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Overview 

With the rapid progress of urbanization and civilization on earth, urban computing is emerging as a concept where 

every sensor, device, person, vehicle, building, and street in the urban areas can be used as a component to probe city 

dynamics to further enable city-wide computing for serving people and their cities. Urban computing aims to enhance 

both human life and urban environment smartly through a recurrent process of sensing, mining, understanding, and 

improving. Urban computing also aims to deeply understand the nature and sciences behind the phenomenon 

occurring in urban spaces, using a variety of heterogeneous data sources, such as traffic flows, human mobility, 

geographic and map data, environment, energy consumption, populations, and economics, etc.  

    Recently, real-world data reflecting city dynamics becomes widely available, including, e.g., users’ mobile 

phone signal, GPS traces of vehicles and people, ticketing data in public transportation systems, user-generated 

content (like tweets, micro-blog, check-ins, photos), data from transportation sensor networks (camera and loop 

sensors) and environment sensor networks (temperature and air quality), as well as data from the Internet of Things. 

As a result, we are ready to carry out real urban computing activities that lead to better and smarter cities. For 

example, we can identify different functional regions [1], find smart driving directions [3][7][10], glean the 

problematic city configurations [4], detect anomalies in road traffic flows [6], and enable smart recommendations 

[2][5][8][9]. By better sensing and understanding the city dynamics we are more likely to design effective strategies 

and intelligent systems for improving urban lives. Examples of urban computing projects can be found on 

http://research.microsoft.com/en-us/projects/urbancomputing/default.aspx. 
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ABSTRACT
Understanding the spatiotemporal distribution of people within
a city is crucial to many planning applications. Obtaining
data to create required knowledge, currently involves costly
survey methods. At the same time ubiquitous mobile sen-
sors from personal GPS devices to mobile phones are col-
lecting massive amounts of data on urban systems. The
locations, communications, and activities of millions of peo-
ple are recorded and stored by new information technologies.
This work utilizes novel dynamic data, generated by mobile
phone users, to measure spatiotemporal changes in popula-
tion. In the process, we identify the relationship between
land use and dynamic population over the course of a typi-
cal week. A machine learning classification algorithm is used
to identify clusters of locations with similar zoned uses and
mobile phone activity patterns. It is shown that the mo-
bile phone data is capable of delivering useful information
on actual land use that supplements zoning regulations.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining, spatial databases GIS
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Keywords
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Population, Mobile Phone Data, Computational Social Sci-
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Figure 1: Zoning regulation for the Boston area.
Color code: orange - Residential, red - Commercial,
gray - Industrial, blue - Parks, green - Other.

1. INTRODUCTION
In describing the “organized complexity” of cities, Jane Ja-
cobs notes that a ”park’s use depends, in turn, on who is
around to use the park and when, and this in turn depends
on uses of the city outside the park itself.” [9] Where peo-
ple live, work, and play is intimately related to the time
and distance required to move to and from these locations
[7]. Understanding how individuals are distributed in space
and time is crucial to making effective and efficient planning
decisions within cities. For example, the location choices
of residents and firms is influenced by and determines the
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demand for mobility. Restaurants want to maximize patron-
age by choosing a popular location and individuals want to
maximize their access to amenities.

How a particular area of a city is used is determined, in part,
by the zoning regulations implemented and enforced by lo-
cal governments. These regulations impact the structure of
a city by dictating where housing or office space can be lo-
cated. Zones of a kind share common usage. The central
business district (CBD) for instance is populated during of-
fice opening hours whereas when offices are closed, relatively
few people are found in these zones. Different zones relate to
different land use which is related to different population size
to be found at any given time in the zone. In practice, how-
ever, many zones feature different usage which might also
differ somewhat from intended use. As an example zoning
information for the Boston area is shown in Figure 1. Note,
that zoning areas are not only restricted to land but also
cover parts of rivers, lakes and the sea.

There is a large body of work dedicated to understanding
the spatiotemporal dynamics of population and its relation
to land use [10, 1, 5]. Measurements of human mobility
within cities has traditionally been made via travel surveys.
These surveys require subjects to record data on where they
are moving to and from in the observation period (typically
one day or a whole week), how they are doing so, and why.
However, because surveys typically feature in-person inter-
views and demand a high workload for each subject, this
method of data collection is expensive and limited.

Given these limitations, travel surveys suffer from relatively
small samples (usually below tens of thousands of individ-
uals), capture only short periods for each individual, and
are updated infrequently. Fortunately, over the past decade
a new type of measurement instrument has made its way
into the pockets of people in nearly every culture and coun-
try. Each of the roughly 6 billion mobile phones currently in
use 1 is capable of recording the location of calls, SMS, and
data transmissions to within a few hundred meters. More-
over, these data are also collected centrally by mobile phone
providers for billing purposes. With these data come enor-
mous opportunities to improve our understanding of human
mobility patterns.

In particular, call detail records (CDR) data, which provide
information on the location of mobile phones any time a call
is made or a text message is sent, contain much information
on the distribution of persons in a region. This information
can be obtained at low costs. Moreover, aggregated data
only contains the number of active phones in a given area
during a given time interval. This method of data collec-
tion provides much higher levels of anonymity reduces the
risk any breach of individual information. Given the (imper-
fect) relation between the distribution of persons and active
phones in a region the question arises as to whether the dis-
tribution of the numbers of active mobile phones can be used
in order to infer land usage in a given zone.

To have such a measurement method would be very advan-
tageous. Corresponding results can be used to monitor the

1http://www.itu.int/net/ITU-D/index.aspx

use of all zones of a given zone class. Zoning regulation
that all zones of one class share a common usage whereas
the usage might differ for a number of reasons. Knowledge
on different usage can be used to understand demand for
mobility infrastructure across space and time. Monitoring
the usage over time allows to detect changes in habits of
the population as well as shifts in usage which may indicate
ongoing regional developments.

Consequently this work investigates the potential of apply-
ing aggregated CDR data in order to infer dynamic land
use, i.e. to understand how the population of different areas
of a city changes with time and according to specific zoned
land uses. The work centers on supervised classification of
regions according to given zoning regulations. We demon-
strate that CDR data can be used in order to classify zones
of different types with reasonable accuracy. To this end, nor-
malization techniques are discussed to highlight differences
between zones. Then, the application and result of random
forests for the classification is described in detail.

2. MOBILE PHONES AND HUMAN MOBIL-
ITY

Mobile phones have proven good instruments to measure hu-
man behavior. In one of the first studies utilizing these de-
vices, Eagle and Pentland [6] were able to decompose mobile
phone activity patterns of university students and employees
into regular daily routines. Moreover, these patterns were
found to be predictive of an individual’s characteristics such
as their major or employment level (i.e. graduate student).
Subsequent research has built upon this work, scaling up in
both geographic extent and sample size. González et al [8]
studied data from nearly one-hundred thousand anonymous
mobile phone users to reveal persistent regularities in the
statistical properties of human mobility. Highlighting the
remarkable predictability of human behavior, Song et al [12]
estimated that it is theoretically possible to predict individ-
ual movements of users with as high as 93% accuracy using
only data from mobile phones.

Mobile phone data has also been used to study how space
is used over time. Reades et al [11] used mobile phone net-
work data from Rome, Italy, to link mobile phone activity
to commercial land uses. Measuring mobile phone activity
in 1km by 1km grid cells, they employ a form of principal
component analysis to identify the dominant activity pat-
terns. The authors qualitatively interpret areas of the city
exhibiting this signal as Commercial, though actual zoning
information is not introduced. They then decompose activ-
ity across the city to identify regions with similar patterns
of usage. Similarly, Soto et al [13] use CDR mobile phone
data at the cell tower level to identify clusters of locations
with similar activity. Qualitative agreement between these
clusters and land uses were observed.

Calebrese et al [4] have applied similar decomposition and
clustering techniques to classify locations on a university
campus as classrooms, dormitories, etc. By analyzing wifi
activity across 3000 wifi-access points, the authors used un-
supervised, non-parametric techniques to identify clusters of
similarly used locations. These locations naturally fit into
location profiles such as ”lecture hall” or ”dormitory.” Fi-
nally, CDR data have proven useful to detect movement at
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the census tract scale [3]. Location data from calls helped to
measure origins and destinations for trips across the Boston
Metropolitan area. However, no attempt was made to asso-
ciate such trips with land uses.

Other data sources such as points of interest (POIs) as well
as GPS data collected from taxi fleets have been combined
with unsupervised learning algorithms to identify the rich
structure of different functional sections of a Beijing [14].
To date, however no studies exist that employ supervised
learning techniques to combine traditional data sources on
land use such as zoning regulations and CDR data. This
study aims to investigate the link between zoned land use
and mobile phone activity on a common spatial partitioning
of the greater Boston area into regions of homogeneous land
use. For each region the temporal profile of active phones
is used in supervised classification techniques in order to
identify patterns characteristic for a specific zoning classi-
fication. The corresponding patterns will be interpreted in
detail.

3. DATA SOURCES
Two data sources are used in this work: mobile phone ac-
tivity records and zoning regulations. For the Boston metro
region, anonymized CDR provide the location of a mobile
phone by triangulating signal strengths from surrounding
cell towers, unlike traditional CDR data, in which record the
location of a call as the location of the mobile phone tower.
This provides slightly higher accuracy and allows us to mea-
sure calls continuously across space rather than at points
where towers are located. Triangulation by this method is
accurate to within a few hundred meters depending on the
tower density. These data make it possible to measure the
amount of phone activity (counts of the number of calls and
texts) that occurs within a given area and time window.
In this study we use three weeks of CDR data for roughly
600,000 users in the Boston region home to roughly 3 million
people. Though mobile phone data come from specific set of
carriers, the market share of these carriers is between 30%
and 50%.

In addition to mobile phone activity, we obtain zoning classi-
fications for the Boston metropolitan area. The Massachusetts
Office of Geographic Information (MassGIS) aggregates uses
into five categories: Residential, Commercial, Industrial,
Parks, and Other. We are careful to note our assumption
that actual land use and zoning classification are closely re-
lated while acknowledging that zoning regulations are only
a proxy of actual land use imposing restrictions.

4. COMMON SPATIAL REPRESENTATION
The first obstacle to studying the relationship between phone
activity and land use is the reconciliation of the spatial di-
mensions of the data: While the location of the phone activi-
ties are recorded as coordinate pairs, zoning data is provided
in polygons at roughly the parcel scale. The spatial parti-
tioning of phone and population data is rarely the same as
zoning parcels. To reconcile all data sources as well as to
reduce the influence of noise (due to inter alia sources local-
ization estimation noise) in the data, we transform both to
the same uniform grid. A lattice is laid over the analysis re-
gion such that every cell in the lattice measures 200 by 200
meters. Different grid sizes have been tested, 200 meters

proved to be a good aggregation level; being coarse enough
to reduce the noise level and detailed enough in order not
to mix many parcels of different zoning areas.

In order to reduce the high noise level average hourly time
series of phone activity are computed. Here, the average
is computed for each hour within a day of the week. Only
cells with mobile phone activity above a certain threshold
are used in the analysis.

With respect to zoning data, each cell is given a single zon-
ing classification based on the most prevalent (in terms of
fraction of area covered) use within the area.

Potential pitfalls of this method arise due to large hetero-
geneity in population density. Downtown areas are much
more densely populated than the suburbs, a characteristic
that is reflected in other spatial divisions like census tracts.
This leads to sparse mobile phone activity in rural regions.
However, the small grid size used in this analysis retains de-
tailed information about block to block zoning regulations
in dense urban areas. Figure 2 displays actual zoned parcels
versus the gridded approximations.

Table 1 shows the frequency of each zoning class in the grid.
The vast majority of land, nearly 75% of cells, are zoned as
Residential. Other uses appear in roughly equal fractions.

Table 1: Tabulation of Boston zoning. The land
use profile of the city is dominated by residential
use accounting for nearly 75%. Other uses share
roughly the same percentage of remaining land.

Zone Use Category Index Count Percentage
Residential 1 23322 74.28
Commercial 2 1854 5.90
Industrial 3 2236 7.12

Parks 4 1941 6.18
Other 5 2045 6.51

5. DESCRIPTIVE STATISTICS
We first examine the relationship between mobile phone ac-
tivity and land use at the macro, city-wide scale. Figure 3
displays time series of mobile phone activity averaged over
all cells of a given zoning classification. Examining abso-
lute counts (first row) reveals that the average activity level
in different zoning classifications differs greatly. While res-
idential areas only show a maximum activity of roughly 50
events per hour, commercial cells reach approximately 100
events on average.

The number of activities within different cells shows huge
differences. The downtown area of Boston shows orders
of magnitude higher activity levels than typical residential
zones. In order to allow for classification based on relative
mobile phone activity, time series are normalized using a
z-score. By definition, the normalized time series have zero
mean and unit standard deviation. Mathematically, the nor-
malized activity of cell (i,j) is given by:

anorm
ij (t) =

aabsij (t)− µaabs
ij

σaabs
ij

(1)
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Figure 2: To improve computational efficiency and
reconcile all mobile phone and traditional data
sources, we create a uniform grid over the city. Zon-
ing polygons (right), are rasterized to cells 200m by
200m in size (left). For cells where more than one
zoning class exists, the most prevalent class is used.
Given the small size of these cells, this data transfor-
mation provides an accurate map of the city while
improving computational efficiency.

The second row of Figure 3 (a) shows the average (over cells
of one zoning class) normalized activity. These profiles are
remarkably similar for all zoning classes showing the strong
circadian rhythm of the city. Residents wake up, go to sleep,
and wake again the next day. The rise and fall of activity in
each zone, however, is not solely the result of users moving
into and out of a region, but is instead also partly due to an
uneven distribution of phone use across the day. To account
for this, during each hour, we subtract the average normal-
ized activity of the entire region from the normalized activity
at each given cell. The corresponding spatially de-meaned
series will be referred to as residual activity. Residual ac-
tivity can be interpreted as the amount of mobile phone
activity in a region, at a given time, relative to the expected
mobile phone activity in the whole city at that hour. Math-
ematically, it is calculated as follows:

aresij (t) = anorm
ij (t)− ānorm(t) (2)

where ānorm(t) is the normalized activity averaged over all
cells at each particular time. Averaging the residual ac-
tivity for each zoning classification reveals patterns related
to travel behavior. The last row of Figure 3 (a) and (b)
provide the residual activity averages across zoning classes
for weekdays and weekends. The most notable signal is the
inverse relationship between residual activity in residential
and commercial areas: While residential areas on average
show higher than expected activity during the night and
lower than expected during weekdays. As expected, the
opposite is true for commercial zones. Somewhat surpris-
ingly, the normalized activity does not show these features
strongly. Only the residual activity demonstrates the ex-
pected behavior. There, also higher than average activity in
parks on the weekend afternoons is visible.

Residential areas have higher residual activity in the early
morning hours and late at night, while commercially zoned
cells have a peak period during the day and show much

lower activity levels late at night. These patterns most likely
reflect the 9-to-5 business hours of offices and stores. More
subtle patterns are also visible. In Boston, much of the
CBD is zoned as Other or Mixed use. We see that residual
phone activity in this zoning type has peaks in the early
morning hours on Saturday and Sunday, suggesting these
areas support night life on the weekends. These city-wide
time series show that mobile phone activity and land use are
linked at the highest level of aggregation. By treating phone
activity as a proxy for the spatial distribution of people at a
given time period the expected patterns of concentration of
people in the CBD and inner city region during the working
day, and the shifts induced by the commuting behavior are
visible in the residual activity levels.

We note that because residual activity is relative to abso-
lute call volume as well time of day, it is not affected by dif-
ferences in mobile phone usage across zoned uses provided
those differences are persistent in time. For example, it does
not affect measurements if individuals are twice as likely to
make a phone call in a commercial zone than a residential
zone as long as this propensity is constant across all hours
of a week.

Figure 4 displays the spatial distribution of normalized ac-
tivity (top row) and residual activity (bottom row) at three
time instants. Not shown in the plots are the absolute activ-
ity levels which are distributed much like population density.
The CBD of Boston has orders of magnitude more activity
than the rest of the city. Mapping the logarithm of abso-
lute activity over time once again only reveals the circadian
rhythm of the city which strongly dominates the differences
in land usage which consequently are not seen in these plots.

In the spatial distribution of the normalized activity the
dominance of the CBD is less pronounced. Nevertheless,
the circadian rhythm still dominates the differences between
different zones. From this perspective, Boston appears as a
monocentric region, with small pockets of density located on
an urban ring roughly 20km from the CBD.

By way of contrast, the spatial distribution of residual ac-
tivity reveals a much richer structure. In the early morning
hours, residual activity is located on the periphery of the
region. During the day, this activity becomes heavily con-
centrated in the CBD or in small subcenters on the urban
ring. Later in the evening, activity again returns to res-
idential areas on the periphery, away from centers. This
suggests some correlation between commuting patterns and
the spatial distribution of residual activity.

6. CLASSIFYING LAND USE BY MOBILE
PHONE ACTIVITY

In the last section we observed correlation between resid-
ual mobile phone activity and land use on the macro scale.
Fluctuations in mobile phone activity mimics intuition of
population changes related to commuting and recreational
trips. In this section we investigate the question whether us-
age of cells of one zone class are homogeneous. This will be
done by performing supervised classification based on fea-
tures extracted from the residual activity time series and the
classes provided by the zoning regulations as labels. Though
previous work in this area has employed unsupervised learn-
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Figure 3: (a) Plots are shown for three different time series of average mobile phone activity within each of
five land use. The first plot shows absolute activity (number of calls and SMS messages). The second plot
displays z-scored time series. The bottom plot shows residual activity. (b) More detailed view of average
(over cells of the same zoning class) residual activity.
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Figure 4: Spatial distribution of absolute and resid-
ual phone activity over the course of a day. While
absolute mobile phone activity is dominated by pop-
ulation density and sleep and wake patterns, resid-
ual activity reveals flows into and out of the city
center over the course of a day.

ing techniques, access to extensive zoning data in a mature,
regulated city such as Boston makes supervised learning an
attractive option. Cross validation is used to test perfor-
mance.

We implement the random forest approach described by Breiman
[2]. Other approaches including neural network based clas-
sifiers have been tested and led to similar results. Random
forests are useful for their ability to efficiently classify data
with large numbers of input variables (such as long time se-
ries). Rather than make comparisons for every feature of
the data every time, a number of random subsets are chosen
to more efficiently search the space. This does not come at
the cost of accuracy as random forests have been shown to
have high performance on a variety of datasets [2]. More-
over, random forest classifiers allow weights to be introduced

so that more frequently occurring classes do not overwhelm
smaller ones. This feature will be exploited later to control
for the large share of residentially zoned locations.

0 20 40 60 80 100 120 140 160

... ...

