
1

54

Follow principles established by OO paradigm

• A user-defined type

• A set of objects (instances) sharing the same
storage structure and behavior

• A struct construct with operations

• Support for instance and class variables, instance and
class methods

Classes in C++

55

• Class definition gives:

1. name — unique identifier for the class

2. instance variables — components of each instance
(similar to struct fields)

3. class variables — shared by all class instances

4. instance methods — used by clients to work with
instances

5. class methods — used by clients to work with class

Class Definitions

56

• Divided between two files:

1. Header file (class-name.h) — declarations that

are imported by clients of class-name

2. Code file (class-name.cc) — additional definitions,
must include class-name.h

• Syntax of class definition (in header file):

Keyword class, followed by class name, followed by

body containing variable and function declarations

class <class_name> {

...

} ;

Syntax of Class Definitions

57

Body of Class Header

• Define class so-called class members:

— data members, i.e., the variables

— member functions, i.e., the operations

• Data members defined by:

— member type

— member identifier

class DLList {

DLNode head;

int size;

... } ;

58

Body of Class Header

• Members functions:

— declared with function prototype (at least) in class

body

— actual function definition will appear within the

class of definition

— for inline member functions, give also function

definition in class header (.h file)

59

• Examples of member function declarations in class

header:

class DLList {

...

bool isEmpty() {return (size==0);} // a message expression

bool find_element(int x);

bool insert_element(int x);

DLList& sort();

... } ;

Body of Class Definition

2

60

Class Scope

• Visibility rules intended to allow directed access

to identifiers of data members and member functions

within header file and code file

• General rules:

— Member identifiers are visible through class

definitions, including header and code files
— Member identifiers follow scope rules based on

nesting of units within units

• Consequence: Class-level definitions will:

— hide outer-scope definitions of same identifier,

— be hidden by inner-scope definitions of identifier
61

Class Scope

• Contrast visibility of members through class code
with non-member identifiers, visible only from point
where they are declared or defined

Example: loop index variable defined in the loop header

• Class identifier declared by literal following class
keyword, defined after end of class body

— Possible to define pointer and reference identifiers

of type C1 while defining C1, but not value identifiers

• Non-inline member functions defined at file scope in
code file; however, assume they are nested within class

62

Definition of Member Functions

• Use scope operator in code file

• Scope operator has two formats:

1. <class_name>::<member_id>

2. ::<member_id>

• Use (1) to denote class member outside header file

that defines class

• Use (2) to denote global identifier hidden by a local
definition

63

• Examples of operator use when defining non-inline
member functions

int y; // file scope definition in class
// header file

class C1 {
int x, y;
void foobar(char*);
...
} ;

// in the code file
void C1::foobar(char* y) {
int z;
z = y ; // parameter y, not file scope y
C1::y = 150 ; // data member y, not file scope y
z = z + 10 * ::y; // use file scope definition of y
... }

Scope Operator ::

64

Access to Class Members

• Each member has an access level that determines

who has the right to access that member

• Three access levels are available:

— private (default)

This member is accessible only within the

defining class

— public

This member is accessible everywhere

(using a qualified name like a struct field)

65

Access to Class Members

• Third access level:

— protected

This member is accessible only within the
defining class and its subclasses

• Private access is most restrictive, public is least

• Smalltalk: All variable identifiers are protected;
all method identifiers are public

• Java: A variation of C++’s approach with 4 access
levels

3

66

• General guidelines to conform with O-O paradigm and

information hiding

— Data members should generally be protected,

sometimes even private

— Member functions in class’s protocol should

generally be public

— Auxiliary functions should be protected or private

Access to Class Members

67

• Impact on subclass code class libraries

When writing subclasses of class C1, members defined
protected and public by C1 are accessible in subclass’s
code but private members are not

• Syntax: keyword before each portion of class

definition

class C1 {
public: // beginning of public portion

double foo (double, double);
void bar (int, int);

protected: // protected portion
…

} ;

Access to Class Members

