identified by applying
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Table 3: Performances of the compared methods. The results are reported as “average performance + (rank)”.
“"” indicates the larger the value the better the performance.

(a) Results on the fMRI dataset.

Criteria

Groups Methods Accuracy " Precision " Recall " F1 "

No
Side-view
Guidance

gSSC 0.600 (3) 0.655 (2) 0.605 (3) 0.625 (3)
Freq 0.543 (6) 0.591 (7) 0.579 (5) 0.582 (8)
Conf 0.586 (5) 0.609 (6) 0.684 (2) 0.642 (2)
Ratio 0.543 (6) 0.569 (8) 0.684 (2) 0.620 (4)
Gtest 0.500 (7) 0.543 (9) 0.524 (7) 0.525 (9)
HSIC 0.587 (4) 0.637 (4) 0.598 (4) 0.595 (7)
AE-1 0.629 (2) 0.645 (3) 0.576 (6) 0.604 (6)

Side-view
Guidance

gMSV 0.587 (4) 0.627 (5) 0.605 (3) 0.614 (5)
MVAE-1 0.729 (1) 0.740 (1) 0.715 (1) 0.726 (1)

(b) Results on the DTI dataset.

Criteria

Groups Methods Accuracy " Precision " Recall " F1 "

No
Side-view
Guidance

gSSC 0.592 (4) 0.644 (3) 0.560 (4) 0.596 (3)
Freq 0.646 (2) 0.703 (2) 0.588 (2) 0.639 (2)
Conf 0.524 (7) 0.506 (9) 0.430 (7) 0.461 (8)
Ratio 0.593 (3) 0.638 (4) 0.535 (6) 0.579 (6)
Gtest 0.593 (3) 0.629 (5) 0.559 (5) 0.585 (4)
HSIC 0.579 (5) 0.617 (6) 0.560 (4) 0.583 (5)
AE-1 0.578 (6) 0.573 (8) 0.575 (3) 0.568 (7)

Side-view
Guidance

gMSV 0.513 (8) 0.576 (7) 0.412 (8) 0.460 (9)
MVAE-1 0.698 (1) 0.729 (1) 0.628 (1) 0.670 (1)

deep learning approaches.
In summary, with multi-side-view guidance, the

proposed MVAE-1 outperforms the baseline methods
with an average improvement of 28% and 22% on
accuracy for fMRI and DTI, respectively.

5.3 Performance with Deep Architectures The
hidden features learned from the shallow version of
MVAE (i.e., MVAE-1) have potential clinical signifi-
cance for detection of disrupted connectivities. In this
section, we study the usefulness of the hidden features
learned from deeper architectures, i.e., MVAE-2 and
MVAE-3 in our experiments. After learning the hid-
den features in the top-level layer for MVAE-1, MVAE-
2 and MVAE-3, we feed the learned hidden features to
a logistic regression classifier as shown in Figure 2. In
the experiments, we constrain the number of neurons
between 50 and 500 for each layer. Table 4 presents the
best classification performances of MVAE-1, MVAE-2
and MVAE-3 for fMRI and DTI datasets. It shows that
MVAE-2 performs best on both datasets. When the
number of hidden layers increases from 1 to 2, the classi-
fication results also improve. This indicates that a deep
architecture is more e↵ective than a shallow one. How-
ever, with 3 hidden layers, MVAE-3 does not perform
as well, which may be due to overfitting, because there
are many parameters in MVAE-3 but available training
data is limited. In addition, we constrained the number
of neurons between 50 and 500 for each hidden layer in
MVAE-3. Searching in a larger parameter space may
achieve better results for MVAE-3. However, there are
associated time costs. Therefore, in the following, we
only show experimental results for MVAE-2.

5.4 Performance with Each Side View In this
section, we investigate the guidance contribution of each
side view. Figure 3 shows the accuracy performance for
fMRI and DTI datasets by considering a single side view
each time in MVAE-2. Specifically, the side views brain
volumetry and plasma luminex provide the most valu-
able side information for learning latent features from

Table 4: Results of the stacked MVAE with di↵erent
numbers of hidden layers.

Criteria

Datasets Methods Accuracy Precision Recall F1

fMRI
MVAE-1 0.727 0.727 0.770 0.742
MVAE-2 0.772 0.761 0.831 0.786
MVAE-3 0.745 0.760 0.775 0.756

DTI
MVAE-1 0.710 0.729 0.684 0.704
MVAE-2 0.736 0.755 0.735 0.737
MVAE-3 0.670 0.644 0.761 0.697
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Figure 3: Accuracy performances for each single view.

deep architectures on the fMRI brain connectomes. The
brain volumetry side view provides critical information
concerning structural meningoencephalitic changes sub-
sequent to brain viral invasion in HIV infection. Simi-
larly, the plasma luminex side view, which reflects cir-
culating levels of cytokines and chemokines, provides
information concerning the inflammatory milieu in an
individual subject and in this real world example, cap-
tures critical information concerning the immune per-
turbances and cytokine storm characteristic of early
HIV infection. Inflammation and chronic immune ac-
tivation have been implicated in brain injury in various
neurological disorders, nevertheless available blood as-
say data is usually ignored in imaging studies due to the
challenges of integrating the side view information.

Copyright © by SIAM 
Unauthorized reproduction of this article is prohibited.

42



10
−10

10
−5

10
0

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Guiding parameter µ

A
c

c
u

ra
c

y

 

 

fMRI

DTI

Figure 4: The guiding ability of MVAE-2.