(a) (b)Individual Classification Function Random Forest

Figure 5: (a) Shows the inputs to each decision tree
h(x, θk). A time series of residual phone activity, x,
is input and activity at a random subset of times , θk
(denoted by the blue bars), is chosen to make com-
parisons. (b) A depiction of the random forest shows
a number of different trees making predictions based
on a different set of random times. Each tree casts
a weighted vote for a certain classification. A final
classification, ĉ, is made by counting these votes.

A random forest, {h(x; θk), k = 1, ...}, is constructed from a
set of decision trees as visualized in Fig. 5. The training data
is used to determine the parameter vectors θk. Least squares
or maximum likelihood estimation can be used to find these
configurations. To obtain a single prediction for each in-
put time series, a voting scheme is implemented. Each tree
votes for a class based on its prediction. These votes can
be weighted (weights denoted by wck ) so that votes for one
class count more or less than votes for a different class. The
weighted votes are summed and a single zoning class predic-
tion, ĉ is chosen for the original input time series.

For the calculations we use a MATLAB implementation of
the random forest algorithm released by Jaiantilal 2. Our
implementation uses 49 input features which are computed
for each location as the input feature vector x. These fea-
tures include a 24-hour time series of residual mobile phone

2http://code.google.com/p/randomforest-matlab/
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activity during an average weekday as well as a 24-hour time
series of residual activity for an average weekend-day. The
final feature is the mean of the location’s absolute activity
on any given day. Additional features such as the variance
of mobile phone activity were tested, but none aided predic-
tion. The output of the algorithm is a zoning classification
for each location. Cross validation is used to test accuracy.
We create 500 trees for each forest and define total accuracy
as the fraction of correctly classified cells on the validation
part of the sample.

Our first set of results include all five zoning classifications:
Residential, Commercial, Industrial, Parks, Other. When
all land use classes are included, however, we face a major
challenge with classification. As noted above, nearly 75% of
all cells are primarily residential. The next most common
zoned use is Industrial at 7%. Because of our definition of
total accuracy, the most naive classifier, simply assigning
Residential to everything, will achieve 75% total accuracy,
but will fail to capture any diversity in use. To guard against
this, we weight the voting system so raise or lower the re-
quired votes in order to choose a given classification. The
maximum of the weighted votes then provides the predicted
class. Systematic variations of the weights on a (coarse)
grid led to a choice of weights where the criterion applied
was maximum classification accuracy for all classes but res-
idential.

Finally, we note that the random forest classifier uses local
information only to make a prediction. Given the size of
our grid cells, it is reasonable to assume that land use does
not differ greatly from each 200m by 200m tract of land to
the next. To incorporate neighborhood information into our
predictions, we implement a second pass algorithm. After
the classifier has made a prediction for a cell, we examine the
predictions for each of that cell’s neighbors. If the majority
of neighboring cells were predicted to be a land use that
differs from the cell in question, that cell is switched to the
majority use of its neighbors. In practice, this results in
some spatial smoothing of noisy classification data. We find
that performing the second pass provides gains of 2-10%
overall accuracy for each classifier.

Even with vote weighting and the second pass algorithm, we
achieve only modest results. Table 2 shows 54% accuracy
over the whole city. This implies that demanding equal clas-
sification accuracy for all classes reduces overall accuracy by
about 20%. Figure 6 displays the spatial distribution of cor-
rectly and incorrectly classified locations. We note, however,
that the algorithm does capture some spatial patterns in the
data and that our intra-use accuracy is relatively high for
Commercial and Industrial uses. Parks and Other mixed
uses remain difficult to classify.

To account for the tendency of the algorithm to over-predict
residential use, we remove cells zoned as Residential from
consideration. This leaves a nearly equal share of the re-
maining four uses: Commercial, Industrial, Parks, and Other.
Table 3 and Figure 7 display results for this sub-classifier.
Now, the zone with the largest share is commercial use,
which only accounts for 33% of non-residential zones. Intra-
use accuracy has improved significantly for Parks and Other
mixed uses. Whereas the random forest including residen-

correct incorrect

Prediction Errors

Residential Commercial Industrial Parks Other

Figure 6: Left plot: zoning map as predicted from
mobile phone data using the random forest classifi-
cation algorithm. Right plot: spatial distribution of
where the algorithm predicts land use correctly and
where it fails. In general, these errors seem ran-
domly distributed in space, suggesting that errors
are not the result of some spatial correlations such
as population density. For comparison to actual zon-
ing, see the left panel of Figure 2.

tial uses could only correctly classify 2% of zones classified
for Parks, the sub-classifier, excluding Residential, correctly
predicts 30% of park cells. A similar improvement from
10% to 34% is also observed for the Other or mixed use
category. The share of classes incorrectly classified as Resi-
dential roughly is distributed onto Parks and Others in the
classifier without the Residential category, while commercial
and industrial zones are not affected heavily. One hypothesis
for this effect is that many cells while classified as Residen-
tial in rural areas are not fully developed and thus used as
parks and in the city center show mixed usage. Including
the large class of residential zones masks this effect.

correct incorrectResidential Commercial Industrial Parks Other

Prediction Errors

Figure 7: The left plot shows the city zoning map
with residential areas removed as predicted from
mobile phone data using the random forest classifi-
cation algorithm. The right map displays the spatial
distribution of where the algorithm predicts land use
correctly and where it fails. Without residential ar-
eas to predict, the algorithm performs significantly
better at predicting other uses. For comparison to
actual zoning, see the left panel of Figure 2.

The goal of the supervised learning algorithm is to make
correct predictions of actual zoned use. Incorrectly classi-
fied cells are labeled as errors, but how an area is zoned is
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Table 2: Random forest classification results. The
threshold refers the total number of phone events
required in each cell over period of data collected
to be considered for classification. Total accuracy
is defined as the fraction of correctly classified cells.
The share refers to the percentage of cells actually
zoned for each class of use. Element (i, j) of the
confusion can be interpreted as the fraction of actual
zoned uses of class i that were classified as use j by
the random forest. Thus the high percentages in
the Res column can be interpreted as the algorithm
heavily favoring classification as residential due to
its overwhelming share of overall uses.

Total Accuracy: 0.54
Res Com Ind Prk Oth

Land Share: 0.74 0.09 0.08 0.04 0.05
Vote Thresh: 0.60 0.10 0.10 0.10 0.10

Confusion Matrix
Res Com Ind Prk Oth

Res 0.62 0.21 0.15 0.01 0.01
Com 0.30 0.48 0.19 0.00 0.02
Ind 0.33 0.27 0.38 0.00 0.02
Prk 0.52 0.26 0.18 0.02 0.02
Oth 0.37 0.28 0.25 0.00 0.10

Table 3: Random forest classification results. In this
case, residential land has been removed from con-
sideration. The algorithm is now able to correctly
predict much larger fractions of rarer land uses.

Total Accuracy: 0.40
Res Com Ind Prk Oth

Land Share: 0.00 0.33 0.31 0.16 0.20
Vote Thresh: N/A 0.30 0.30 0.20 0.20

Confusion Matrix
Res Com Ind Prk Oth

Res N/A N/A N/A N/A N/A
Com N/A 0.50 0.19 0.11 0.19
Ind N/A 0.27 0.37 0.12 0.24
Prk N/A 0.31 0.18 0.29 0.21
Oth N/A 0.26 0.24 0.15 0.34

not necessarily the same as how it is used. As an exam-
ple the area termed ”Back Bay” containing some of Boston’s
most busiest shopping streets, Boylston and Newbury, is
classified as residential, as is the campus of MIT. Clearly
these areas have a different usage than residential areas in
the suburbs. A political and idiosyncratic process for set-
ting and updated zoning regulations may lead to broad or
unenforced development standards. In light of this, errors
made by our classification algorithm may be due to incom-
plete zoning data rather than actual mistakes. To examine
this possibility further, we analyze prediction errors more
closely. Figure 8 displays a detailed partitioning of classifier
results. We compare average residual activity across three
groups of cells: (I) All cells correctly predicted to be a given
use. (II) All cells of another use incorrectly predicted to
be the given use. (III) All cells of a given use incorrectly
predicted to be some other use.

Reviewing residential use, we see that Group I is defined

as all residential cells correctly predicted to be residential.
The average activity pattern is the most dominant pattern
of residual activity for residential land use. We find that the
residual activity in non-residential cells predicted to be resi-
dential (Group II) closely follows the pattern found in Group
I. This strongly supports our hypothesis that though some
zones are not classified as residential in the data, their phone
activity patterns suggest they are used in similar ways. In
contrast, the residual activity in residential cells incorrectly
classified as some other use (Group III) displays the inverse
pattern. This suggests our algorithm is identifying cells that
are zoned as residential use but that do not share activity
characteristic of that zoning class in reality.

Mon Tue Wed Thu Fri Sat Sun

Residential

Mon Tue Wed Thu Fri Sat Sun

Commercial

Mon Tue Wed Thu Fri Sat Sun

Industrial

Mon Tue Wed Thu Fri Sat Sun

Parks

Mon Tue Wed Thu Fri Sat Sun

Other

I II III

I II III I II III

I II III I II III

Group I

Group II

Group III

Cells correctly predicted to be a 

Cells of a given use incorrectly 

Cells of a different use incor-

rectly predicted to be a given 

Classification Error Analysis

Figure 8: An analysis of classification errors. We
consider three groups: (I) Cells correctly predicted
to be a given use (II) Cells of a given use incor-
rectly predicted to be some other use (III) Cells of
some other use incorrectly predicted to be a given
use. For example, Group I includes all residential
areas correctly predicted to be residential. Group
II, residential cells predicted to be some other use
(i.e. Commercial), have average activity that is the
inverse of Group I, suggesting these locations were
misclassified because they display fundamentally dif-
ferent activity patterns. Group III represent cells
of other uses such as Commercial that behave like
Residential. This error analysis suggests that our al-
gorithm is clustering locations based on both their
zoned use as well as the dominant patterns in mobile
phone activity.

7. CONCLUSION
In this article, we examined the potential of CDR data to
predict land usage. We demonstrated that aggregate data
shows the potential to differentiate land usage based on tem-
poral distribution of activities. While the absolute activity
is dominated by the circadian rhythm of life, eliminating this
rhythm reveals subtle differences between the five main land
use categories Residential, Commercial, Industrial, Parks
and Other. The addition of a temporal dimension to zoning
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classification may aid strategic planning decisions related to
land use.

As the data are available at a high spatial resolution, we
investigated the capabilities to infer land use on a fine grid
of 200 by 200 meters. We found that supervised classifica-
tion based on labeled zoning data provides estimated land
use classifications which show better accuracy than random
assignment. At the same time accuracy is worse than clas-
sifying every zone as Residential, the dominant category.

Reasons for this lack of accuracy might be found in the na-
ture of the data used: actual usage might differ from the zon-
ing regulations and Residential is often confused with Parks
and Other zones. Omitting residential zones, the classifica-
tion accuracy for Parks and Other zones greatly increases
while industrial and commercial zones classification accura-
cies are not heavily affected. For rural areas where residen-
tial land might not be fully developed this is plausible. For
urban zones the distinction between Residential and Other
zones might also be subject to temporal changes as mixed
use is prevalent. Finally, analysis of prediction errors reveals
that the algorithm fails to correctly classify areas because
they have fundamentally different mobile phone activity pat-
terns. This suggests that there may be heterogeneity in how
land is actually used, despited its official zoned classification.

Thus the main conclusion is that the CDR data shows some
potential to infer actual land use both on an aggregate level
and on a higher spatial resolution. However, zoning data
might not be the optimal data source to infer actual land
use and hence act as ground truth to guide the supervised
learning algorithm. In this respect, our analysis suggests
that mobile phone activity may be used to measure the het-
erogeneity in how space is used that cannot be captured by
simple and broad zoning classifications. Moreover, the incor-
rect predictions made by our algorithm may suggest updates
to traditional zoning maps so as to better reflect actual ac-
tivity or highlight areas where more planning oversight is
needed.

Both topics will be investigated further. Larger sample sizes
in the form of longer time series might lead to a reduction in
noise levels and hence increase the classification accuracy. It
may also be advantageous to expand the set of features used
in prediction. Although our aim was to keep this space rela-
tively low dimensional to aid interpretation, the complexity
of intracity mobility may demand more. However, given our
results suggest that a modest fraction of the city can be clas-
sified at very high resolution from relatively simple features.
The algorithm itself may be improved by additional consid-
eration of balancing more prevalent uses with those more
scarce. Finally, other data sources such as points of interest
(POIs) will be used as ground truth in the supervised learn-
ing instead of zoned use. This may clarify whether the de-
viations in classification between the zoning regulations and
the mobile phone usage dynamics are due to wrong zonings
or deficiencies in the measurement technology using CDR
data.

We hope this information will be useful to make effective
and efficient choices of locations for both public and private
resources. In addition to potential applications, we hope

that tools and techniques developed and applied above will
prove useful to merging traditional and novel data.
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ABSTRACT
Commuting matrices are key for a variety of fields, includingtrans-
portation engineering and urban planning. Up to now, these matri-
ces have been typically generated from data obtained from surveys.
Nevertheless, such approaches typically involve high costs which
limits the frequency of the studies. Cell phones can be considered
one of the main sensors of human behavior due to its ubiquity,and
as a such, a pervasive source of mobility information at a large
scale. In this paper we propose a new technique for the estima-
tion of commuting matrices using the data collected from theper-
vasive infrastructure of a cell phone network. Our goal is toshow
that we can construct cell-phone generated matrices that capture the
same patterns as traditional commuting matrices. In order to do so
we use optimization techniques in combination with a variation of
Temporal Association Rules. Our validation results show that it is
possible to construct commuting matrices from call detail records
with a high degree of accuracy, and as a result our technique is a
cost-effective solution to complement traditional approaches.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms,Experimentation,Measurement.

Keywords
Commuting Patterns, O-D Matrix, Call Detail Records.

1. INTRODUCTION
Commuting patterns are typically represented using commuting ma-
trices, which are a particular case of O-D matrices. O-D matrices
characterize the transitions of a population between different geo-
graphical regions representing the origin (O) and destination (D) of
a route. When building commuting matrices the geographicalareas
representing origin(O) and destination (D) capture where people
live and work. Typically O and D are the same set and represent
the towns or neighborhoods of the geographical area under study.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UrbComp’12, August 12, 2012. Beijing, China.
Copyright 2012 ACM 978-1-4503-1542-5/08/2012 ...$15.00.

Each element of the commuting matrix(i, j) defines the percentage
of individuals that live inOi and work inDj .

Typically, National Statistical Institutes carry out periodical sur-
veys asking different segments of the population about their com-
muting patterns [16]. The information obtained is used as input
for O-D generation techniques. However, such approach typically
involves high costs and the data collected has spatio-temporal lim-
itations, which implies that the matrices generated typically only
represents a snapshot of the commuting patterns over time.

In recent years, cell phones have become a pervasive technology
with users carrying them at almost all times. The ubiquity ofthese
platforms has transformed cell phones into one of the main sensors
of human behavior. In fact, every time a subscriber makes or re-
ceives a phone call, or an SMS, or an MMS, information regarding
the interaction as well as the geolocation of the user (in theform
of the tower used for the communication) is logged for billing pur-
poses. As a result we can find in the literature a variety of studies
focussing on using cell phone data for estimating traffic andcom-
muting patterns [8][18] . Following this trend, in this paper we
explore the use of the location information contained in Call De-
tail Records as a means to compute the commuting patterns of a
population expressed as an O-D matrix. Such approach overcomes
the limitations posed by the use of other proxies (like smartcards,
surveys or social security records) and it can be carried outas often
as necessary with very limited costs.

Compared to the literature, our approach has the following contri-
butions: (1) We base our study in Call Detail Records, which are
already available for billing purposes in a telco operator,and not in
specific measurements and/or traces obtained from the cell phone
network. As a result our approach is based on a big part of a pop-
ulation and not on a limited number of traced cell phones; (2)We
present a new technique for defining and constructing O-D matri-
ces based on a new temporal variation of association rules (TAR,
Temporal Association Rules) and (3) Our technique is designed to
capture the different cultural commuting schedules of different ur-
ban areas.

2. CELLULAR INFRASTRUCTURE
In order to compute the commuting patterns of a population from
geolocated cell phone logs, we first give a brief overview about how
these pervasive networks work. Cell phone networks are built using
a set of base transceiver stations (BTS) that are in charge ofcom-
municating cell phone devices with the network. Each BTS tower
has a geographical location typically expressed by its latitude and
longitude. The area covered by a BTS tower is called a cell. Each
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cell is typically divided in three sectors, each one covering 120 de-
grees. At any given moment, one or more BTSs can give coverage
to a cell phone. Whenever an individual makes a phone call, the
call is routed through a BTS in the area of coverage. The BTS is
assigned depending on the network traffic and on the geographic
position of the individual.

CDR (Call Detail Record) databases are generated when a mobile
phone connected to the network makes or receives a phone call
or uses a service (e.g., SMS, MMS, etc.). In the process, and for
invoice purposes, the information regarding the time and the BTS
tower where the user was located when the call was initiated is
logged, which gives an indication of the geographical position of
a user at a given moment in time. Note that no information about
the exact position of a user in a cell is known. Also, no information
about the location of cell phone is known or stored if no interaction
is taking place.

From all the data contained in a CDR, our study uses the encrypted
originating number, the encrypted destination number, thetime and
date of the call, the duration of the call, and the latitude and longi-
tude of the BTS tower used by the originating cell phone number
and the destination phone number when the interaction happened.
In order to preserve privacy, all the information presentedis ag-
gregated and original records are encrypted. No contract ordemo-
graphic data was considered or available for this study.

3. PROBLEM DEFINITION
A commuting matrixCM [O, D] represents the percentage of pop-
ulation that commutes on an average daily basis from an origin ge-
ographical areaO to a destination geographical areaD. Typically
O andD represent the same set of towns, and as a result a com-
muting matrix is usually a square matrix. Two commuting matrices
can be defined: the home-work commuting matrixCM [H, W ] and
the work-home commuting matrixCM [W, H ]. In the first case,
each row of the commuting home-work matrixCM [H, W ], Hi

represents the percentage of population that lives in geographical
areaHi and commutes to each geographical areaWj . The di-
agonal of the matrix expresses the percentage of the population
that lives and works in the same town. Symmetrically, the work-
home commuting matrixCM [W, H ] accounts for the population
that works in the geographical areaWi and commutes back home
to each one of the geographical locationsHj (columns). From
this explanation, beingN the number of geographical areas con-
sidered, it follows that

Pj=N
j=1 CM [Hi, Wj ] = 1∀i ∈ [1, ..., N ]

and
Pj=N

j=1 CM [Wi, Hj ] = 1∀i ∈ [1, ..., N ].

