Most of this reformatted verbatim from: http://www.mit.edu/%7E6.170/lectures/handout/L01-overview.pdf
1.0 Why Software Engineering Matters

Software’s contribution to US economy is very significant.
 1999: US software companies: $141 billion in sales.
 1996: $20B surplus, while manufactured goods had $64B deficit.
(from Software Conspiracy, Mark Minasi, McGraw Hill, 2000).
Software is becoming pervasive.

How good is our software? A lot of it is not very good, as can be illustrated by failed developments, accidents, and poor quality software.
(See http://logos.cs.uic.edu/476/Resources/index.html#Motivation)
1.1 Development failures

IBM survey, 1994

Advanced Automation System (FAA, 1982-1994)

Bureau of Labor Statistics (1997)

Denver Airport (1994) (See http://logos.cs.uic.edu/476/Resources/index.html)

1.2 Accidents

“The most likely way for the world to be destroyed, most experts agree, is by accident. That’s where we come in. We’re computer professionals. We cause accidents.”

- Nathaniel Borenstein, inventor of MIME, in: Programming as if People Mattered: Friendly Programs, SoftwareEngineering and Other Noble Delusions, Princeton University Press, Princeton, NJ, 1991.

Therac-25 (1985-87), see: http://sunnyday.mit.edu/therac-25.html

You might think that we’d learn from this and such a disaster would never happen again. But...

• see http://www.fda.gov/cdrh/ocd/panamaradexp.html

Mars Climate Orbiter (1999), Mars Spirit rover (2004)

A President’s Information Technology Advisory Committee (PITAC):

“The demand for software has grown far faster than our ability to produce it. Furthermore, the Nation needs software that is far more usable, reliable, and powerful than what is being produced today. We have become dangerously dependent on large software systems whose behavior is not well understood and which often fail in unpredicted ways.”

Information Technology Research: Investing in Our Future, President’s Information Technology Advisory Committee (PITAC), Report to the President, February 24, 1999. Available at http://www.itrd.gov/pitac/report/
1.3 Software Quality

One measure: bugs/kloc

Praxis CDIS system (1993)

2.0 Think Before You Code

“You know what’s needed before we get good software? Cars in this country got better when Japan showed us that cars could be built better. Someone will have to show the industry that software can be built better.” John Murray, FDA’s software quality guru, quoted in Software Conspiracy, Mark Minasi, McGraw Hill, 2000
That’s you!

Code often is part of the problem. We need better ways to talk about software than code, that are less cumbersome, more direct, and less tied to technology that will rapidly become obsolete.

Design is important because:

• thinking in advance always helps (and it’s cheap!)

• can’t add quality at the end: contrast with reliance on testing; more effective, much cheaper

• makes delegation and teamwork possible

• design flaws affect user: incoherent, inflexible and hard to use software

• design flaws affect developer: poor interfaces, bugs multiply, hard to add new features

2.1 The Netscape Story

For PC software, there’s a myth that design is unimportant because time-to-market is all that matters. Netscape’s demise is a story worth pondering in this respect.

- Original NCSA Mosaic team did a quick-and-dirty job, platform independent.
- In Netscape’s rapid growth period, from 1995 to 1997, the gave little time to design.
- Microsoft hurried to market with IE, but then took their time properly designing IE 3
- Netscape: By Communicator 4.0, there were 120 developers (from 10 initially) and 3 million lines of code (up a factor of 30).
- Netscape tried to go back and redesign, but it was too late.

- In the end, Microsoft won the browser war, and AOL acquired Netscape.

Michael A. Cusumano and David B. Yoffie. Competing on Internet Time: Lessons from Netscape and its Battle with Microsoft, Free Press, 1998. See especially Chapter 4, Design Strategy.

Note, by the way, that it took Netscape more than 2 years to discover the importance of design. Don’t be surprised if you’re not entirely convinced after one term; some things come only with experience.

3.0 About CS 340

This course has pieces of several other courses all in one (Object-Oriented Programming, Programming Languages, Software Engineering, Databases). We will look at:

1. A quick orientation on object-oriented programming in Java

2. Some Software Engineering.Software design “in the small”

3. Event-driven programming, using an IDE to build a GUI

4. Client-server programming, with a web-based front end talking to a database on the back end.

We will study design and programming. We will learn about:

Decomposition (breaking up big problems into simpler pieces) and decoupling (simplifying the relationships between those pieces)

Abstraction (suppressing unimportant detail) and specification (how to describe an abstraction)

Communication (how to write code for other people, not just the machine)

Testing (time permitting)

Design patterns (solutions to common design problems, time permitting)

Our goal is to teach you how to be a software architect, not a low-level coder, and not a debugger. We study these techniques precisely to avoid spending time debugging. (If you ever feel like testing or writing documentation is a waste of time, remember this – would you rather be debugging?)

