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Abstract

We present a new algorithm for reconstructing sib-
ling relationships in a single generation of individ-
uals without parental information, using data from
codominant DNA markers such as microsatellites. We
use the simple genetic constraints on the full-sibling
groups, imposed by the Mendelian inheritance rules,
and combinatorial optimization techniques to extract
a minimum number of consistent sibling groups. The
results of a simulation study of a relaxed version of
the algorithm show that our approach is reasonably
accurate and the full version of the algorithm should
be pursued. Our algorithm does not require any a pri-
ori knowledge about allele frequency, population size,
mating system, or family size distributions.

1 Introduction

Knowledge about sibling relationships is used in ge-
netic epidemiology, conservation biology, and animal
management. For example, knowledge of the genetic
relationships among individuals is critical for estimat-
ing heritabilities of quantitative characters, for char-
acterizing mating systems and fitness, and for man-
aging populations of endangered species.

When parental data are available, sibling groups
can be established through parentage assignments
(e.g., [8]). Assignment of individuals to full or half
sibling groups in the absence of parental data is more
challenging. Nonetheless, for many studies, particu-
larly those that rely on sampling of wild populations,
it is often more practical to sample cohorts of off-
spring rather than parent/offspring groups.

In recent years, there has been an explosion of
methods that reconstruct sibling relationships with-
out the parental data [4]. Most of them use statis-
tical population parameters to find maximum likeli-
hood clusters ([3], [6],[11],[12], [13]). There are two
methods that incorporate a combinatorial approach
to the problem. [2] uses graph clustering algorithms to
form groups from pairwise likelihood distance graph
and [1] enumerates all possible potential full-sibling

groups based on the Mendelian inheritance rules and
uses a heuristic to construct a maximal (but not nec-
essarily optimal) partition of the individuals into those
groups.

In this paper, we present a fully combinatorial op-
timization approach to reconstructing sibling groups
based on single generation genetic data with no paren-
tal information. Our approach is the proper formal-
ization of the algorithm in [1]. We use the Mendelian
inheritance rules to impose constraints on the genetic
content possibilities of a sibling group. We formulate
the inferred combinatorial constraints and use a prov-
ably correct algorithm to construct the smallest num-
ber of groups of individuals that satisfy these con-
straints. Unlike [1], our algorithm allows half-sibling
relationships to exist in the population. The algo-
rithm requires no prior knowledge about the allele
frequency, number of loci sampled, mating system,
or the size of the family groups. It can be easily ex-
tended to incorporate null-allele type errors. To as-
sess the accuracy of our approach, we use a weaker
(but computationally cheaper) version of our algo-
rithm on simulated data that has known parents and,
therefore, sibling groups. We use an extension of the
partition distance presented in [7] to compute a math-
ematically correct distance between our solution and
the true sibling groups.

Our preliminary results show that the new combi-
natorial approach can be sufficiently powerful to ac-
curately reconstruct sibling groups. Nonetheless, to
validate this approach and its applicability more ex-
tensive simulations and experiments are required, as
well as comparison to other known methods.

1.1 Problem Statement

We now formally state the sibling relationship recon-
struction problem. Given a set of n diploid individ-
uals of the same generation, U , the goal is to recon-
struct the existing sibling relationships among them.
Each individual 1 ≤ i ≤ n is represented by a genetic
marker of l loci 〈(aij , bij)〉1≤j≤l. The numbers aij and
bij represent a specific allele. Mendelian inheritance
laws impose two necessary (but not sufficient) con-



straints on a group of diploid individuals S ⊆ U to
be full siblings:

Definition 1. A set S ⊆ U has the 4-allele property
if for all 1 ≤ j ≤ l | ∪i∈S aij ∪ bij | ≤ 4.

A set S ⊆ U has the 2-allele property if for all 1 ≤
j ≤ l | ∪i∈S aij | ≤ 2 and | ∪i∈S bij | ≤ 2.

The 2-allele property is clearly stronger than the
4-allele property. Assuming the order of the parental
alleles is always the same in the offspring (i.e., the ma-
ternal is always on the same side), the 2-allele prop-
erty is equivalent to a biologically consistent full sib-
ling relationship. The parental allele order, however,
is not preserved and an interesting problem arises:
given a set S that satisfies the 4-allele property, does
there exist a series of allele switches in some loci of
some individuals in S so that after those switches S

satisfies the 2-allele property?