Traditionally, such commuting matrices are computed by National
Statistical Institutes (NSIs) that run surveys and questionnaires across
the population under study and determine the commutes that citi-
zens carry out on a daily basis. These mobility matrices are typi-
cally available at census bureaus. However, as stated earlier, such
surveys are expensive and thus carried out every certain number of
years.

The goal of this paper is to present a mechanism to estimate the
commuting matrix of a geographical area from the information con-
tained in CDR records that can approximate the values provided by
traditional questionnaire-based approaches. For that purpose, two
mechanisms need to be defined: (1) the construction of commut-
ing matrices from CDR data and (2) an optimization process that
identifies which behavioral patterns better define commuting when
using CDR data.

4. ESTIMATING COMMUTING MATRICES
FROM CDR

In this section we will present the mechanisms needed to character-
ize the commuting patterns of a population from call detail records
(CDR).

4.1 From CDRs to Commuting Matrix
To compute a commuting matrix from CDRs we first need to iden-
tify the geographical areas in the region under study that weare
going to use as eitherhome or work. Given that the goal of this
paper is to present an alternative method to generate commuting
matrices, for each particular case we will select as regionsthe same
ones considered by corresponding NSI. We assign to each region
the set of BTSs geographically included in them (i.e. the towers
that give coverage to that area). As a result each geographical
area consideredgi, i = 1, ..., N , with N the total number of ge-
ographical areas considered, can be characterized by a set of BTSs
gi = {bts1, bts2, ..., btsk}.

Once these areas have been characterized, we need to compute–
from the CDRs– the individuals that called from an origin area at
some point in time and later show calling activity at a destination
area. These associations will populate the home-work and work-
home commuting matrices.

We can formalize this problem using Association Rules [1]. Asso-
ciation Rules (ARs) were introduced by Agrawalet al. as a tech-
nique to discover specific item relationships in itemsets [1]. Specif-
ically, given an itemsetX = X1, X2, ..., Xn, an Association Rule
of the typeX → Y implies that wheneverX is satisfied,Y is also
satisfied, with a given support and confidence. Formally, being P
the probability of an itemset:

support(X → Y ) = P (X
[

Y ) (1)

confidence(X → Y ) = P (Y |X) =
P (X

S

Y )

P (X)
(2)

Often times, Association Rules(AR) are used to find the tuples that
satisfy minimum support and confidence values in a dataset. ARs
are calculated using theApriori algorithm presented in [1]. In our
context, we seek association rulesHi → Wj andWi → Hj that
identify tuples characterizing the home to work and work to home
commutes. Furthermore, we require these events to happen ina
temporal orderi.e., the home-work matrixCM [H, W ] is popu-
lated with pairs of eventsHi → Wj such that the interaction at a
home locationHi always happens earlier in time than an interac-
tion event at work locationWj ; analogously, the work-home matrix
CM [W, H ] is populated with pairsWi → Hj where an interaction
event at work locationWi always happens before an interaction at
a home locationHj . Because traditional Association Rules do not
consider any temporal order, we present a technique designed to
capture these elements:Temporal Association Rules (TARs).

4.1.1 Temporal Association Rules
Temporal Association Rules extend association rules by introduc-
ing temporal constraints in the relationship between antecedent and
consequent [12][6]. For our context, we propose a new Temporal
Association Rule (TARs) where itemsX andY are required to hap-
pen within a specific time interval. Specifically, each association
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Figure 1: CMTAR algorithm for the construction of an O-D matrix using Temporal Association Rules (TAR).

rule X → Y is characterized not only by its support and confi-
dence, but also by time intervals at which itemsX andY need to
happeni.e., X[TO ] → Y [TD], whereTO is the time interval when
the antecedent (or originO) has to happen andTD the time inter-
val when consequent (or destinationD) has to happen. Also while
in traditional Association Rules, antecedents and consequents can
have more than one element, in our approachX andY contain just
one element, i.e. one geographical area, indicating the Origin(O)
and the Destination(D).

In order to reveal commuting patterns from CDRs, we seek to iden-
tify the temporal association rules whose confidence represents the
percentage of individuals that are at an origin locationOi dur-
ing a time intervalTO = [tO,start, tO,end] and move to a desti-
nation locationDj where they are present during a time interval
TD = [tD,start, tD,end], formally:

Oi[tO,start, tO,end] → Dj [tD,start, tD,end] (3)

Note thattO,end happens beforetD,start. In our framework,Oi

andDj represent geographical regions and the temporal associa-
tion rules will either reveal commuting patterns from home to work
locations (withO=home location andD=work location) or work to
home commutes (withO=work andD=home).

In order to construct a commuting matrix CM, we propose CM-
TAR, a TAR-based algorithm (see CMTAR Algorithm in Figure 1)
that receives as input a set of CDRs and a pair of time intervalsTO

andTD . The algorithm produces as output a Commuting Matrix
obtained from CDR records (CMCDR) for the corresponding time
intervals. CMTAR identifies for each subscriberS within the CDR
dataset, all the pairsOi → Dj such thatOi happens within the
interval [tO,start, tO,end] andDj happens no later than 24 hours
within the interval[tD,start, tD,end]. Each element of the commut-
ing matrixCMCDR[O, D] is populated with the confidence values
associated to each Temporal Association Rule (TAR)Oi → Dj ,
with i, j = 1, ..., N (see Equation (2)).

From an implementation perspective, we have implemented CM-
TAR using a modifiedApriori algorithm designed to capture the

temporal characteristics of TAR. The algorithm assumes that the
set of CDRs are grouped for each subscriberS by date and time,
being|CDR| the number of CDR entries.

4.2 Optimizing Time Intervals
CMTAR constructs a Commuting MatrixCMCDR using CDR and
a set of time intervals that define the Temporal Association Rules.
The problem is how to identify which temporal ranges best capture
the behavioral fingerprint for the commuting matrix. The objec-
tive is to identify the time intervals for the origin and destination
of the Temporal Association Rules (TO and TD) that produce a
Commuting Matrix from CDR (CMCDR) as similar as possible
to the original Commuting Matrix provided by the corresponding
National Statistics Institute (CMNSI ).

A first approach could use brute force to test all possible time inter-
vals, and compute the similarity betweenCMCDR andCMNSI ,
being the best solution the one with the highest similarity value.
However, due to the large amount of CDR data such approach is
not computationally feasible. We propose to use optimization tech-
niques to identify the optimal time intervals that best characterize
the commuting patterns. In the following sections, we will present
the use of Genetic Algorithms (GA) and Simulated Annealing(SA)
to implement the optimization process. Both techniques have been
shown to be useful in similar problems [9], and although theyare
both stochastic, they explore the candidate populations using sig-
nificantly different approaches.

In our context, for each pair of time intervalsTO andTD that the
optimization technique evaluates, we first need to computeCMCDR

using the CMTAR algorithm. In order to evaluate its accuracy, we
measure the similarity betweenCMNSI and CMCDR. As ex-
plained, each row inCMCDR represents the set of confidence val-
ues for the corresponding TARs for all commutes departing from
each geographical areaOi to any destination location (Oi → D∗).
Similarly, each row inCMNSI represents the confidence of the as-
sociated TAR from each geographical areaOi to geographical areas
D∗. Thus, in order to evaluate the accuracy ofCMCDR we need
to evaluate the similarity of each row with the corresponding row
of CMNSI . For that purpose, we use Pearson’s correlation[14] to
analyze the similarity between each origin locationOi in CMCDR

with CMNSI and the final similarity value is given by the aver-
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age Pearson correlation across all origins. Formally the similarity
betweenCMNSI andCMCDR is obtained as:

c(Oi) = Pearson(CMCDR[Oi, D∗], CMNSI [Oi, D∗] (4)

similarity =
N

X

i=1

|c(Oi)|/N (5)

4.2.1 Optimizing Time Intervals with GA
Genetic Algorithms (GA) are search algorithms based on the me-
chanics of natural selection tailored for vast and complex search
spaces [2]. A GA starts with a population of abstract represen-
tations (called chromosomes) of candidate solutions (individuals)
that evolves towards an improved sets of solutions. Achromosome
is composed of several genes that code the value of a specific vari-
able of the solution. Each gene is typically represented as astring
of 0s and 1s. During the evolution, individuals from one generation
are used to form a new generation, which is (hopefully) closer to
the optimal solution. GAs use a fitness function in order to evalu-
ate the quality of the solution represented by a specific individual.
In each generation, GA creates a new set of individuals obtained
from recombining the fittest solutions of the previous generation
(crossover), occasionally adding random new data (mutation) to
prevent the population from stagnating. This generationalevolu-
tion is repeated until some condition (for example number ofpop-
ulations or improvement of the best solution) is satisfied.

In the context of identifying the best time intervals for constructing
CMCDR, GA takes as input the set of phone calls (CDRs) from
a geographical region andCMNSI , that defines the optimization
objective. Each candidate solution produced by GA is designed
to capture the time intervals at which commuters call from origin
and destination locations. In order to do that, we define a chro-
mosome composed of four different genes. The first two genes
represent the starting time and the finishing time at which sub-
scribers make phone calls from the origin locationsO. The last
two genes represent the starting time and the finishing time at which
subscribers make phone calls from destination locationsD. Each
gene is composed of five bits, which accounts for the24 hours
of the day. Given that we require that[tO,start, tO,end] happens
before[tD,start, tD,end], whenever the newly computed chromo-
somes does not satisfy this restriction, we assume thatTO happens
the natural day beforeTD.

The fitness of each candidate solution is evaluated using Equation
(5), i.e. we define the fitness function as the accuracy of the mo-
bility matrix CMCDR with respect to the NSI mobility matrix,
CMNSI . As a first step to evaluate the fitness of a candidate solu-
tion, CMCDR has to be generated using CMTAR algorithm with
the time slots defined by the genes of the candidate solution.

For example, if a candidate solution proposed by the GA has the
values [(06,09),(17,22)], CMTAR computes the temporal associa-
tion rulesOi → Dj that represent calls made or received at loca-
tion Oi during a morning interval (6am to 9am) and at locationDj

during a night period (5pm to 10pm). The confidence values are
then used to generateCMCDR, whose fitness is evaluated using
CMNSI with Equation (5).

4.2.2 Optimizing Time Intervals with SA
Simulated Annealing (SA) is a probabilistic method designed to
find the global minimum of a cost function that may posses sev-

eral local minima[11]. It works by emulating the physical process
whereby a solid is slowly cooled so that its structure is frozen at a
minimum energy configuration [3].

The SA metaheuristic starts from a random initial configuration and
seeks to find solutions that minimize an energy functionE(x) as
the temperatureT decreases. At each step, the solution explored
is accepted as long as the Acceptance Probability Function (APF)
that depends both on the energy and on a varying temperature has
a higher value than a randomly selected number:

P (E(s), E(new), T ) > random(0, 1) (6)

The APF is selected such that the smaller the value ofT the
less "uphill" solutions are allowed to be explored, and asT de-
creases, the more the "downhill" solutions are favored. Such an
approach guarantees that the process does not get stuck in local
minima reaching a good approximation to a global minimum. This
process is repeated multiple times at each temperature value to al-
low the system to stabilize before decreasingT again.

In our context, SA takes as input CDRs andCMNSI , and out-
putsCMCDR and the intervalsTO = [tO,start, tO,end] andTD =
[tD,start, tD,end] that best characterize commuting patterns. For
that purpose, SA explores randomly selected time intervalsseeking
the ones that decrease the candidate’s energyE(x) until a global
minimum is found. Each candidate solution explored by SA is de-
fined as a set of two intervals, one representing the time interval
at origin [tO,start, tO,end] and another representing time interval
at destination[tD,start, tD,end]. Each time in the intervals is rep-
resented as a number in[0, 24], checking thatTO happens before
TD. If this condition is not satisfied, the process assumes thatTO

happens the natural day beforeTD.

Whenever SA explores a new candidate solution, it randomly se-
lects for each timet of each slot a new value from its neighbor-
hood. Given that SA seeks to minimize the energy function, we
define it as one minus the correlation coefficient betweenCMCDR

andCMNSI obtained by Equation (5). Finally, the temperatureT
is decreased following a geometric decrement such thatTnew =
α ∗ Told.

5. EXPERIMENTAL EVALUATION
In this section we present an evaluation of the mechanism we have
proposed to generate the commuting matrix for the region of Madrid
using CDR data. The state has a population of 6.5M and a size of
8,000Km2, with the city of Madrid concentrating 3.3M in popu-
lation, and the rest corresponding to the 48 municipalitiesin which
the region is divided. Figure 2 presents the map of the regionand
the division in municipalities.

5.1 Datasets
We have used two sources of information from the year2009: (1)
the NSI mobility matrices for the state of Madrid and (2) a CDR
dataset of cell phone calls made and received in the state.

NSI matrices represent the home-to-work (CMNSI [H,W ]) and
work-to-home (CMNSI [W, H ]) commuting patterns during2009
for the 48 municipalities shown in Figure 2. These municipali-
ties are considered as the OriginO and DestinationD sets. Such
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Figure 2: Geographical division of the municipalities in which
the region of Madrid is divided (including the names of some of
them). The association between BTS towers and geographical
areas is defined by this borders.

matrices were built by the local NSI after gathering information re-
garding the municipality where a person lived and the municipality
where a person worked.

The second source of information is a CDR dataset that contains all
phone calls, SMS and MMS, that were collected from BTS towers
located in the state of Madrid during October and November of
2009, which account roughly for 3.5M unique phones and around
300M interactions. This dataset also includes the geolocation of
the BTS towers. In order to filter out mobility patters not related
to commuting, we only consider CDR data from Monday through
Thursday. Similarly, all bank holidays were filtered. From the two
months of traffic available for this study, we will use the data from
October for the optimization process, and the data from November
will be used to validate the results.

In order to guarantee privacy we implemented a set of elements: (1)
All records were anonymized; (2) Data collection and anonymiza-
tion was done by a third party that was not involved in the analysis;
(3) No individual demographic data was available or requested for
this study and (4) The information presented is always aggregated
in order to further guarantee privacy.

5.2 GA and SA: Configuration
Genetic Algorithms and Simulated Annealing are used to search for
the temporal intervals that best represent the times at which people
commute using CDRs for the Madrid region. We carry out a total
of four experiments: (1) the construction ofCMCDR[H, W ] using
Genetic Algorithms and (2) using Simulated Annealing; and (3) the
construction ofCMCDR[W, H ] using Genetic Algorithms and (4)
using Simulated Annealing. The optimization process is thesame
in all cases, but while the first two useCMNSI [H, W ] as the goal
of the optimization, the second two useCMNSI [W, H ].

For the experimental evaluation, we have used the JGAP imple-

Size Temporal Range Correlation
10 [20, 21][9, 16] 0.8050
20 [20, 21][9, 10] 0.8219
50 [20, 21][9, 10] 0.8219

Table 1: Optimization results when using Genetic Algorithms
for the home-to-work [H,W] commuting matrix.

Size Temporal Range Correlation
10 [14, 16][20, 24] 0.9029
20 [15, 16][20, 24] 0.9029
50 [15, 16][20, 23] 0.9059

Table 2: Optimization results when using Genetic Algorithms
for the work-to-home [W,H] commuting matrix.

mentation of Genetic Algorithms [13] and our own implementation
of Simulated Annealing following the description presented in [3].
Both approaches use the CMTAR Algorithm to constructCMCDR

for each set of time slots considered, which we have implemented
in Java.

In our experiments, GA uses a distributed architecture where a set
of 16 genetic algorithms are run in parallel to explore the quality
of different time intervals. Specifically, each process is initialized
with a randomly generated population of a set of individuals. At
every generation, the reproduction is carried out for a90% of the
total population; the crossover is executed with a35% of pairs of
the selected population by randomly selecting a gene in eachindi-
vidual and exchanging its content with its partner; and the mutation
is executed for each gene with a probability of 1/12 and by ran-
domly creating a new gene. The fittest individual is always moved
to the next generation, and all the other individuals have a proba-
bility of being brought to the next generation proportionalto their
fitness value. Each process is executed on one core and runs in
parallel with the other processes in our architecture of dual-core
Intel processors. For our experiments we considered three different
population sizes10, 20, 50.

On the other hand, the SA implementation starts with an initial
temperature ofT0 = 5 and decreases its value with the function
Tnew = 0.65 ∗Told until a threshold value ofTn = 0.1 is reached.
This cooling criteria allows us to explore a sufficiently large amount
of temporal intervals without making the process too long. At each
temperature, the SA evaluates three different time intervals and
keeps the one that yields the best commuting matrix when com-
pared toCMNSI . Finally, we define as neighborhood solutions the
set of temporal intervals that are within a range of four hours be-
fore and after the last time exploredi.e., tnew ∈ [told −4, told +4].
All the parameters here described were selected because they rep-
resented the best performing values across a large evaluation set.

5.3 Optimization Results
In this section, we discuss the results after running GA and SA for
constructing[H, W ] and[W,H ] mobility matrices.

Table 1 and Table 2 show the results after applying GAs for the
home to work and work to home commuting matrices, respectively.
The tables shows the optimum Temporal Range obtained for each
population size considered and the value of the fitness function
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Temporal Range Correlation
[21, 22][11, 16] 0.7863
[21, 22][12, 16] 0.7844
[21, 23][10, 16] 0.7840
[21, 23][14, 18] 0.7808

Table 3: Optimization results when using Simulated Annealing
for the home-to-work [H,W] commuting matrix.

Temporal Range Correlation
[10, 16][20, 23] 0.8949
[14, 17][20, 21] 0.8787
[15, 16][20, 23] 0.8781
[10, 17][21, 22] 0.8724

Table 4: Optimization results when using Simulated Annealing
for the work-to-work [W,H] commuting matrix.

(given by Pearson correlation). The Temporal Range is expressed
by two intervals, the first one indicates the temporal condition for
the origin location and the second one for the destination location.

In Table 1 we observe that using CDRs to compute home-to-work
commuting matrices for the region of Madrid we achieve correla-
tion rates of up to0.82 when compared to the NSI matrices (ground
truth). This result was obtained with an initial population of20
candidate solutions and for time slots that define origin as the inter-
actions that took place between 8pm to 9pm of the previous day,
and destination as the interactions that took place between9am
to 10am. Smaller populations yielded worse correlation results
whereas larger populations did not improve the results. On the
other hand, Table 2 shows that the work-to-home mobility matri-
ces computed by GA achieve correlation rates when compared to
NSI matrices of up to0.9059 with an initial population of20 in-
dividuals. In this scenario, the algorithm uses the calls made from
3pm to 4pm to detect the origin location and calls made from 8pm
to 11pm (of the same day) to identify the destination location.