PoCG.R
ANG.L

PCG.R

THA.R

ITG.R

MFG.R

PUT.L

MYG.RTPOsup.L

OLF.L

ORBsup.L

ORBsupmed.L

SFGdor.L

SFGmed.L

PoCG.R

SOG.L

IOG.L

DCG.R
SMG.L

SMA.R

ROL.R

PHG.R

SFGdor.R

SFGmed.R

ACG.L

ORBsup.R

CAU.L

OLF.L

REC.L

REC.R

ORBinf.L

(a) The first pattern� (b) The second pattern�

Figure 5: Two most discriminative connectivity patterns.

5.5 E↵ect of the Guiding Parameter µ In our
proposed MVAE framework, the parameter µ controls
the relative importance of the multi-side-view guidance.
Here we assess the benefit of MVAE-2 with di↵erent
values of parameter µ 2 {10�9, 10�8, ..., 10�1}. Figure
4 shows the classification accuracies on fMRI and DTI
datasets. It can be observed that for both datasets,
the performance improves when increasing the guiding
parameter µ. The best accuracy is achieved when µ =
10�2 for fMRI and µ = 10�4 for DTI. Similar results
can be observed for the e↵ect of other parameters. Due
to space limits, we will not show the performances here.

5.6 Visualization of Connectivity Patterns Re-
call that MVAE can discover discriminative connectiv-
ity patterns to investigate brain dysfunction. Here we
visualize discovered patterns in the fMRI dataset.

Since each hidden neuron a
(2)

pi in the first hidden
layer corresponds to a discriminative pattern of brain

connectivities for Xp and each weight w
(1)

ij shows the
strength of the connectivity xpj 2 Xp, MVAE can learn
many di↵erent connectivity patterns from di↵erent hid-
den neurons. Each pattern demonstrates its significance
in distinguishing normal connectivities from disrupted
ones. Given a group of normal brain connectomes, we
can get the average activation (hidden feature value)
for each neuron in the first hidden layer. Similarly, we
can calculate such values for abnormal brain connec-
tomes. For each hidden neuron, the absolute di↵erence
between the within-group averaged activation values in-
dicates its significance in distinguishing the two groups.
So we select two representative neurons with the largest
di↵erences between two groups and display their cor-
responding connectivity patterns in Figure 5 (a) and
(b). The most significant connectivity patterns iden-
tified from the fMRI brain connectomes are visualized
with the BrainNet Viewer2 [23].

We can observe that these two complex patterns are

2http://www.nitrc.org/projects/bnv

di↵erent, each providing information concerning con-
nectivity changes occurring early in HIV infection. For
example, the identified connection between Postcentral
gyrus (PoCG) and Angular gyrus (ANG) in Figure 5
(a) is consistent with early parietal involvement with
implications for memory function and spatial cognition.
Further, these results suggest early changes in key brain
hubs, such as putamen and thalamus that are involved
in the default mode network. While the observed pat-
terns are beyond the scope of this paper, these con-
nectome results yield new clinical insights concerning
brain alterations that occur with threats such as viral
invasion, attendant meningoencephalitic changes, neu-
roinammation and immune activation. The rich infor-
mation conveyed from connectivity patterns supports
the promise of the MVAE framework.

6 Related Work

Our work is related to deep learning techniques, multi-
view learning problems, and brain data analysis. We
briefly discuss them in the followings.

Learning feature representations from deep learning
models has rapidly developed over the past few years
[14, 18, 26]. Deep learning has also been studied in
the diagnosis of brain disease [3, 15, 16, 19]. However,
all these existing methods focus on neuroimages and
ignore rich information from multiple side views. A
recent work by Zhang et al. [26] is worth mentioning in
this context, although it does not perform deep learning
on brain disorders directly. They extract pairwise
constraints from labeled data to supervise the pre-
training process of deep learning. Our study is di↵erent
since we take advantage of side views and do not use any
supervision information in our pre-training procedure.

There are a few research studies on multi-view
features using deep learning methods [10, 11, 22]. In
[10, 11], in order to learn individual and shared hidden
spaces from multiple views of data, each hidden layer
is composed of view-specific and shared neurons. The
method in [22] learns representations of data in the
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setting that multiple views are known during training
while only one view is available at test time. In our
work, we consider the multiple side views as auxiliary
information to guide the process of deep learning on the
primary brain connectome view, which di↵ers from the
basic idea in previous studies.

The analysis of brain data is also related to our
work. In [6, 8], the neuroimage data are directly mined
and represented as tensors to handle extremely high
dimensionality within the data. In addition, many
e↵orts have focused on mining important brain regions
and estimating region/neuron connections [9, 21, 25].
After the construction of brain connectomes, subgraph
patterns are learned in [5, 13]. However, these works
can only find connected subgraph patterns while our
study can discover non-linear representations of brain
connectivity patterns.

7 Conclusion

In this paper, we propose a deep architecture to learn
clinically significant connectivity patterns of brain con-
nectomes using multiple side views. This helps the
diagnosis of neurological disorders. We show that by
leveraging a plurality of side views that are available
along with the brain connectomes, the proposed method
MVAE can not only capture discriminative connectivity
patterns for classification tasks, but also discover mean-
ingful information for clinical interpretations.

There are several interesting directions for future
work. Since brain connectomes and neuroimages can
provide complementary information for brain diseases,
one interesting direction of our future work is to explore
both brain connectomes and neuroimages in deep learn-
ing methods. Another potential direction is to combine
fMRI and DTI brain connectomes together, because the
functional and structural connections together can pro-
vide rich information for learning deep feature represen-
tations.
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