Theorem 1. Let a be the number of distinct alle-
les present in a given locus and R be the number of
distinct alleles that either appear with three different
alleles in this locus or are homozygous (appear with
itself). Then given a set of individuals with the 4-
allele property there exists a series of allele switches
in some of the loci resulting in a set that satisfies the
2-allele property if and only if for all the loci in the
set a + R ≤ 4.

In general, however, we are interested in recon-
structing consistent sibling groups. We model this
goal by the following combinatorial optimization prob-
lem Minimum 2-allele Set Cover: given a collec-
tion U of n l-tuples, find a minimum number of sub-
sets S1, ..., Sm in U that satisfy the 2-allele property
and whose union is U .

The following is a simple (although not the most
efficient) algorithm to solve the Minimum 2-allele
Set Cover:

1. For each locus, independently, create all possible
2-allele sets of individuals: if there are a alleles in
the locus, of which R are homozygous, then there
are at most

(

a
4

)

+
(

R
3

)

+
(

R
2

)

= O(a4) sets.

2. Find the sets that are consistent with all the loci.
These sets must exist, since any pair of individu-
als forms a consistent sibling set.

3. Find a minimum set cover of all the individuals
from among the sets in previous step.

This algorithm, while biologically consistent, is
computationally expensive. Therefore we use the wea-
ker but computationally cheaper 4-allele property as
a heuristic for the sibling groups reconstruction.

2 The 4-allele Set Cover

We use the 4-allele property and a reduction to a spe-
cific instance of Minimum Set Cover problem to
identify sibling groups among a given group of ju-
veniles. We assume that the relationships may be
promiscuous and half siblings may be both pater-
nal and maternal. Thus, an individual animal may
be in more than one sibling group. First, we define
the Minimum 4-allele Set Cover problem: given
a collection U of n l-tuples, find a minimum num-
ber of subsets S1, ..., Sm in U that satisfy the 4-allele
property and whose union is U .

The Minimum Set Cover (MSC) problem is
defined as follows: given a universe U = {1, 2, ..., n}
and a collection of sets S = {S1, S2, ..., Sm} such that
Si ⊆ U , find the smallest number of sets in S whose
union is the universe. MSC problem is NP-hard. In
our solution, we use the standard integer program-
ming formulation of the MSC problem: given the
n × m elements-sets matrix A,

aij =

{

1 if i ∈ Sj

0 otherwise
find

min
∑m

i=1
xi

s.t. Ax ≥ 1
xi ∈ {0, 1}

We use the following algorithm to solve the Min-
imum 4-allele Set Cover:

1. For each pair of individuals Ap and Aq form a set
Spq that represents their 4-allele property. That
is, Spq is a collection of l loci where each locus is
a union of alleles of the corresponding locus for p

and q.
2. An animal belongs to a set Spq if for each locus

the set of the alleles of the animal for that locus
is in the the corresponding locus set of Spq .

3. Find a MSC S. For each set in S define the cor-
responding set of individuals covered by that set
as a sibling group. Return the group structure
induced by S as the answer.

Proposition 1. Any set cover of the elements by the
sets defined above is a valid collection of 4-allele groups.

We use computer experiments on simulated data
to assess the accuracy of the 4-alleleSets algorithm.

3 Experiment Design

For this set of simulations, we first create the adults
with the full genetic information and then generate
a single generation of juveniles. The parent informa-
tion is retained therefore we know the true sibling
groups. We then use the 4-alleleSets algorithm to



reconstruct the sibling groups. Finally, we use the ex-
tension of the [7] partition distance to measure the ac-
curacy of the reconstruction with respect to the true
sibling groups (see section 3.2 for more details). As we
have pointed out earlier, our algorithm assumes that
the organisms are diploid, therefore all the simulated
organisms are diploid as well.

3.1 Experiment Protocol and Parameters

We created a given number of adult males M and fe-
males F with a given number of loci l and a specified
number of alleles per locus a (for this set of experi-
ments, a is the same for all the loci). Each individual
was created by randomly choosing from an indepen-
dent identical uniform distribution 2l number of al-
leles from among a alleles. They are paired up into l

loci. We then create the specified jF number of juve-
niles, where j is the factor of the number of juveniles
as the number of females. A male and a female is
chosen randomly, independently and uniformly from
the adult population. A couple has a random number
of offspring, up to a specified maximum number of
offspring o (for this study, o is the same throughout
the population). Each offspring randomly gets one of
the mother’s and one of the father’s alleles per locus
which are assembled randomly. There are several sim-
plifications made in this simulation (see section 5), all
of which can be addressed in the future. Nonetheless,
this protocol creates a biologically consistent popula-
tion of juveniles with known parents.