Tables 3 and 4 present the results obtained when using SA. For
the [H, W ] commuting matrices, the best coefficient obtained was
of 0.7863 with origin location detected between 9pm and 10pm
of the previous day and destination location determined from calls
made from 11am to 4pm. In the case of the work-to-home commut-
ing matrices, the highest correlation coefficient is of0.8949 with a
temporal range of 10am to 4pm to detect the origin location and
8pm to 11pm to detect the destination location.

In general the correlation values provided by GA are better than the
ones provided by SA. Also, we observe that in both cases, the work-
to-home commuting matrices are better modelled from CDRs than
the home-to-work (0.90 to 0.82 when using GA, and0.87 to 0.78
when using SA). This result might be related to the fact that people
make more cell phone calls during the day than early in the morning
or at night, which provides a larger number ofgeographical points
to model commutes from work-to-home than vice versa. Also, it
might be an indication that the home-to-work commuting follows
a less direct route (e.g., taking kids to school), thus adding noise to
the available data.

Finally, the average execution time for GA when consideringthe

Figure 3: Visualization of the Commuting Matrix obtained for
the municipality of Pinto in southern Madrid, showing the top
five municipalities with the highest confidence value for thework-
to-home commuting.

best solutions obtained for a population of20 is 2, 890 minutes,
while the average processing time for SA for the best solution is
2, 699 minutes.

6. VALIDATION
The experimental results described in the previous sectionhave
shown that CDRs can be used to construct commuting matrices
that are as good as the one provided by NSI.

In our context, the goal of the validation is to assess whether the
time intervals identified for the[H, W ] and[W, H ] commuting ma-
trices are valid to estimate the commuting matrices of otheryears,
in order to show that CDRs can be used to generate commuting ma-
trices without the need of NSI data. Ideally, the validationprocess
would consider the commuting matrices obtained by the NSI for
2010 and CDR data from 2010, and validate the time intervals us-
ing the similarity betweenCMCDR andCMNSI . Nevertheless, so
far, no commuting matrices for 2010 or 2011 have been published
by the local NSI.

Considering that limitation, we implement a validation process that
uses the 2009CMNSI [H, W ] andCMNSI [W, H ] matrices and
the November 2009 CDR dataset. The intervals we are going to
use are the ones obtained by the GA-based optimization:[20 −
21][09−10] for the home-to-work commute and[15−16][20−23]
for the work-to-home commute. Finally, the validation is done by
calculating the similarity between the CDR matrix obtainedand the
NSI matrix using Equation (5).

Table 5 shows for both home-to-work and work-to-home commutes
the Temporal Range used, the correlation values obtained during
the Optimization process using the October 2009 CDR dataset, and
the Validation correlation betweenCMCDR and CMNSI using
the November 2009 CDR dataset (with its corresponding standard
deviation). We observe that the Validation correlation coefficients
are within a 10% of the correlation values obtained in the Optimiza-
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Temporal Range Optimization(Oct09) Validation(Nov09)

Home-To-Work [20, 21][9, 10] 0.8219 0.765 (σ = 0.46)

Work-To-Home [15, 16][20, 23] 0.9059 0.9322 (σ = 0.16)

Table 5: Validation results for the [H,W ] and [W, H ] commuting matrices obtained with November 2009 CDR data.

Municipality % of Population H-W Correlation W-H Correlation

Madrid 50% 0.9995 0.5818

Alcobendas 2% 0.9885 0.8210

San Fernando 1% 0.9120 0.7411

Moraleja de Enmedio 0.0007% 0.0935 0.9895

Villa Conejos 0.0004% 0.1256 0.9972

Table 6: Individual Correlation values for H-W- and W-H for a set of representative municipalities.

tion process. It is noticeable that in the case of the work-to-home
commuting there is a slight increment in the correlation, which, in
line with the results discussed in the previous section, being prob-
ably caused by an increase of the CDR data available during the
time slots considered.

These results show that, although with some differences, the op-
timization process provides a good approximation of the time in-
tervals needed to compute commuting matrices, and as a result
future commuting matrices can be directly estimated from CDR
data. This allows for constructing O-D matrices with much more
frequency at a fraction of the cost. The reason for the different val-
ues between the NSI- and the CDR-generated matrices is mainly
caused by the fact that the NSI generates the commuting matrix
strictly using individuals that have a declared work location. As
a result,CMNSI does not capture any non-work related mobil-
ity (which in itself is very difficult to capture using questionnaire-
based approaches). Our CDR approach captures all types of mo-
bility (work, leisure, shopping, students, etc.), so the fact that using
CDR data we can not completely correlate the results with theNSI
is because our matrix contemplates more situations and as such is
more realistic.

6.1 Commuting Patterns by Municipality
The correlation coefficient betweenCMCDR andCMNSI repre-
sents an average value between each individual row-to-row corre-
lation. In an attempt to understand the commuting patterns for in-
dividual municipalities, we compare the rows of each CDR-based
mobility matrix with the rows of its NSI counterpart. Our objec-
tive is to do a preliminary study to understand whether thereare
stronger correlations between both matrices for specific munici-
palities. Figure 3 presents a visualization of the work-to-home
commuting matrixCMCDR for the municipality of Pinto using
November 2009 CDR data. It shows the top five TARs with the
highest support,i.e., the top municipalities where people that work
in Pinto live.

Table 5 shows that the standard deviations for home-to-workand
work-to-home correlations are0.46 and0.16, respectively. These
results reveal that there exist large differences in the correlation
values across municipalities, especially for the home-to-work com-

muting patterns. Table 6 presents the individual correlation coef-
ficients for a set of representative municipalities for the home-to-
work and work-to-home commute, including the percentage ofthe
population than they represent. We can observe that the home-
to-work correlation coefficients are higher when the municipality
has a large number of citizens,i.e., larger cities tend to have more
predictable home-to-work commuting patterns than smallerones.
On the other hand, larger municipalities tend to be less predictable
in their work-to-home commutes (have smaller correlation values)
than smaller towns. This is probably due to the fact that in larger
cities citizens tend to do other activities once they get outof work
as opposed to smaller towns where people tend to go directly to
home. Thus, although on average home-to-work patterns appear to
be less predictable than the work-to-home ones (as shown in Ta-
bles 1 and 2), that is only the case for small municipalities.In large
ones, the opposite holds, whereby the larger the city, the more pre-
dictable the home to work mobility matrices are (when compared
to the work to home mobility matrix).

These preliminary results seem to indicate that incorporating the
size of the municipalities in the optimization process could improve
the final correlation values. Also, we consider that having more
data to generate the O-D matrix will, to some extent, mitigate the
current limitations regarding the predictability of smallmunicipali-
ties (consider that because we only use Monday through Thursday,
in the end we have 17 days of traffic for the optimization process).

7. RELATED WORK
The construction of O-D matrices has been typically studiedby
transportation and urban planning research. Traditional solutions
are based on questionnaires and/or in the combination of question-
naires with traffic information. Such solutions typically focus on
generalization techniques that construct matrices from partial data.
The main approach used to obtain traffic data information is elec-
tronic toll collection[10]. This approach is limited because the in-
formation provided only reflects a partial view of the route.A pos-
sible solution for these limitations is the use of GPS data. In this
case, the information contains complete routes but the amount of
data available is even more limited [17]. The studies done upto
now focus mainly on GPS data available from taxi or bus fleets[17]
which highly limits the conclusions.
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The use of CDRs to model commuting patterns solves to a large
extent the previous limitations. A variety of studies can befound
in the literature: Caceres et al.[4] uses GSM simulated traces to
construct origin-destination data to measure the flow of vehicles,
Zhang et al. [18] presents a model to transform cellular counts
into vehicular counts in order to construct commuting matrices,
and Sohn et al. [15] introduced cell phone probes in the network
to identify trajectories and estimates O-D matrices using handoffs.
Our approach has a set of differential factors with these previous
studies: (1) we use CDR data that does not contain any handoff
information. Handoff information consists on storing the sequence
of towers used during a conversation and although they provide
more information, cell phone operators do not keep such datadue
to privacy concerns (also consider that information would actu-
ally be useful only if using cell-phones was allowed while driv-
ing); and (2) our approach focusses on showing that the traditional
questionnaire-based approaches for estimating O-D matrices can
be approximated by the technique we present. While the stateof
the art mainly presents techniques to construct O-D matrices and
assumes that the quality of the data will imply good results,in our
case the technique we propose uses the information contained in
questionnaire-based O-D matrices to tune the parameters. From
this perspective, our work has elements in common with Calabrese
et al. [5] in the sense that the validation of the technique isdone
with external O-D matrices. The difference in our case is that we
also use that same information to identify the best parameters to
construct O-D matrices with CDR in order to approximate the val-
ues of traditional approaches. This allows us to present a technique
that can be adapted to capture the different cultural schedules of
different urban areas.

Some authors identify the construction of O-D matrices using CDR
as the identification of home and work for each user, using that
information to aggregate origin-destination patterns. The work by
Frias-Martinezet al. [7], Isaacmanet al.[8] and Calabrese et al. [5]
present algorithms to detect home and work by identifying highly
used cell-phone towers. Nevertheless the use of such algorithms
has strong limitations that affect the construction of O-D matrices,
mainly: (1) the error introduced by the algorithms in the estimation
of the locations (which in general is not measurable due to the lack
of ground truth data); and (2) the fact that the coverage is limited
by the availability of information for each user,i.e., home and work
can only be detected for individuals that have a minimum amount
of interactions with their cellphone. Depending on the context, this
requirement can filter more than 80% of individuals[7], withthe
corresponding bias in the final matrix.

8. CONCLUSIONS
Traditional methods for the estimation of mobility matrices suffer
from a variety of limitations, mainly the bias of the information
collected and the cost of gathering such information. To overcome
these issues, we have presented a method based on the data col-
lected by cell phone infrastructures to generate commutingmatri-
ces. In the literature we can find similar approaches, but in our case
we have focussed our study on showing that we can replicate the
information contained in questionnaire-based O-D matrices.

Our approach is implemented with CMTAR, a TAR-based algo-
rithm designed to construct commuting matrices from CDR data.
The combination of CMTAR with optimization techniques pro-
vides an approach that identifies which parameters need to beused
to construct commuting matrices that are as similar as possible to
the NSI matrices. Our experimental evaluation and validation has

showed that we can compute commuting matrices with a high level
of accuracy using CDR, and as a result our CDR generated matrices
can be used for the same purposes as traditional matrices.
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ABSTRACT
The huge quantity of positioning data registered by our mo-
bile phones stimulates several research questions, mainly
originating from the combination of this huge quantity of
data with the extreme heterogeneity of the tracked user and
the low granularity of the data. We propose a methodology
to partition the users tracked by GSM phone calls into pro-
files like resident, commuters, in transit and tourists. The
methodology analyses the phone calls with a combination
of top-down and bottom up techniques where the top-down
phase is based on a sequence of queries that identify some
behaviors. The bottom-up is a machine learning phase to
find groups of similar call behavior, thus refining the pre-
vious step. The integration of the two steps results in the
partitioning of mobile traces into these four user categories
that can be deeper analyzed, for example to understand the
tourist movements in city or the traffic effects of commuters.
An experiment on the identification of user profiles on a real
dataset collecting call records from one month in the city of
Pisa illustrates the methodology.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Algorithms

Keywords
GSM Data, User profiles, SOM

1. INTRODUCTION
4.4 billions or users worldwide, 838 GSM networks spread

in 234 countries, 1.44M new GSM subscribers every day are
only a few of the impressive numbers that witnesses the enor-
mous diffusion of the GSM phenomena since its first network
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launched at the beginning of ’90 [7]. This massive quantity of
mobile phones are moving everyday with their human com-
panions, leaving tracks of theirs movements. These tracks
represents the mobility of millions of people in the Earth sur-
face and the opportunities to use these data for analysing
and understanding human mobility are tremendous. Re-
search literature has seen a growing interest in techniques
for analysing mobility of users based on GSM position data.
This research has also been driven by an increasing number
of applications that has found in mobile phone data a good
partner for discovering interesting results on people behav-
ior. The advantages of relying on these kind of data, com-
pared to standard survey based data collection, is that they
offer a wide coverage of the people presence in an area, they
are heterogeneous from the point of view of the tracked per-
son and they tend to be up to date and easily upgradeable
with new automatic data collection. However, these huge
quantity of humans location data comes with a price. Due
to privacy reasons, the telecommunication provider must
anonymize the data. Thus the analysis that can be done
on such data does not distinguish the different user profiles.
Therefore the heterogeneity of these data, besides being a
strong point, is also a weak point. The mobility analysis
that can be performed may suffer from biases due to the
wide difference in mobility behavior of tracked users. How
to determine, among all the positions collected in a city,
which ones correspond to specific categories of users such
as residents or visitors? Is it possible to distinguish them
looking at they mobile usage?
In this paper we face this problem proposing a method-

ology to partition a population of users tracked by GSM
mobile phones into four predefined user profiles: residents,
commuters, in transit and tourists/visitors. Several appli-
cations may benefit from the analysis of a partitioned set of
users based on this mobility characteristics. For example,
being able to distinguish between residents and commuters
may help in traffic management to better understand how
traffic is affected by the residents mobility compared to the
commuters. Having identified the tourists/visitors, it is es-
sential to study how the city is receiving people from out-
side and how their movements are affecting the city. Again,
being able to combine the mobility of resident population
with the temporary population (like commuters, visitors or
people in transit) may give a measure of the sustainabil-
ity of the incoming population with respect to resident one.
The population on a territory consumes resources like water,

17



air and produces negative effects on the surroundings, like
garbage, pollution, noise. In the cases where these resources
are limited, the incoming tourist population may break the
sustainable equilibrium of such resources. Thus, the ratio
between residents and incoming people should be monitored
in order to prevent critical situations.
The methodology introduced here aims at inferring the

population profile among the GSM call positioning data,
namely GSM Call Records (CDR) identifying, with a cer-
tain degree of approximation, which calls may correspond
to predefined users categories among residents, commuters,
in transit and tourists. The basic idea of the methodology is
to perform two steps: the top-down step and the bottom-up
step, thus combining the deductive power of queries on the
call records to the inductive power of a machine learning
step based on the SOM [5] technology. More in particular,
the top down step tends to identify classes of users based
on a predefined call behavior that may approximate a given
typology of users. Just to give an example, users that gen-
erally call any time during the day or night for a long period
may be considered resident, while users that only calls in a
restricted period may be considered in transit or tourists.
Since the border between these definitions may be not so
crisp when data are sparse (e.g. how clearly to distinguish
between tourists and in transit, or with a person that makes
few calls?) a bottom-up step is performed to compute sets
of users with similar calling behavior integrating the results
of the top-down step.
The profiling methodology we are proposing is accompa-

nied by an experiment studying the behavior of user pro-
files analysing mobile phone positioning data, namely GSM
Call Records (CDR). Each dataset collects the (anonymized)
records storing the location and duration of calls of mobile
phone users in the GSM network. The dataset of CDR has
been collected by an Italian telephone company in the area
of Pisa, in Tuscany, Italy. The city counts about 90,000 in-
habitants and it is the location of an ancient and prestigious
University that attracts more than 10,000 students from ev-
erywhere in Italy. Pisa is well known all over the word as
being a tourist attraction for its leading tower. There are
estimations that every year one million tourists visit Pisa.
Therefore this area is suitable to perform an experiment in
trying to infer the different users profiles moving in the city.
The structure of the paper follows. After a selection of

related works presented in Section 2, Section 3 introduces
some basic concepts used though the paper like the Call
Records definition and the user profiles. The methodology
is introduced in the following Section 4 where the two steps
top-down and bottom-up are presented. The experiments
are illustrated in Section 5, while Section 6 draws the con-
clusions.

2. RELATED WORKS
The use of GSM traces for studying the mobility of users

is a growing research area. An increasing number of ap-
proaches propose to use GSM data for extracting presence
and/or movement patterns.
Famous experiments on analysing GSM data for studying

people movement have been run on Rome [3] and Graz [11].
They use GSM data to realize a real-time urban monitor-
ing systems. They get detailed real time data by installing
additional hardware on top of the existing antennas to get
an improved location of the users in the networks. The final

objective is to realize a wide range of services for the city
such as traffic monitoring and tourists movement analysis.
A different approach comes from Schlaich et al. [12] where

the authors exploit the GSM handover data - the aggregated
number of users flowing between cells - to perform the recon-
struction of vehicles trajectories. The objective is to study
the route-choice-behavior or car drivers in order to deter-
mine the impact of traffic state.
Another use of GSM data is the identification of inter-

esting users places as in [1], where the authors propose a
method for the identification of meaningful places relative
to mobile telephone users, such as home and work points.
They use GSM data (both calls and handovers) collected by
the phone operator. The localization precision is the cell
which is the same accuracy level of the identified interesting
points. They distinguish between personal anchor points like
home, work and other person-related places as the locations
each user visits regularly, as for example a gym.
In Pereira et al. [9], the authors exploit cellular phone sig-

naling data1, focusing on the prediction of travel demand for
special events. Similar to the previous approach, their anal-
ysis identifies the home location: here is defined as starting
point of people’s trips. However, they observed that mo-
bility data are dependent on mobile phone usage, and this
may bias the results. Therefore their proposed to integrate
the GSM dataset with external data (e.g. ticketing statis-
tics or taxi trips) with the aim of increasing the quantity
and the quality of the data, in particular in term of spatial
resolution.
Quercia et al. [10] uses GSM data for recommending so-

cial events to city dwellers. They combine the locations esti-
mated by mobile phone data of users in the Greater Boston
area and the list of social events in the same area. After
extracting the trajectories and stops from GSM calls, they
crawled the events from the web. Then, they divide the area
of Boston in cells and locate each events and each stop in
the corresponding cell. Therefore, by crossing the events and
the stops, they identify a set of potential users participating
to events.
Mobile phone records are analysed also in [2] where the

authors propose a visual analytics framework to explore
spatio-temporal data by means of SOM (Self-Organizing
Map) analysis. They propose a method to cluster the dataset
by either of the two dimension and evaluate the resulting ag-
gregation on the other one. Altough they show the poten-
tialities of using SOM for analysing mobile phone records,
they do not focus on identifying user profiles.
All these approaches, as well others that can be found on

the literature offer different perspectives on how GSM data
can be exploited to study the human mobility and the huge
potentialities of these kinds of data. Differently from these
approaches, the aspect we want to study in this paper is to
characterize the user profile based on the call habits of the
tracked users.
There is a broad research area that focuses on the in-

ference of significant places or activities from mobility data
represented as GPS trajectories [8]. Examples of these works
are in [15, 6]. In paper [6] the authors infer activities car-
ried out by moving people (e.g. AtHome, Shopping) and the
transportation mode. The inference of activities is based

1These data consist of location estimations which are gen-
erated each time when a mobile device is connected to the
cellular network for calls, messages and Internet connections.
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on temporal patterns (since different activities have differ-
ent temporal duration), the location where people stopped,
transition relations, since one activity may or may not be
followed by another, and a number of common sense con-
straints. Authors of the paper [15] infer the similarity be-
tween users based on their GPS trajectories. They associate
to a user trajectory the semantic location history - the se-
quence of Points of Interests visited - that is used to measure
the similarity between different users. However, the GPS
data offers a better spatio-temporal granularity level com-
pared to GSM data so many of the techniques available for
GPS cannot be used for GSM call record and new methods
have to be invented.

