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Prediction Combination: a motivating example	
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Prediction combination: a high level view
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Traditional approaches: Majority voting	
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Traditional approaches: Graph-based model	
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Traditional approaches: factorization	
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Short comings of traditional approaches	
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Regularized Solutions	

Vapnik: “...tradeoff between the quality of the approximation of the given	


data and the complexity of the approximating function.”
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Regularized Solutions	


minimize: consensus loss + regularization term
Framework:

An instantiation:

• mean squared error 
• graph cut 
• negative log-likelihood

• Euclidean Distance(    ,   ) 
• KL divergence(    ,   )

minimize: graph cut loss + Euclidean distance

Optimization: alternative block-wise gradient descent

Theoretical  guarantee: achieving a smaller generalization upper bound



Experiments	


Datasets: 11 multi-class text classification tasks
Base models: 2 classifiers + 2 clustering models
Prediction combination baselines: 

• majority voting	

• graph-cutting methods: consensus maximization, HBGF, MCLA	

• factorization-based: Bayesian clustering ensemble, SNNMF, ECMC

Metric: accuracy 



Experiments	


Accuracy: among 11 tasks: 1 tie, 1 loss, 9 wins

Observed overfitting
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Experiments	
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