The parameter ranges for the study are as follows:

– The number of adult females F = 10 and the
number of adult males M = 10.

– The number of loci sampled l = 2, 4, 6, 10.

– The number of alleles per locus a = 2, 5, 10, 20.

– The factor of the number of juveniles as the num-
ber of females j = 1, 2, 5, 10.

– The maximum number of offspring per couple o =
2, 5, 10, 30, 50.

We use the 4-alleleSets algorithm on the juvenile
population to find the smallest number of 4-allele sets
and designate them as the full sibling groups. While
the MSC problem is NP-hard, modern Mixed Inte-
ger Programming (MIP) solvers can solve our simu-
lation instances optimally. We formulated the MSC

as a MIP problem and used a commercial MIP solver
from CPLEX 9.01 to obtain an optimal solution (the
minimum number of the 4-alle sets). All the instances
of the set cover problem in our simulation were solved
optimally in about 10 seconds.

1 CPLEX is a registered trademark of the ILOG,Inc.

We compare the groups reconstructed by the 4-
alleleSets algorithm with the true sibling groups. In
the past, several methods have been used to com-
pare the true groups and the reconstructed groups.
However, they are mathematically inconsistent. We
use an extension of the clustering distance measure
described in [7] and implemented in [9].

3.2 Error Measure

In [7] Gusfield showed that the minimum distance
between two set partitions is equivalent to the Max-
imum Assignment problem (maximum bipartite
weighted matching) – a well known linear program-
ming problem [5, 10]. The minimum number of ele-
ments that need to be deleted so that the two parti-
tions become identical is (total number of elements)–
(maximum assignment). Gusfield uses this number as
the distance between two partitions.

In our case, since the the relationships are not
necessarily monogamous, the set of full sibling groups
does not induce a partition on the individuals and the
formula has to be slightly adjusted. Given two collec-
tions of non-disjoint sets {P1, ..., Pn} and {Q1, ..., Qm}
of elements in U the minimum distance between the
two set collections is the minimum number of ele-
ments needed to be removed so that the remaining
set collections are identical.

4 Experiment Results

As stated, the goal of our experiments is to assess
the accuracy of the 4-allele-Sets algorithm. We de-
fine the error in reconstruction as the distance be-
tween the 4-allele sets and the true sibling groups.
We examine the error rate behavior as a function of
the number of loci, alleles per each locus, juvenile
population size, and maximum family size (number
of offspring). Figure 1 shows selected corresponding
graphs. These are representative of the data. As ex-
pected, the error increases with the number of juve-
niles and decreases with the number of offspring per
family. Surprisingly, the number of alleles per locus
and the number of sampled loci are not strong factors
(except when there are only 2 alleles per locus). It is
important to note that in most cases the algorithm
found fewer sibling groups than there are in the popu-
lation, merging true families into a reconstructed one.
This leads us to believe that the stronger algorithm
2-alleleSets will have more discriminating power to
separate these groups and thus be more accurate.

5 Future Work and Extensions

Of course, our results are preliminary and more re-
search is needed. We need to investigate the computa-



Fig. 1. 4-allele algorithm error rate (percent of the num-
ber of juveniles) as a function of the number of loci, alleles
per locus, juveniles, and maximum offspring per couple.

tional complexity and better algorithmic solutions to
the Minimum 2-allele Set Cover and Minimum
4-allele Set Cover problems. We need to conduct
simulations with the Minimum 2-allele Set Cover
algorithm and run these for a wider range of parame-
ters and parameter distributions, as well as allow for
errors in the data. We need to validate the results
on biological datasets, especially where the sibling
groups have been established using other methods.
Finally, we need to compare the performance of our
method to other methods of sibling reconstruction.

6 Conclusions

We have presented a fully combinatorial method for
reconstructing sibling relationships in the absence of
parental data. Unlike other existing methods, it does
not use any statistical estimates of the relatedness
among the individuals, but rather a direct Mendelian
constraint on the possible genetic content of a sib-
ling group. A simple such constrain turns out to be
sufficiently powerful to reconstruct the sibling rela-
tionships fairly accurately in our simulations. The
stronger version of this constraint, we believe, has
the potential to accurately reconstruct sibling groups
without any prior knowledge of the population struc-
ture and its genetic characteristics.
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