3. BASIC CONCEPTS
The objective of this work is to propose a methodology

for user profiling in GSM data. We propose a method to
infer a possible segmentation of a population of GSM users
into different behavior categories. This is an essential step
for better understand and study people mobility from unsu-
pervised mobility data.
Indeed, being able to differentiate population ranges en-

ables a number of new applications where the mobility be-
havior is relative to a specific user segmentation. However,
when the mobility data is not directly annotated with the
user profile, the association of an anonymous trajectory to
a given segment is far to be trivial.
The strategy we propose here is based on the identifi-

cation of residents, commuters, people in transit and visi-
tors/tourists from GSM call records.

GSM network and Call Data Records.
GSM (Global System of Mobile communications) network

allows the mobile phone communications based on a system
of antennas that transmit the signal to a spatial area that
is called Local Area Network. All mobile phones inside that
area may receive the signal and therefore are connected to
the network. When they are connected they are enabled
to make calls or send SMS (Short Text Messages) to an-
other GSM phone connected to the network. When a call
is engaged, the telephone company registers data about the
location and duration of the call for billing purposes. These
data are called Call Data Record (CDR) [13] and we can
simplify the standard format as follows:
< Caller ID, ID Cell Start, Start T ime, ID Cell End,Duration >

where: Caller ID is the anonymous identifier of the caller,
ID Cell Start and ID Cell End are the identifiers of the
cell where the call starts and ends respectively, Start T ime
is the date and time when the call starts, and Duration is
the call duration.

Mobile users profiles.
We are interested in inferring the profile of users moving

in a city. For the sake of the current study, stated A the
spatial area under analysis, the categories we are interested
in, are the following:

Resident. A person is resident in an area A when his/her
home is inside the A. Therefore the mobility tends to be
from and towards his/her home.

Commuter. A person is a commuter between an area B

and an area A if his/her home is in B while the workplace is
in A. Therefore the daily mobility of this person is mainly
between B and A.

In Transit. An individual is “in transit” over an area A
if his/her home and work places are outside area A, and
his/her presence inside area A is limited by a temporal
threshold Ttr representing the time necessary to transit through
A. In other words, the user does not perform any main ac-
tivity inside A. Depending on the application this temporal
threshold Ttr may vary from few minutes to few hours.

Tourist or Visitor. The definition given by The World
Tourism Organization defines tourists as people “traveling
to and staying in places outside their usual environment for
not more than one consecutive year for leisure, business and
other purposes” [14]. We can rephrase and formalize this
definition as: a person is a tourist in an area A if his/her
home and work places are outside A, and the presence inside
the area is limited to a certain period of time Tto that can
allow him/her to spend some activities in A. In particular
here the presence has to be concentrated in a finite temporal
interval inside the time window. Should also be “occasional”
therefore, he/she does not appear anymore during the ob-
servation period. It is also important to point out the dis-
tinction that this definition includes not only the classical
“tourism” as visiting cultural and natural attractions, but
also the activities related to work, visiting relatives, health
reasons, etc.

4. METHODOLOGY
The proposed analytical process is based on a step-wise

approach: first, domain knowledge is used to label each user
according to a set of rules that define each profile; second,
the profiles that do not fit in any of the hypothesis templates
are analyzed by means of a machine learning approach to
determine relevant groups of users according to their call-
ing behavior. Therefore when an individual makes (at least)
a phone call inside a network cell we say this individual
is present into the cell area. The presence pattern is then
defined by temporal constraints on the detected presence.
However, these definitions combined with the characteris-
tics of the GSM call data may give misleading classifica-
tions. For example, a resident user who rarely calls may
be misclassified as a tourist or a person in transit, while a
resident that only use phone at work may be classified as
a commuter. Again, defining a good threshold to identify
tourists may be difficult and certainly depends on the appli-
cation. Although the “in transit” profile is well defined once
a temporal threshold is fixed, the other profiles, especially
the “tourist” population, is characterized by a “fuzzy” and
non clear characterization.
To face this problem the user profile methodology we in-

troduce here proposes the combination of a deductive and
an inductive technique that we name top-down and bottom-
up. In the top-down approach a set of spatio-temporal con-
straints are used to describe the individual categories fol-
lowing the definitions given by the domain experts and that
we introduced in Section 3. The constraints are then imple-
mented in the mobility data management and mining system
M-Atlas [4], through the use of the provided query language.
In the bottom-up step the assignment of users to categories
is refined using a clustering algorithm, namely Self Orga-
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nizing Map (SOM) [5]. Clearly, since the top-down step is
based on a set of rules provided by the domain experts, they
may fail at classifying behaviors on the borders of the defi-
nitions. Therefore, all those individual that have few phone
calls or whose phone calls behavior does not clearly fall into
the well-defined categories remain unassigned.
The bottom-up approach aims at integrating the results of
the first step by using a data-driven approach to identify
relevant group of users that present similar behaviors that
can be classified as one of the available profiles.
The advantages of the described technique lies on the fact

that GSM data - due to the widespread use of mobile phone
and the heterogeneous classes of their users - allows to ana-
lyze the mobility behavior of a huge amount of people and a
broad range of users categories. Furthermore, the use of an
inductive step allows a refinement of the preliminary results
obtained with the top-down approach.

Top-down Approach.
During this phase the residents, commuters and in transit

categories are retrieved from the CDR dataset with a pro-
posed set of spatio-temporal constraints that depend on the
time window of the data collection and reflect the indications
given by the domain experts.
Resident users are those whose CDR data show a contin-

uous presence in the monitored period during the late af-
ternoon and night (since we assume that during this period
individuals stay at home) and the weekly minimal presence
to be reasonable to establish as home.

Users that tend to have a sparse presence of calls during
the period but concentrated only during the weekdays in
the conventional working/studying times, are classified as
commuters. The assumption is that the commuters spend
nights at the home place (an area outside our interest) and
weekdays at the work/study place in the area of interest,
and never appear during the weekends.

People in transit are directly identified by a simple con-
straint that limits the presence to a fixed time range de-
pending on the dimension of the area under analysis. The
constraint tries to encode the average time needed to cross
the area without stops for activities. The idea is to capture
people passing on motorways and freeways near a city or
crossing the city by using urban roads. This gap can vary
from less then 1 hour, in case of small towns, up to several
hours (two, three or more), in the case of big cities.

For example, a simple query in SQL Like to identify peo-
ple in transit is the following:
SELECT a.Caller_ID

FROM Cdr_Calls_Table a, Coverage_Table b

WHERE (a.Last_Call - a.First_Call) < Time_Limit AND

b.Location = ’Pisa’

where Cdr_Calls_Table is the table containing the CDR
data, Coverage_Table is the table containing the spatial
coverage of the network cells, Last_Call and First_Call

are the timestamps of the last and first call respectively,
and Time_Limit is the estimated time needed to cross the
area of interest.
Of course a number of users whose call behavior does not

precisely falls in these three definitions remains unclassified

after this first step, the bottom-up step is thus necessary
to analyse the unclassified set of users trying to assign a
category basing on a temporal profile.

Bottom-Up Approach.
The bottom-up approach has the twofold purpose of both

identifying tourists and refining the results obtained by the
top-down phase for residents and commuters.
The behavior of each user is modeled by means of the

concepts of space (where a call is started and where it is
terminated) and time. We exploit these two dimensions to
define a temporal profile for each user.
Given a user u, a Temporal Profile TPu is a vector of call
statistics according to a given temporal discretization. For
example, using a time discretization by day and a measure
of frequency of calls, each entry of TPu would contain the
number of calls performed by the user in the corresponding
day. Since we are interested in a specific area, we define
a Space constrained Temporal Profile TPA

u as a Temporal
Profile where only the calls performed in the cells contained
within the area A are considered.
This spatial projection is crucial when studying commuters
in order to distinguish the call behavior at work and at home.
To explore different time patterns, we define also two time
transformations of a (Space constrained) Temporal Profile:
(i) time projection by a cycle period, where the time inter-
vals of the vector are referred to relative position in a time
cycle like week, month, and so on; (ii) time shifting, where
the time intervals of the vector are shifted in order to have
the first entry corresponding to the first activity of the user.
Clearly, the available statistics can be chosen according to
the specific analytical scenario. For example, it can be con-
sidered the number of calls, the total duration of the calls,
or a boolean operator that yields true if at least a call has
been performed in a specific time period. Figure 1 shows two
examples of extraction of temporal profiles from the call be-
haviors of two users, using call frequency as measure for each
cell.
The temporal profiles defined above can be analyzed ac-

cording to their relative similarities by means of a Self Orga-
nizing Map [5]. A SOM is a type of neural network based on
unsupervised learning. It produces a one/two-dimensional
representation of the input space using a neighborhood func-
tion to preserve the topological properties of the input space.
As most neural nets, a SOM constructs a map in a training
phases using input examples and uses the map for classifying
a new input vector. The procedure for placing a vector from
data space onto the map is to first find the node with the
closest weight vector to the vector taken from data space.
Once the closest node is located, it is assigned the values
from the vector taken from the data space. SOM forms
a sort of semantic map where similar samples are mapped
close together and dissimilar apart. In our case the weighted
vectors used for the analysis are the Temporal Profiles ex-
tracted for each user. For example, using a discretization
of one hour, a daily temporal profile for a user consists of
a vector with 24 entries. The dimensions of the vector may
change accordingly with different aspects of the analysis like,
for example, the temporal profile in a week, in a single day,
or in the whole period by hour (see Figure 1). The SOM al-
gorithm produces a set of nodes, where each node represents
a group of users with similar temporal profile. By analyz-
ing the profile that describes each group, it is possible to
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Figure 1: Example of the extraction of temporal
profiles from the call activities of two users. Each
square represent a day and the number within a cell
is the number of calls of the corresponding user in
that day.

assign a class to the group itself, basing on the definitions of
resident, commuter and tourist given above. In particular,
we label as “tourists” the nodes that correspond to a tempo-
ral profile localized in a short and consecutive time period
(as for example few days or a week). As stated before the
temporal profile of a tourist can not be defined a priori be-
cause it has a wide variability depending on the season, the
location and other unpredictable events. This method can
thus help to discover the touristic degree of an area without
using particular apriori knowledge. This phase is useful also
to re-calibrate the top-down results. In fact, the analysis of
the profiles emerging from the groups may give information
about local habits and may suggests how to set the tempo-
ral constraints to adapt the model to the local habits of the
area of study.

We perform this analysis from two perspectives dependent
on the chosen temporal profile. In the first case we extract
the temporal profiles for each user and we transform each
profile by a left shifting operator in order to make the data
more dense (see Figure 1 (g) and (h)), since the users who
has visited the area in different time periods can be com-
pared also by the length of their staying. Such operation,
on one hand, loses an absolute temporal reference, thus is
not directly possible to associate each entry to a specific time
period. On the other hand, the SOM algorithm can easily
identify group of users with compatible periods of visit to
the area. In this way, for example, it is possible to identify
the typical duration of presence of the users and, hence, as-
sign the tourist/visitor class to the nodes with compatible
temporal profiles. In the second case we extract the original

temporal profile according to the absolute time alignment.
In this case the resulting SOM tends to highlight similar and
compatible presence profile of longer stay people, allowing to
separate commuters and residents, by exploiting the calling
habits of these users in particular during the weekends.
With respect to other clustering techniques, the SOM al-

lows an easier and clearer visualization of the results. This
technique seemed to us very useful for precessing the pro-
files input extracted from the GSM data, and visualizing the
complex results.

5. EXPERIMENTS
We tested the proposed approach on a case study in the

city of Pisa. We used a large dataset of GSM data collected
in the province of Pisa by one of the Italian mobile opera-
tors. The data consist of around 7.8 million CDR records
collected from January 9th to February 8th 2012. The data
contains calls corresponding to about 232.200 users with a
national mobile phone contract (no roaming users are in-
cluded in the dataset). Our approach is based on a set of
temporal constraints over the users’ temporal profiles. As
a preliminary validation analysis of the method, we analyze
the temporal presence of users in the province of Pisa. Fig-
ure 2 shows the cumulative distribution of the duration of
stay of users in the province: a point (x, y) on the chart
represents the number of distinct users y that were observed
in the area at most for x days. From the chart we can
roughly partition the population on the basis of the domain
knowledge: people staying less than four days are candidate
visitors or in transit, while the others can be considered
as resident/commuters. This is a very naive segmentation,
however allow us to estimate how effective this approach is.
In particular, using the four-days threshold the candidates
resident commuters are around 107k. This number is com-
patible with the customer statistics provided by the telecom
operator in the area, thus informally validating the proposed
approach.
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Figure 2: Cumulative distribution of the number of
users per length of staying.

Since our aim is to study the mobility of residents and
visitors in the area of Pisa, from the whole network we first
selected the cells overlapping the urban area of the city. The
urban center of the city is crossed by the river Arno and its
corresponding cells are highlighted in pink in Figure 3. The
larger gray area corresponds to the administrative territory
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of the city that includes also the seaside and the large park
called San Rossore. Once we have determined the area of
interest, we filtered the calls by considering only those calls
performed in the selected cells.

Figure 3: Coverage of the urban area of Pisa.

As mentioned in Section 4, the top-down approach con-
sists in a set of spatio-temporal queries expressed in the
query language of M-Atlas [4]. The spatial constraints, which
are the same in all the cases, define the area of interest i.e.,
the urban area of Pisa and the corresponding GSM cover-
age. This coverage is expressed as a geometric intersection
of the base station positions with the urban census surface.
The temporal constraints are different for all the categories
of users we want to identify as detailed in the following:

Resident
C1 - Temporal range: at least 1 call in [19:00 - 6:59] during
the weekdays.
C2.1 - Daily presence: at least 2 distinct weekdays per week,
that satisfy C1.
C2.2 - Daily presence: at least 1 day in the weekend without
temporal range.
C3 - Weekly presence: at least 3 weeks, in which C1, C2.1
and C2.2 are satisfied.

Commuter
C1.1 - Temporal range: at least 1 call in [9:00 - 18:59] during
the weekdays.
C1.2 - Temporal range: no calls in [19:00 - 8:59] during the
weekdays.
C2.1 - Daily presence: at least 2 distinct weekdays per week,
that satisfy C1.1 and C1.2.
C2.2 - Daily presence: never during the weekends.
C3 - Weekly presence: at least 3 weeks, in which C1.1, C1.2,
C2.1, C2.2 and C3 are satisfied.

People in Transit
C1 - Temporal range: calls during at most 1 hour.
C2 - Daily presence: at most 1 day in which C1 is satisfied.
C3 - Weekly presence: at most 1 week, in which C1 and C2
are satisfied.

The result of the top-down approach is shown in Fig. 4.
This method is able to capture only a low number of com-

Figure 4: People profiles after the top-down phase.

muters and residents because the temporal constraints are
very strict and selective. On the contrary, people in transit
are well identified. The high percentage of this kind of users
is justified by the presence of an highway and a freeway close
to the town.
Thus, starting from the unclassified users, we can apply

the SOM method to identify temporal profiles with similar
characteristics, i.e. we can group together people who have
the same calling patterns. In particular, we are interested in
two aspects of the temporal profile: the duration of the stay
in the city and the typical temporal location of a user call.
To address the first problem, we perfomr a transformation
of the temporal profiles by applying a temporal shift. The
objective it to align all the user activities at the beginning
of the time window. The results provided by SOM is shown
in Figure 5. The resulting map shows a set of nodes, where
each node contains a set of user profiles. For an immediate
readability of the results, each node shows the cardinality of
its the population, the circle is proportional to the popula-
tion and the time chart shows the temporal distribution of
the user activities in the specific time interval. In the map of
Figure 5(Left), the shifted temporal profiles consist of vec-
tors of 31 entries, one for each day of the time window. Since
we are dealing with rotated profiles, the extension of the
temporal distribution in each node provides an immediate
estimation of the duration of the stay of the corresponding
users. From the map it is evident how the temporal profiles
are grouped: on the bottom left corner of the figure there
are the temporal profiles corresponding to short visits of the
city; the upper right side of the figure shows the profiles that
span for the whole period and it is possible to identify even
nodes that present a clear commuter-like pattern with high
frequency during the workdays and a smaller activity during
weekends. It is important to point out the presence of three
larger nodes corresponding to short visits ranging from one
day (node with 5750 profiles) to three days (nodes in the up-
per left corner). The shifting transformation can be inverted
to observe the actual temporal distribution of the activities
during the period of study. Figure 5(Right) shows, for each
node in the (Left) map, the corresponding absolute tempo-
ral distribution of the activities. The cardinality statistics
are left as a reference between the two figures. It can be
noted how the short-ranged temporal profiles are uniformly
distributed across the whole period. For instance, the larger
node containing temporal profiles of a single day presents a
quite uniform presence of users across the month considered
in the study. On the other hand, as it could be expected,
the profiles with a larger extent do not vary too much, since
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Figure 5: SOM clusters with rotated Temporal Profiles. (Left) Each node shows the distribution for shifted
temporal profiles. (Right) Each node shows the actual temporal distribution for the corresponding set of
users.

their width limits the shifting transformation.
To better understand the temporal distribution of user ac-

tivities in the period, we apply the SOM method to the un-
shifted temporal profiles. The resulting SOM map is showed
in Figure 6. In this map, we can notice how the commuter-

Figure 6: SOM clusters with (un-shifted) Temporal
Profiles.

like patterns are even more evident in the bottom left cor-
ner. The population corresponding to these nodes is even
larger than the nodes present in the shifted version. Ac-
tually, these nodes are contributed by users with different

habits: the frequent callers have a regular temporal profile
that remains unchanged even after the temporal shift; the
infrequent callers, on the contrary, do not present such dis-
tribution by themselves but their aggregated distribution re-
constructs this temporal pattern. The influence of personal
calling activity may be crucial in some analysis, since a too
specific distribution may be biased by an incomplete vision
of the real phenomena, in particular when people do not use
the mobile phone during their movements or activities. The
case above of commuters distribution is just an example of
this kind. This aspect is even more evident when we consider
some of the larger node of the map in Figure 6. According
to the node with 2059 entries (on the center right side of
the figure), a lot of people were present in Pisa for a single
day, specifically on January 26. Actually, that day, around
16 in the afternoon, an earthquake happened in northern
Italy and it was perceived by the population in Pisa. That
event triggered the need for a lot of users to communicate
and call their relatives producing the peak we observed in
the node. This particular example is emblematic in showing
how a peak in the phone traffic not necessarily implies an
increase in population density. In this case, the peak is due
to infrequent callers that were forced to call by an external
event.

6. CONCLUSIONS AND FUTURE WORKS
The wide coverage of GSM networks enables numerous

applications for the understanding of people mobility be-
havior. However, the data anonymization combined with
the heterogeneity of people that carry a GSM phone lim-
its the analysis that can be performed due to the lack of a
user profile. To face this problem in this paper we propose
an approach for inferring user profiles from GSM data. In
particular, we concentrate our efforts in identifying mobility
profiles based on the presence of user in an area, that is in
turn based on the call habits of that user. The methodology

23



aims at identifying four categories of users: residents, com-
muters, in transit and tourists/visitors. The process in based
on two phases: a top-down step where GSM Call Records
data are queried, combined with a bottom-up step based on
a machine learning algorithm to find homogeneous groups
of users. We show - through an experiment run on a real
dataset - how the process identifies users profiles. Finding
the user profiles may enable wide spectrum of applications
from traffic management - for example relating the com-
muter mobility with the resident one - or tourism - where
the touristic flows in a city may be analyzed. The identifica-
tion of user profiles is based on the analysis of a large dataset
of call logs that carry almost no semantic information about
the users’ metadata. In fact, such data is usually subject to
several restrictions (e.g. privacy) that does not allow the dif-
fusion of demographic and personal information of a single
individual. In this scenario, we try to compensate the defi-
ciency of semantic information by relying on a unsupervised
method to separate relevant groups with similar temporal
profiles. Current work include the investigation of the accu-
racy problem. Indeed, the outcome of the method should be
evaluated at least on two levels of accuracy: a quality mea-
sure of the resulting segmentation (based for example on
classical measures of cluster quality like separateness and
cohesion) and a validation assessment of the population of
each group with a reference ground truth. The first task is
straightforward using classical clustering methods, but does
not guarantee the real adherence of the result to the reality.
On the contrary, the latter is more challenging since it may
assess the results against some form of ground truth and it is
particularly useful when the input data do not come with a
rich semantic information, like in the present case. We plan
to investigate this latter issue from several points of view.
For example, a possibility consists in the comparison of the
profiles of resident users with the resident population mea-
sured by national statistical bureau. However, this ground
truth describes only partially the phenomenon since we miss
the dynamic aspect that are difficult to measure with preci-
sion with classical statistical measures like, for example, the
continuously changing ratio of residents with commuters and
tourists. Our proposal consists in the comparison of each of
these profiles with a series of observations coming from dif-
ferent datasets. In particular, we are currently working on
a project with the Municipality of Pisa to collect, integrate
and analyze a set of statistical indicators about touristic
presence and mobility. In this context, we plan to compare
the temporal distribution of the extracted profiles with the
data coming from several information sources related to the
touristic presence in the city. Examples are the aggregated
number of hotels reservations, issued museum tickets, so-
cial photo services (i.e. Flickr and Panoramio), microblog-
ging services (i.e Twitter), trajectories of private vehicles
equipped with GPS devices, touristic buses presence, etc.
The method we propose is not a direct comparison of two
variables, i.e. GSM profiles and the estimation of tourists in
the city, but we aim at proposing a more complex method-
ology where different datasets are used to provide a specific
vision on the same phenomenon, i.e. the touristic presence
in the city, by means of the combination of the different
points of view giving a complementary vision of the whole
scenario. This is a very ambitious task that involves the
management of different data sources. It is worth pointing
out that this work would be relevant also in other in different

application scenarios where a classical statistical validation
is not possible.
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ABSTRACT
Human activity behaviors in urban areas mostly occur in
interior places, such as department stores, office buildings,
and museums. Understanding and characterizing human
spatio-temporal interactive behaviors in these indoor areas
can help us evaluate the efficiency of social contacts, moni-
tor the frequently asymptomatic diseases transmissions, and
design better internal structures of buildings. In this paper,
we propose a new temporal quantity: ‘Participation Activity
Potential’ (PPA) to feature the critical roles of individuals in
the populations instead of their degrees in the correspond-
ing complex networks. Especially for the people with high
degrees (hubs in the network), Participation Activity Po-
tential which is directly from the statistics of their daily
interactions, can easily feature the rank of their degree cen-
trality and achieve as high as 100% accuracy rating without
building the corresponding networks by high-complexity al-
gorithms. The effectiveness and efficiency of our new defined
quantity is validated in all three empirical data sets collected
from a Chinese university campus by the WiFi technology, a
small conference and an exhibitions by the RFID technology.
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poral networks

∗Correspondence and requests for materials should be ad-
dressed to X L

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UrbComp’12 August 12, 2012. Beijing, China
Copyright 2012 ACM 978-1-4503-1542-5/08/2012 ...$15.00.

1. INTRODUCTION
With the rapidly urbanization, the populations are explo-

sive increasing in the urban areas. More and more people’s
daily work, study and leisure are dependent on the public
places of the urban area: subway stations, restaurants, café,
museums, department stores, office buildings and etc. In
these interior places, human daily interactions, e.g., face-to-
face talks, hand touches, are named as human close proxim-
ity interactions (CPIs)[28], which impact our understanding
of the respiratory disease transmissions, the efficiency of so-
cial contacts and the convenience of internal structures.

Since 1930’s, social scientists have collected and studied
human interactions and relationship data. The traditional
technologies of data collections are inviting volunteers to
complete questionnaires or hiring an observer to record data,
and because of its time-consuming nature, the collected data
is constrained to a small number of people. Nowadays, with
advanced development in digital technologies, GPS, WiFi,
RFID and mobile phones are widely used as sensors to locate
people and build a huge volumes of spatio-temporal data, in
the form of traveling trajectories[2, 15, 10, 24, 30, 17] and
interactive traces[20, 4, 13, 14, 26].

Barabási, et al.[10, 24, 20] apply mobile phones to approx-
imate human traces to mine the pattern of human mobility.
GPS [2, 15, 30, 17] as a typical located technology, is widely
used in tracing passengers’ traveling trajectories. Barrat and
their colleagues use the RFID technology to trace human
CPIs in distinct rendezvouses [4, 13, 14, 26] and provide a
‘reinforcement dynamics’ to model human face-to-face inter-
actions[25, 31]. By using wireless sensors, Salathé, et al. [23]
record an American high school students’ daily interactions
and evaluate their respiratory diseases infectious risks.

With the concept of ‘intelligent city’ becoming reality,
WiFi hotspots are distributed in every corner of the urban
areas. The popularity of wireless devices, such as smart-
phones, laptop computers and tablets, further spurs the
WiFi technology (or known as 802.11b) to assist in trac-
ing human mobilities and interactions. Therefore, we use
the WiFi technology to trace a Chinese university students’
interactions over 3 months. These digital ’sensors’ automat-
ically record the human CPIs without additional observers
or interviewers and avoid build-in errors caused by human
memory[6, 7].

The data of human CPIs were traditionally very easy to
map into a static network(contact network, or named aggre-
gated contact network with individuals as nodes and interac-
tions between them as links) to study the embedded social
phenomena. In the past more than 10 years, researchers
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have witnessed the power of complex network theory to in-
fluence the spreading processes which help understand the
biological and computer virus transmission. For instances,
the small-world properties[29] and scale invariant power-law
features of degree consequence distributions[1] can decrease
the threshold of spreading processes[21, 22]. Moreover, in
the scale-free physical and/or social networks, several ‘super-
connectors’ (hubs in the networks) play the role of self-
sustained sources to spread the infection to the rest of the
system[3], which leads that there are many methods[5, 16]
to find and vaccinate these ‘super-connectors’ in order to
control the whole disease transmission.

However, with the development of complex network the-
ory, the static networks as the body to study the spreading
processes have faced with many new challenges[27, 18, 12, 8].
Empirically, human close proximity interactions are not sta-
tionary. A ‘super-connector’ can not simultaneously contact
such huge number of neighbors. Very recently, the temporal
network has become to attract researchers’ attention [11].
In this study, we use three empirical data sets, two from the
RFID technology (SocioPatterns) and one from the WiFi
technology to uncover the distinct features between the tem-
poral networks and static networks. Especially, we define a
new temporal quantity, ‘Participation Activity Potential’ to
measure the critical roles of individuals in the correspond-
ing networks, by which, ‘super-connectors’ in the temporal
and static network can both be characterized effectively and
efficiently.

The rest of the paper is organized as follows. In Sec-
tion 2 we firstly introduce a series of transformed temporal
networks and the corresponding aggregated static networks
from three empirical data sets, and moreover, we define some
preliminary concepts and notations used in this paper. In
Section 3 we analyze the difference between the transmission
graphs and the contact networks to investigate the typical
features of ‘super-connectors’. In Section 4 we define a new
temporal quantity to characterize the rank of degree central-
ity of individuals in two benchmark networks, and conclude
the whole paper in Section 5 with future steps of work.

2. FROM HUMAN CLOSE PROXIMITY IN-
TERACTIONS TO NETWORKS

We firstly transform human close proximity interactions
(CPIs) to the corresponding networks as shown in Figure 1,
a schematic representation of human CPIs of an exampled
case with the detailed descriptions see Example 1.

Example 1. There are three individuals A, B, C which have
the corresponding CPIs AB, AC, BC (Figure 1(A)). Gener-
ally, these CPIs are the origin collected data, which records
when and how long a pair of individuals have an interaction.
Traditionally, the data is directly transformed to a contact
network which is illustrated in Figure 1(D), where individu-
als are considered as nodes and individuals’ interactions as
links. The algorithms to build a contact network are classic
and we show it in Appendix (Algorithm 1 ). In Figure 1(A),
it is possible to find there exists an interval, [t2, t3], three
individuals contact with each other building a clique. How-
ever, the clique is not very clearly observable in the data
of human CPIs directly. Therefore, in Figure 1(B), we de-
fine ‘event interaction’ (EI) to focus on the clique. Each EI
represents the interactions among all individuals in a given
interval. The CPIs can be directly transformed to EIs (see

A Close proximite interactions (CPIs)

Figure 1: Schematic Representation of Human close
proximity interactions (CPIs) and the correspond-
ing (static/temporal) transformed networks.

Appendix, Algorithm 2 ). Therefore, it is easy to build a
bipartite network (Figure 1(C)) exhibiting the affiliating re-
lations between individuals and EIs. In a bipartite network,
the links between individuals are based on the same EI two
individuals affiliate with. As shown in Figure 1(E), an event
graph is defined with the EIs: the links between the EIs are
based on the same individuals two EIs both contain. Both
contact networks and event graphs are static networks with-
out temporal information when the link connects and how
long the link persists to. In order to fuse temporal infor-
mation, we further build a transmission graph based on the
EIs. The links between the EIs consider not only their active
interval, but also the order sequence of distinct EIs which
is caused by the mobility of individuals contained in. The
algorithm to build a transmission graph refers to Algorithm
3 in Appendix.

To characterize the detailed human interactive behaviors,
we define the following definitions.

Definition 1. The quantities of individuals:

1. Self-activity duration: If an individual j is active dur-
ing the interval [tbegin, tend], the self-activity duration
of individual j is ΔtSA(j) = tend − tbegin.1

1As shown in Figure 1(A), during the interval of [t1, t4], A
has two records of CPIs with the overlapped duration, and
A′s self-activity duration is the maximal duration of the
CPIs.
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2. Self-activity frequency : Given an observational inter-
val T (without specially statement, T is the maximum
observation interval), an individual j is active n times.
Denote the self-activity frequency of individual j is
nSA(j) = n.2 Therefore, the total self-activity dura-
tion of individual j is defined as

ΔtSA
sum(j) =

nSA(j)∑

m=1

ΔtSA
m (j)

3. Self-activity potential : Given an observational interval
T , the self-activity potential of individual j is defined
as

PSA(j) = [
ΔtSA

sum(j)

nSA(j)
]pnSA(j) (1)

where p is an independent variable belongs in [0, 1].

Definition 2. The quantities of event interactions(EIs):
Event interaction duration: If an EI ei is active during the

interval [tbegin, tend], the event interaction duration of ei is
defined as ΔtEI(ei) = tend − tbegin

Definition 3. The quantities of a bipartite network:

1. The rate of participation: If an individual j partici-
pates in r event interactions, the rate of participation
of individual j is defined as r(j) = r.

2. Event interaction size: If an event interaction ei con-
tains s individuals, the size of event interaction ei is
s(ei) = s.

Definition 4. The quantities of a contact network:
Degree of individuals in the contact network : If an indi-

vidual j has k distinct neighbors in the contact network, the
degree of individual j is defined as kCN (j) = k.

Definition 5. The quantities of a transmission graph and
the corresponding aggregated transmission graph:

1. Event interaction frequency : Given an observation in-
terval T , an EI ei is active n times in the transmission
graph. Denote the frequency of EI ei nTG(ei) = n.
Therefore, the total self-activity duration of EI ei is
defined as

ΔtEI
sum(ei) =

nT G(j)∑

m=1

ΔtEI
m (j)

.

2. Self-activity potential:Given an observational interval
T . Define the self-activity potential of EI ei as

P EI
SA(ei) = [

ΔtEI
sum(ei)

nTG(ei)
]anTG(ei) (2)

where a is an independent variable belongs in [0, 1].

3. Degree of EIs in the aggregated transmission graph: If
an event interaction (EI) ei has been directed by k
neighbors in the aggregated transmission graph, the

2The corresponding self-activity frequency is not the num-
ber of the given individual’s CPIs, but the number of all
unoverlapped self-activity duration.

in-degree of EI ei is kATG
in (ei) = k. Similarly, if the

EI ei directs to k neighbors, the out-degree of EI ei

is kATG
out (ei) = k. Without considering the direction

in the transmission path (or known as ‘weakly con-
nected’[19]), the degree of EI ei is kATG(ei), which is
equal to the number of all neighbors.

In this paper, there are three empirical data sets of hu-
man CPIs investigated. By the WiFi technology, we have
collected the data of human CPIs in a Chinese campus dur-
ing the 2009-2010 fall semester (3 complete months). Each
student, teacher, and visiting scholar has a unique account
to access the Campus WiFi system, which will automatically
record their devices’ MAC addresses to build a log with the
MAC address of the WiFi access points(APs) they access
to, and the connecting/disconnecting time as well. The logs
indicate that when and where the person use the WiFi net-
work. In the public classrooms, the spatial distance between
any two individuals accessing to the same AP is as close as
less than 8 meters3. From the logs of each individual, we
can build human CPIs which is named as ‘FudanWiFi09’.

The other two empirical data sets are both collected by
the RFID technology freely achieved in the website of ‘So-
cioPatterns’ (http://www.sociopatterns.org), and a related
research report refers to [14]. One of the data set was col-
lected during the ACM Hypertext 2009 conference, where
the ‘SocioPatterns’ project deployed the Live Social Seman-
tics application. The conference attendees volunteered to
wear radio badges which monitored their face-to-face in-
teractions named as ‘HT09’. The other data set contains
the daily dynamic contact networks collected during the
artscience exhibition ‘INFECTIOUS: STAY AWAY’ which
took place at the Science Gallery in Dublin, Ireland, and
we name it as ‘SGInfectious’. In Table 1 we summarize the
basic properties of these three empirical data sets.

Notice that these three data sets represent three different
types of human proximity close interactions. The individuals
in ‘FudanWiFi09’ have stable social ties: they can be class-
mates, teacher-student, lovers and so on. During 3 months,
the interactions between the individuals may repeat in an
acquaintance community. Individuals in ‘HT09’ are the at-
tendees of the conference. Most of the people did not know
each other. During the conference period of 3 days, they
began to know each other, and the data represents the re-
peatable interactions in a stranger community. The individ-
uals in ‘SGInfectious’ also have stable social ties, they know
each other and then go with each other to visit the exhibi-
tion ‘Infectious: stay away’. However, most of the involved
visitors will not visit the exhibition again, which indicates
that the data exhibits the unrepeatable interactions in an
acquaintance community.

3. CONTACT NETWORKS AND TRANSMIS-
SION GRAPHS

3.1 The differences between contact networks
and transmission graphs

3In the paper ‘Two Categories of Interaction Dynamics of a
Large-scale Human Population in a WiFi covered university
campus’ (unpublished), we give the details about the spatial
distance between any two individuals accessing to the same
AP.
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Table 1: Three empirical data sets of human close proximity interactions(CPIs)
FudanWiFi09 HT09 SGInfectious

Area Campus Conference Mesume
Technology WiFi RFID RFID

Collection duration 84 days 3 days 62 days
Number of individuals 17897 113 10970

Number of CPIs 884800 9865 198198
Spatial resolution(meters) < 8 < 2 < 2

Types of CPIs Acquaintances with repeat Strangers with repeat Acquaintances without repeat

� ��� ���� ���� ���� ����

��
��

��
��

��
��

��
��

��
�

� �� �� �� 	� ���

��
��

��
��

��
�

� �� �� �� �� �� �� 
�

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��
��

��
��

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��
�

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��
��

��
��

��
��

��
��

��
��

�

�

�����������	

�
�
��

�
�
�


��
����
��

�

�

����	

�

�

�������������

�

�

�

�����������	

�
��

�
	


�


��
����
���

�

�

�

����	

�

�

�������������

Figure 2: The degree distributions of the contact
networks and the corresponding aggregated trans-
mission graphs.

We visualize the transformed networks from the three
empirical data sets in Figure 2, illustrating the difference
among the contact networks (static networks) and trans-
mission graphs (temporal networks). The cumulative prob-
ability distributions of kCN in Figure 2(A) from three em-
pirical data sets are all exponential distributions although
the corresponding number of sampled individuals are differ-
ent (Table 1), i.e., the contact networks are homogeneous,
implying that the static patterns of human CPIs are random
and well-mixed. While in the transmission graph, the prob-
ability distributions of kATG exhibit the form of power-law
(see Figure 2(B)), indicating that the aggregated transmis-
sion graphs are heterogeneous, and the temporal patterns of
human CPIs contain many preference linking[1].

In the study of spreading processes, scale-free networks
with the form of power-law degree probability distributions
have been the focus for years, where the thresholds of spread-
ing processes are approximate to zero[21, 22]. While in a
homogeneous network such as an ER random graph, there
exists a fixed threshold. Recent study further states that the
hubs of such networks play a self-survived role in the dynam-
ical spreading processes[3]. Therefore, we further compare
the hubs in contact networks and transmission graphs which
are named as ‘super-connectors’ and ‘super-connecting groups’,
respectively. Figure 3(A) illustrates the relations between
the degrees of the aggregated transmission graph(ATG) and
the corresponding ranks, where the top 10 nodes ranked in
the ATG are the ‘super-connecting groups’. Each super-
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Figure 3: The analyses of hubs in the aggregated
transmission graphs and contact networks.

connecting group consists of at least two individuals. Nat-
urally, we may regard these involved individuals as those
‘super-connectors’ in the contact networks. However, Fig-
ure 3(B) shows the opposite situation. The black line rep-
resents the relation between the degrees of individuals and
the corresponding rank in the contact network, while the red
circles exhibit the individuals of super-connecting groups in
Figure 3(A). Strikingly, most of the members in the super-
connecting groups have low degrees in the contact network.
The blue rectangles represent the cumulative occurrence rates
(COR) of each member, and around 90% of the individuals
in the super-connecting groups are ‘leaf’ nodes in the con-
tact network. Therefore, the degree distribution and the
rank-degree relations of hubs present the obvious differences
between static networks and temporal networks.

3.2 The analyses of contact network
In Definition 3, we define the participation rate of a given

individual (r). Moreover in Definition 4 we define the de-
gree of individuals in a contact network (kCN ). In Figure
4(A) we observe that kCN increases with the growth of r.
In other words, the potential of an individual becoming a
‘super-connector’ is due to his (her) participation capabil-
ity.

With the defined self-activity potential PSA of an individ-
ual, Figure 4(B) shows the individuals’ degrees in the con-
tact network is positive correlated with their self-activity
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Figure 4: The individuals’ self-activity potentials
with their degree centrality in contact networks.

potentials, where a higher self-activity potential tells that
the individual is more active. Therefore, the possibility of
an individual becoming a ‘super-connector’ is also dependent
on his (her) self-activeness.

Moreover, when p = 0, the self-activity potential degener-
ates to PSA(j) = nSA(j), which is equal to the self-activity
frequency. When p = 1, the self-activity potential degen-
erates to the total self-activity duration ΔtSA

sum(j). Figure
4(C) exhibits the Pearson’s Coefficient (PCC)[9] between
the individuals’ self-activity potentials PSA(j) and degrees
kCN , where p belongs in [0, 1]. The data of ‘FudanWiFi09’
and ‘HT09’ show their PCC can achieve as high as 0.9 and
0.85, respectively, indicating that the self-activity potentials
of individuals have a very strong positive correlation with
their degrees in the contact network. However, the PCC of
the ‘SGInfectious’ data is less than 0.5, whose correlation
is weaker. As summarized in Table 1, the types of CPIs
of three empirical data sets are different: ‘FudanWiFi09’
and ‘HT09’ are the repeatable interactions while ‘SGInfec-
tious’ represents unrepeatable interactions. In other words,
the individuals in ‘FudanWiFi09’ and ‘HT09’ both build a
time-invariant community, which does not hold in the case
of ‘SGInfectious’. In a time-invariant community, a larger
self-activity potential may help the individual increase the
possibility of contacting with other individuals. While in a
time-variant community, new individuals join the commu-
nity along with the old individuals leave, and every indi-
vidual has an active lifetime, out of which the individuals
will lose the capability to contact with other individuals in
the community. Therefore, we conclude that in such (static)
contact networks, super-connectors own two essential char-
acteristics: high self-activity and sociability (participation
capability). The ‘leaf’ individuals in the contact network are
those with low self-activity and sociability. However, why
can these ’leaf’ individuals gather into the super-connecting
groups in the (temporal) transmission graph? we need fur-
ther explore the temporal transmission graphs in more de-
tail.

4. PARTICIPATION ACTIVITY POTENTIAL
In a transmission graph, an EI has a self-activity potential

P EI
SA and a degree kATG. The crucial role of an individual

in the transmission graph is featured by the degree of the
corresponding EI. That is to say, when an individual par-
ticipates in an EI having a higher degree, the individual is
more important in the temporal network. However, since
most of the individuals’ participation rates are larger than
one, they may participate in r EIs, whose degrees are r at
most. Since the role of individuals in a temporal network is
featured by the maximal degree, we define a new definition
of the individuals’ maximal participation degree as follows:

Definition 6. Maximal participation degree κmax: If an
individual has the participation rate r, he (she) participates
in r EIs: e1, e2, ..., er, with the corresponding degrees in the
ATG as kATG

1 , kATG
2 , ..., kATG

m (m ≤ r), respectively, the
maximal participation degree κmax = max(kATG

1 , kATG
2 , ..., kATG

m )

4.1 Maximal Participation Activity Potential
Given an individual j participates in an EI ei (j ∈ ei).

Define the participation activity potential of individual j
with EI ei as follows:

PPA(j, ei) = P EI
SA(ei) = [

ΔT EI
sum(j, ei)

nTG(j, ei)
]anTG(j, ei) (3)

The maximal participation activity potential of individual
j comes:

Definition 7. Maximal participation activity potential :
An individual j participates in a set of EIs

Γ(j) = [e1, e2, ..., ei, ...er(j)]

The corresponding participation activity potential is:

ζPP A(j) = [PPA(j, e1), ..., PPA(j, er(j))]

and, the maximal participation activity potential of indi-
vidual j is:

P max
PA (j) = max(ζPA(j))

From Figure 5(A), we observe that the maximal partici-
pation activity potential P max

PA increases with the growth of
the maximal participation degree κmax, indicating that the
maximal participation activity potential features the maxi-
mal degree of the individuals in the ATG. In Appendix (Al-
gorithm 3 ), we provide the algorithms of building transmis-
sion graph, and the computational complexity of the algo-
rithms is O(M2) (M is the size of EITimeTable). However,
the participation activity potential of individuals is identical
with the self-activity potential of EIs, while the computa-
tional complexity of algorithms to calculate the self-activity
potential is O(N) (N is the size of EIs and N � M). If
we can use the maximal self-activity potential to feature the
critical role of individual replacing their degree centrality,
we can dramatically reduce the computational complexity.

We further illustrate in Figure 5(B) the accuracy rating to
feature the rank of κmax by P max

PA . All three empirical data
sets show that the accuracy rating increases with the growth
of κmax, indicating that the maximal participation activ-
ity potential can feature the members of super-connecting
cliques with the achieved accuracy rate as high as 100%.
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Figure 5: The maximal participation activity poten-
tial of three collected data sets.

4.2 Sum of Participation Activity Potential
We further define the sum of participation activity poten-

tial of a given individual j as follows:

Definition 8. Sum of participation activity potential P sum
PA :

Given individual j participates in a set of EIs:

Γ(j) = [e1, e2, ..., ei, ...er(j)]

The corresponding participation activity potential is

PPA(j, e1), ..., PPA(j, er(j))

Therefore the total participation activity potential of in-
dividual j is defined as:

P sum
PA (j) =

r(j)∑

m=1

PPA(j, em) (4)

Equation 4 shows that when a = 1, the sum of participa-
tion activity potential degenerates to the total participation
duration

P sum
PA (j) =

r(j)∑

m=1

ΔT EI
sum(j, em)

From Figure 1, we find that the total self-activity duration
is identical with the sum of participation duration,

PSA(j, p = 1) = P sum
PA (j, a = 1)

While the definition of P sum
SA also includes the participa-

tion rate and the activity of participation. Therefore, the
sum of participation activity potential can replace the self-
activity potential to feature the rank of degrees of individu-
als in the contact network.

As shown in Figure 6(A), in all three data sets, the sum of
participation activity potential increases with the growth of
corresponding degrees in contact networks, which indicates
that super-connectors in the contact networks have higher
sum of participation activity potentials. Moreover, we ex-
amine the accuracy rate of measuring rank of degrees in the
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Figure 6: The sum of participation activity potential
of three collected data sets.

contact networks by the sum of participation activity poten-
tial. In Figure 6(B) all of three empirical data sets support
the findings that the sum of participation activity potential
can reach the accurate rate as high as 100% of measure the
super-connectors. Therefore, the critical role of individuals
in the contact networks can be characterized by the sum of
participation activity potential.

As discussed above, the maximal participation activity
potential of a given individual features the corresponding
rank of degree centrality in the transmission graph, and the
sum of participation activity potential features the corre-
sponding rank of degree centrality in the contact network.
Sometimes, the individual with a high maximal participa-
tion activity potential also has the high sum of participa-
tion activity potential, e.g., some super-connectors in ‘HT09’
and ‘SGInfectious’. However, most of the individuals with
high maximal participation activity potentials do not have
the corresponding high sum of participation activity poten-
tials, leading that most of the members of ‘super-connecting
groups’ are not the ‘super-connectors’, as shown in Figure
3(B).

5. CONCLUSIONS
In this paper, we have defined a new ‘actor-related’ quan-

tity: participation activity potential which can characterize
their structural relations. The maximal participation activ-
ity potential of the individuals feature their rank of degree
centrality in the corresponding temporal network, achieving
the accurate rate as high as 100% to measure the mem-
bers of super-connecting groups. Besides, the sum of par-
ticipation activity potential is effective to characterize the
super-connectors in the contact network. In the view of
more detailed spreading processes such as infectious disease
prevalence and computer virus propagation, the members of
super-connecting groups play a critical role to the spread
over the whole networking system, therefore, this new pro-
posed quantity deserves further extensive efforts to under-
stand its significance in dynamical spreading processes of
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urban networking systems in near future.
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D. Lazer, K. Kaski, J. Kertész, and A.-L. Barabási.
Structure and tie strengths in mobile communication
networks. P Natl Acad Sci U S A, 104:18, 2007.

[21] R. Pastor-Satorras and A. Vespignani. Epidemic
spreading in scale-free networks. Phys Rev Lett,
86(14).

[22] R. Pastor-Satorras and A. Vespignani. Epidemic
dynamics and endemic states in complex networks.
Phys Rev E, 63:066117, 2001.
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[25] J. Stehlé, A. Barrat, and G. Bianconi. Dynamical and
bursty interactions in social networks. Phys Rev E,
81:035101(R), 2010.
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APPENDIX
A. ALGORITHMS

A.1 Algorithms to build a contact network

Algorithms 1. CNBuilder: building a contact network from
the records of human close proximity interactions.

Input: CPIs: a set of records about human close prox-
imity interactions (Size: S) with the formalization as
(N1, N2, tstart, tend).

Output: CN: a list of pairwise nodes.
1: CN ← an empty set {};
2: for Each record of CPIs i (i ∈ (1, ..., S)) do
3: If the pairwise nodes in record i are not included in

CN
4: CN ← CN

⋃
(N1(j), N2(j))

5: end
6: end for
7: return CN ;
We assume the size of CN as n, then the computational

complexity of the algorithm in the worst case is O( (0+(n−1))n
2

+
(S − n)n) ≈ O(Sn)

A.2 Algorithms to build event interactions and
a transmission graph

Algorithms 2. EIBuilder: building event interactions from
human close proximity interactions.

Input: CPIs: a set of records about human close prox-
imity interactions (Size: S) with the formalization as
(N1, N2, tstart, tend).

Output: EITimeTable: a list of starting and ending time
of EIs. EIs: a list of event interactions.

1: timeList ← an empty set {};
2: for Each record of CPIs i (i ∈ (1, ..., S)) do
3: if the starting and ending time of CPI i are not includ-

ing in timeList then
4: timeList ← timeList

⋃
(tstart(j), tend(j))

5: end if
6: end for
7: Return timeList ;
8: Order timeList by time ascend.
9: EITimeTable ← a empty set {};
10: for Each record of timeList j (j ∈ (1, ..., M))4 do
11: nodeset ← an empty set {};
12: for Each record of CPIs i (i ∈ (1, ...S)) do
13: if the record i of CPIs with tstart ≤ tj and tend � tj+1

and nodes of i are not included in nodeset then
14: nodeset ← nodeset

⋃
N1(i)

⋃
N2(i);

15: end if
16: end for
17: EITimeTable ← EITimeTable

⋃
nodeset

⋃
(tj , tj+1);

18: end for
19: Return EITimeTable;
20: EIs ← an empty set {};
21: for Each record of EITimeTable k (k ∈ (1, 2, ..., M))

do

4M+1 represents the size of timeList.

22: if the nodeset of record k is not included in EIs then
23: EIs ← EIs

⋃
nodeset of k;

24: end if
25: end for
26: Return EIs;5

The computational complexity of the algorithm to build
timeList in the worst case is O(MS). The computational
complexity of the algorithm to sort timeList in the worst
case is O((M + 1)2). The computational complexity of the
algorithm to build EITimeTable in the worst case is O(SM).
The computational complexity of the algorithm to build EIs
in the worst case is O(MN). Therefore, the computational
complexity of the algorithm to build EIs from CPIs in the
worst case is O(MS)

Algorithms 3. TGBuilder: building a transmission graph
and the corresponding aggregated transmission graph from
the EITimeTable

Input: ETTimeTable.
Output: TG: the transmission path from one EI to an-

other. ATG: the aggregated transmission graph.
1: TG ← an empty set {};
2: sort EITimeTable by the ascending order of the staring

time.
3: for Each record of EITimeTable e (e ∈ (2, ..., M)) do
4: bridgenodes ← an empty set {};
5: for Each record of EITimeTable ei (ei ∈ (e, ..., 1)) do
6: if there are common nodes both in record e and record

ei, while the common nodes are not included in bridegenodes
then

7: TG ← TG
⋃

[nodeset of ei, nodeset of e, tstart(ei),
tend(ei), tstart(e), tend(e)];

8: bridgenodes ← bridgenodes
⋃

nodeset of ei;
9: if the size of bridgenodes is equal to the size of nodeset

of ei then
10: break;
11: end if
12: end if
13: end for
14: end for
15: Return TG;
16: ATG ← an empty set {};
17: for Each record of TG t t ∈ (1, 2, ...P ) do
18: if the pairwise nodesets of record t are not included

in ATG then
19: ATG ← ATG

⋃
the pairwise nodesets of record t;

20: end if
21: end for
22: Return ATG6;
The computational complexity of the algorithm to build

a TG in the worst case is O(M2) and the computational
complexity of the algorithm to build an ATG in the worst
case is O(PH).

Regarding event interactions as vertices, we further intro-
duce the following rules to link the successive vertices as
the edges of the transmission graph: a) in the time series, a
source EI is the closest EI prior to the sink EI; b) at least
one user coexists in the source and sink EI; c) when there
are several sources before one sink, any set of the shared
users between the given source and sink EIs never intersect
with each other(set).

5N represents the size of EIs.
6H is the size of ATG
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ABSTRACT
Using sensor data from fixed highway traffic detectors, as
well as data from highway patrol logs and local weather sta-
tions, we aim to answer the domain problem: “A traffic inci-
dent just occurred. How severe will its impact be?” In this
paper we show a practical system for predicting the cost
and impact of highway incidents using classification models
trained on sensor data and police reports. Our models are
built on an understanding of the spatial and temporal pat-
terns of the expected state of traffic at different times of day
and locations and past incidents. With high accuracy, our
model can predict false reports of incidents that are made to
the highway patrol and classify the duration of the incident-
induced delays and the magnitude of the incident impact,
measured as a function of vehicles delayed, the spatial and
temporal extent of the incident. Equipped with our predic-
tions of traffic incident costs and relative impacts, highway
operators and first responders will be able to more effec-
tively respond to reports of highway incidents, ultimately
improving drivers’ welfare and reducing urban congestion.

Keywords
Geomining, event analysis, traffic prediction, cyber-physical

1. INTRODUCTION
Traffic congestion causes business losses due to increased

travel time, requires increases in public infrastructure in-
vestment, and due to extra emissions, threatens urban air
quality. While work zones, weather, fluctuations in normal
traffic, special events, traffic control, and physical bottle-
necks can all lead to congestion, a key contributor to con-
gestion is traffic incidents–“events that disrupt the normal
flow of traffic, usually by physical impedance in the travel
lanes” [2].

The wealth of data from transportation sensor networks
offers the opportunity to understand traffic incidents in or-
der to make urban travel more efficient. Incident detection
was among the first incident managment problems to be ad-
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dressed. Researchers have proposed machine learning and
rule-based approaches for detecting incidents or outliers at
individual locations, e.g. [8, 11]. A recent extension is to de-
tect and identify causal relations between anomolous events
in traffic data streams from GPS traces [12]. This work of-
fers insights into understanding the spatio-temporal impact
of traffic events. Another approach uses data from fixed
sensors to build a model of recurrent traffic congestion and
retrospectively identify the spatio-temporal impact of an in-
cident [10]. This work leaves open some specific problems:
(1) the definition of the impact region is based on a fixed
threshold instead of values tuned to expected conditions at
different locations and times of day and (2) the definition of
the impact region is limited to only the highway on which
the incident originated.

A second area in incident management is forecasting the
severity of an incident and its impact. Analytical formulae
based on queuing or shockwave models have been used, of-
ten demonstrated on simulator data without validation from
sensor recordings, e.g. [3]. Khattak et al. [9] use sensor data
to build regression models for incident duration, but fore-
cast delay using analytical formulae. In contrast, Garib et
al. [5] have applied regression on historical data for predict-
ing incident delay. However, they use incident duration as a
predictor variable for incident delay, which means that de-
lay can be predicted only after the incident is cleared. This
work suggests the challenge of forecasting the incident im-
pact promptly after an incident is detected to enable the
best possible emergency response. Possible responses in-
clude variable message signs, reducing flow of traffic on up-
stream onramps, and prioritizing emergency responders.

In this paper, we propose a practical system for predicting
the cost and impact of highway incidents using classification
models trained on sensor data and police reports. We do
this by applying machine learning models to the incoming
stream of recordings from traffic sensors embedded in many
highway systems. Our system allows for the rapid prediction
of how severe a newly-detected incident will be by mining
historical traffic sensor recordings as well as semi-structured
police reports, weather data, and day of week to build a
classification model of incident impact. The following are
the paper’s key contributions:

• Using historical traffic data from thousands of sensors,
we build a baseline model that captures the expected
conditions at each location and time of day over the
study area.

• We predict the impact of an incident that has just
started by using a classification model trained on his-
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torical events. We show that combining traffic sensor
recordings, initial police reports, weather data, and
time of day we are able to reliably predict absolute
and relative impact of a highway incident. We mea-
sure the impact by the duration of incident-induced
delays and by economic losses from cumulative travel
time delay 1.

• We demonstrate the high predictive power of our model
on two real datasets of reported highway incidents from
different regions, each over a two-month period. We
also show the high level of transfer learning possible
by training our model on one region and testing the
model on incidents from a different year and region.

Although in this work our framework is specifically ap-
plied to traffic, our approach points a way toward studying
the impact of events in other operational domains in which
we have sensor data and external incident (event) logs 2.

2. INCIDENT IMPACT COMPUTATION
We first introduce relevant definitions and then outline

an algorithm to identify the impact region for a particular
incident considering the true road topology.

2.1 Preliminaries
In this work, we analyze contiguous sections of freeway.

We use data from the California Performance Measurement
System 3) where tens of thousands of loop detectors fixed
along major highways statewide measure quantities such as
velocity, density, and flow every 30 seconds. For incidents,
we use data from the California Highway Patrol (CHP)4.
When an incident is reported, CHP notes details such as
when and where it occurred. We provide further details in
Section 4.1.

We model the regional highway network as a spatial net-
work graph, G = (U,E). Each node represents a detector, ui

(located at postmile xi) and an edge ei,j exists for every pair
of detectors such that there is a single road segment between
two sensors where the road segment is part of a highway with
PeMS detectors. The edge ei,j is directed such that j is up-
stream of i, where upstream is defined as in the opposite
direction of normal traffic flow. In practice, at detector ui,
the vehicle count data is aggregated over all lanes to com-
pute the total recorded flow in a given direction during a
five-minute time window. This quantity known as flow is
denoted by q(i, t) with units in vehicles per hour (vph). The
average occupancy of the highway over all lanes in the given
direction is denoted by ρ(i, t), with 0 ≤ ρ(i, t) ≤ 1, where 0
indicates an empty highway and 1 indicates the theoretical

1The economic losses in this context are the sum over the
estimated number of affected vehicles of the extra time over
expected travel times spent in the impact region of the inci-
dent multiplied by a cost per hour of lost productivity from
the US Department of Transportation [1]
2This work is part of a larger effort called Live Operational
Intelligence (LOI)[6], in which we are building systems for
clients that analyze large amounts of streaming sensor and
event data for supporting operational decisions. Interested
industries include oil and gas production and drilling, energy
delivery, logistics and transportation.
3Freeway Performance Measurement System (PeMS),
http://pems.dot.ca.gov
4Also avaiable at http://pems.dot.ca.gov

limit of full coverage of the road by vehicles [4]. The flow-
weighted mean velocity v(i, t) at location i and time t is the
chosen measure for the vehicle speed at a given location i
and time t:

v(i, t) =

∑Nl
k=1 qk(i, t)vk(i, t)
∑Nl

k=1 qk(i, t)
(1)

where the speed vk(i, t) for each lane k and at detector i and
at time t is computed according to the algorithm described
by Chen [4].

Critical for determining abnormal traffic behavior is the
identification of recurrent traffic conditions. Kwon [10] use
a nearest-neighbor approach to find k days that had traffic
conditions similar to the traffic conditions just before the
start of an incident of interest. The average of the condi-
tions at k-days is then taken to be the recurrent (or normal)
behavior. For small k, the method leads to the possibility of
choosing a date in the past with an incident—the opposite
of trying to find recurrent non-incident conditions. Instead
of using nearest-neighbors, we calculate the median of the
speeds at each sensor location i and each point in time t and
call it the recurrent velocity, v∗(i, t). The median is robust
to outliers, i.e. to incidents.

2.2 Understanding Cost of Delay
In this work, the economic loss due to lost productivity

associated with an incident is directly proportional to the
cumulative incident delay value according to the cost-benefit
framework used in the State of California [1]. Thus, we will
now detail the computation of the cumulative delay for all
drivers in an incident impact region.

The delay on each road segment per unit of time is de-
fined as the additional vehicle-hours traveled driving below
free-flow speed, vref , per unit of time. In this study vref is
60 mph as is standard with other researchers using similar
data [10]. This analysis further assumes that the flow, occu-
pancy, and speed remain constant during every five-minute
interval per road segment. We begin with the standard do-
main definition of delay d(i, t) in the road segment of length
li starting at detector i at time t. The delay essentially mea-
sures the vehicle-hours lost due to traveling below reference
velocity [13]:

d(i, t) = li × q(i, t)×max

(
1

v(i, t)
− 1

vref
, 0

)
(2)

where v(i, t) refers to velocity at location i and time t as
discussed in 2.1, q(i, t) is the flow at location i and time
t and vref is considered to be constant for all time t and
location i with a value equal to 60 mph.

We are interested in the cumulative delay for all affected
drivers, not simply the per segment per unit time delay,
d(i, t). Thus integrating d(i, t) over a region A and time in-
terval T the total delay over the spatial and temporal region
defined by A and T would be given as

Dtot =

∫

A

∫

T

d(i, t)dudt. (3)

The total delay over region A and time T can have many
causes. An approach as described by Kwon and Varaiya [10]
is to separate total delay as follows:

Dtot = Dinc +Drec +Drem (4)
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where Dtot is total delay calculated from flow and speed,
Dinc is the delay caused by non-recurring incidents such as
collisions (Dinc is referred to as Dcol in [10]), Drec is the
recurrent delay and Drem is the remaining delay. Of our
interest is Dinc, which is computed over a contiguous region
called the impact region of an incident. The work of previous
researchers to divide delay into components offers a general
framework, but there is no work to date that mathematically
derives expressions that capture the different terms. We now
provide a derivation of the various components of delay.

We begin by defining an impact region, which we under-
stand to be a contiguous region (contiguous in both space
and time) beginning at the time and location of the incident,
and where the traffic conditions deviate from the recurrent
traffic patterns. This contiguous region goes forward in time
and upstream in space, since after an incident, traffic backs
up (Figure 1 illustrates the spread of the impact region with
time for an example incident). Precisely, let the closest up-
stream sensor to incident Ia denoted by ua and the time of
incident Ia be ta. Then:

Definition 1. The impact region is collection of connected
subgraphs At induced from G. At is constructed for each
time t starting at t = ta, such that for all nodes i ∈ At, ei-
ther v(i, t−1) < v∗(i, t−1) or v(P (i), t−1) < v∗(P (i), t−1)
where P (i) is the parent of the detector i. At ta, Ata is ua.

Now we can derive some related quantities. Substituting
Equation 2 into Equation 3 and replacing the integral with
summation (since measurements are discrete), Equation 3
can be rewritten as

Dtot =
∑

T

∑
A li × q(i, t)

×max
(

1
v(i,t)

− 1
v∗(i,t) + 1

v∗(i,t) − 1
vref

, 0
)
.

(5)

Equation 5 shows that the delay is trivially 0 when the cur-
rent speed is greater than the free-flow speed, i.e., v(i, t) ≥
vref . Equation 5 allows a rewriting of the total delay into
two non-zero delay cases, as defined below:

1. Current speed is below the threshold speed and the
free-flow speed, v(i, t) < v∗(i, t) ≤ vref .

Dtot =
∑

T

∑
A li × q(i, t)×

(
1

v(i,t)
− 1

v∗(i,t)

)

+
∑

T

∑
A li × q(i, t)×

(
1

v∗(i,t) − 1
vref

)

(6)

2. Current speed is greater than the threshold speed but
less than the free-flow speed, v∗(i, t) ≤ v(i, t) ≤ vref .

Dtot =
∑

T

∑
A li × q(i, t)×max

(
1

v(i,t)
− 1

vref
, 0
)

(7)

For the sake of simplicity, it is assumed that each spatio-
temporal region of delay is caused by a unique delay-causing
incident. So, when computing the impact region of an inci-
dent, we do not include regions corresponding to the start
of a subsequent incident. Now, let At be the spatial extent
of a particular incident’s impact at time t ∈ T ′ where T ′ is
its temporal extent. Then,

∑
T

∑
At
li × q(i, t)×

(
1

v(i,t)
− 1

v∗(i,t)

)
=

∑′
T

∑
At
li × q(i, t)×

(
1

v(i,t)
− 1

v∗(i,t)

)

+
∑

T−T ′
∑

A−At
li × q(i, t)×

(
1

v(i,t)
− 1

v∗(i,t)

)
.

(8)

Combining Equation 4, which states that Dtot = Dinc +
Drec +Drem, with Equations 6, 7 and 8 yields the following
definitions for Dinc, Drem and Dtot:

Definition 2.

If v(i, t) < v∗(i, t),

Dinc =
∑

T ′
∑

At
li × q(i, t)×

(
1

v(i,t)
− 1

v∗(i,t) )
)

Drem =
∑

T−T ′
∑

A−At
li × qi(t)×

(
1

vi(t)
− 1

v∗(i,t)

)

Drec =
∑

T

∑
A li × q(i, t)×

(
1

v∗(i,t) − 1
vref (t)

)

If v(i, t) ≥ v∗(i, t),
Dinc = Drem = 0
Drec =

∑
T

∑
A li × q(i, t)

×max
(

1
v(i,t)

− 1
vref (t)

, 0
)
.

(9)

These equations precisely define quantities that can be un-
derstood as calculating the cumulative extra travel time ex-
perienced by all drivers during a certain time period and
spatial region when traffic is not freely flowing (v < vref ).
The recurrent delay, Drec, is the component of the currently
experienced delay that drivers might always expect traveling
through a region during a certain time of day. The incident
delay, Dinc, is the cumulative extra time that all drivers
spend in traffic associated with a given incident. The equa-
tions essentially codify our intuition that: if the current ve-
locity v(i, t) is below the expected velocity v∗(i, t), then one
component is the recurrent delay (from vref to v∗(i, t)) and
the remaining component (from v∗(i, t) to v(i, t)) is either
incident delay if we are in an incident region or remaining
delay otherwise. If the current velocity is above the expected
velocity, all of the delay is the recurrent delay. The cost of
an incident is then simply a constant dollar amount times
Dinc (We take it to be $11.20 for California [1].)

2.3 Computing Duration and Cost of Delay
Now that we have defined the impact region and cost of

delay, we will briefly outline our algorithm for computing
the delay associated with an incident.

We define the set of detectors of congested segments at
time t = 0 as a group of detectors in which the speed at
each detector is below the variable threshold speed, v∗(i, 0),
as defined in 2.1. Note that in published algorithms to date,
e.g. [10], a fixed threshold speed such as 50mph has been
used to determine membership in the preliminary impact
region.

Intuitively, for each incident, a ∈ A, we begin at ta with
the closest upstream sensor ua. Our algorithm continues
in the next time steps t > 0 and a node is appended to
the set, St, of nodes at time t, if the node is congested,
i.e., if the flow-averaged speed is less than (1 − c)v∗(i, t),
(where c is a constant), and the sensor was congested in the
previous time step or is directly upstream of a congested
sensor at time t. If the speed is greater than (1 − c)v∗(i, t)
and less than (1+c)v∗(i, t) and if the speed at the immediate
downstream sensor was not between (1− c)v∗(i, t) and (1 +
c)v∗(i, t), the sensor is appended to the set of congested
sensors at this time step. When both stop conditions, not
congested and no upstream sensors at the previous time step,
are met, time is incremented and the search upstream from
ua is repeated. The total process of identifying the impact
region for a given incident a ends when St = ∅ at the end of
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(a) t = 4 min (b) t = 14 min (c) t = 29 min

Figure 1: Spread of an impact region over time
(measured since reported start of the incident)
where the congested segments (v(i, t) < v∗(i, t)) are
indicated by a bold black line.

a timestep iteration. This allows us to compute the impact
region, At at any time t (In our experiments, we found c =
0.05 to be the most suitable). We skip the details for lack
of space.

In contrast to the work to date on impact regions [10] in
which the algorithm identifies congestion on one highway in
isolation, our algorithm recursively searches upstream, thus
identifying possible incident impacts to connecting highways.
Our algorithm considers the true freeway topology. For ex-
ample, Figure 1 shows an example from our Los Angeles
dataset that illustrates the automatic incident impact re-
gion detection applied to real data. The incident starts in
the southbound direction of the highway at the lower right
of the black line shown in the figures. The incident then
spreads upstream and the impact region spills over onto a
connecting highway temporarily. This figure also illustrates
how our algorithm considers the true road topology.

We are also interested in predicting how long the incident
impact lasts. We define the duration, ttot, as the duration
of the contiguous incident impact region characterized by A′

and T ′. In contrast, the PeMS traffic database system used
in California (URL mentioned before) computes the “dura-
tion” of an incident by subtracting the last time stamp of
a police report from the first report. Because this method
does not account for effects of an incident after police log re-
ports, we instead computed the “duration” directly from the
sensor recordings. We compared the durations we computed
directly from the impact region with those of the police inci-
dent logs and found that impact regions tend to last longer
than the PeMS “duration”. In the data, we see examples
such as one incident with one report of a crash and a second
and final report of an officer dispatched. In this example,
our algorithm will compute a longer duration because we
measure until traffic conditions return to recurrent condi-
tions.

3. PREDICTING INCIDENT IMPACT

3.1 Problem Definition
The impact of an incident can be characterized in multiple

ways. One possibility might be how much the slowdown will
be at a particular location or another might be predicting a
metric over the entire impact region, as previously defined.
As mentioned early, we predict the latter—the macro level
impact caused by an individual incident. The problem is:
“Given an incident just occurred, what will its impact be?”
We define impact in two ways: (i) The monetary productiv-
ity costs of the cumulative non-recurrent delay in Equation
9 that will be caused by a particular incident (ii) The du-

ration which can understood to be the temporal extent of
the impact region. Both metrics are moderately correlated
and are different measures of impact. The cost of delay is a
constant factor accounting for the value of lost time times
the integration of the delay magnitude over space and time,
which could cause incidents of different duration, but dif-
ferennt magnitudes, to have the same delay value.

Ideally, we would aim to predict the precise numerical
values for the two quantities of interest. We tried several
regression techniques and models such as regression trees.
We found that predicting the precise values (for either cost
or duration) is a difficult problem. For example, the least
root relative square error obtained with regression trees for
duration was close to 100% in many cases, meaning that
our error would be the same as if were to make the trivial
prediction of the overall mean as the predicted value. To
overcome this, we mapped the problem to predicting the
impact as a class variable. This makes the problem more
tractable and from the domain expert level no less useful.
Traffic operators are very often satisfied with knowing the
general range of the impact, namely “Will the impact be
negligible, moderate, or severe?” Or, “Given two incidents,
which one will have a greater impact?” Answering these
questions is the first step to solving the domain-specific need
of identifying how to prioritize limited resources to mitigate
the effects of incidents reported to emergency dispatchers.

3.2 Building the Feature Vector
A big challenge in predicting impact is building a fea-

ture vector that combines data from disparate structured
and unstructured data sources. The first step is to collect
sensor recordings near the incident location. We map a re-
ported incident to the closest upstream sensor on the di-
rected graph G(U,E). Note that the impact of an incident
typically spreads upstream, i.e. there is back-up behind an
incident (as depicted in Figure 1). At this closest upstream
sensor as well as one directly upstream and one farther up-
stream, we collect the current conditions including speed
v(i, t), expected speed v∗(i, t), and road occupancy ρ(i, t).
Figure 2 depicts the spatial relationship.

Traffic flo
w

 
 

Reported incident location 

Closest upstream sensor, “b” 

Downstream sensor, “a” 

Upstream sensor, “c” 

Figure 2: Diagram of sensor locations upstream
(“b”, “c’) and downstream (“a”) of the incident.
c©Mahalia Miller

In addition to the directly-measured quantities, we com-
pute a few meaningful physical quantities such as vdiff (i, t) =
v∗(i, t) − v(i, t) at the three sensors in Figure 2. We also
construct a few functions as part of the feature vectors.
We aim to capture the physical relationships that define
the traffic through these functions. For example, one func-
tion that we compute inspired from Equation 2 is: f(i, t) =
q(i, t)× ( 1

v(i,t)
− 1

vref
).

We then include the second type of data–California High-
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way Patrol (CHP) reports since initial testing indicated an
improvement in accuracy by including these extra features.
In addition to basic information including reported start
time of day, the structured part of the CHP records of-
fers a type class (a total of 36 types), which we mapped to
9 types: Traffic hazard, Collision+no/minor injuries, Col-
lision+major injuries/ambulance, Natural weather hazard,
Lane closure, Fire, Collision-no details, Hit and run, Other.
We also include features parsed from unstructured police
logs in the first 2 minutes after the reported start of an in-
cident.

Another feature we used is whether within one hour of an
incident it was raining and if so, by how much.

In addition we considered features pertaining to the topol-
ogy of the highways. As of now, we consider the number of
lanes as a feature. In future work, we aim to add more
features such as the proximity to an exit.

In addition to building feature vectors based on data for
each incident, we construct feature vectors for possible pair-
wise combinations of incidents. This dataset is used for pre-
dicting which incident of a pair will have relatively higher
impact.

3.3 Bin Selection
For every incident of interest, we compute the incident

impact both in terms of cost of delay and duration. This
is done using the algorithm and definitions introduced in 2.
Once we have obtained these numerical quantities, we map
the two prediction variables to classes or bins.

There are many ways to construct bins [7], such as equi-
width, equi-height and clustering. We experimented with
many of these approaches and found that either the bins
lead to a very skewed distribution of elements across classes
(such that it makes sense to just learn a trivial learner) or
have no semantic meaning for domain experts. The latter
is important since this an emerging application to be imple-
mented in practice by internal company teams and external
agencies. Finally, as reported in our results, we chose to do
manual binning. This allows us to divide the range of values
into sub-ranges, so that they have a semantic meaning. For
example, for a range of duration d from 0−140 minutes, the
range of d ≤ 5 indicates negligible impact, 5 < d ≤ 30 indi-
cates moderate impact, 30 < d ≤ 60 indicates high impact
and d > 60 indicates severe impact.

3.4 Building Prediction Models
Once we have constructed the feature vector and mapped

the continuous prediction variables to discrete classes, we are
ready to build prediction models. We can use classification
models for prediction, where each bin becomes a class.

Before building classification models, we do feature se-
lection. We remove those features that provide no or very
little information gain. For prediction, we have constructed
a suit of classification algorithms, including: (1) a classifi-
cation tree model based on C4.5 trees with various settings,
(2) an ensemble of short trees constructed using Adaboost,
(3) a k-NN classifier (with various ks and distance weights)
(4) a multiclass classification algorithm built with 5 mod-
els by varying C4.5 tree model parameters (5) a multi-layer
perceptron and (6) radial-basis function network. For the
decision trees we varied the confidence threshold (up to 0.2),
minimum number of nodes at leaf nodes (1-5), and whether
or not to force binary splits for nominal variables. For the

nearest neighbor we varied the number of neighbors (from
1-7) and how they were distance weighted. The intuition
was to select techniques from various classes of classifiers
(tree-based, nearest neighbor, and function construction).
We also put a minimum threshold for recall, precision for
each class (typically set to 0.25). Then given a dataset, we
choose the classifier that gives us the lowest error given that
the recall and precision for each class is greater than the
threshold.

A further refinement would be to introduce a cost matrix
once the relative trade-offs between different types of pre-
diction error are quantified for a particular transportation
district.

4. EXPERIMENTAL RESULTS

4.1 Dataset Description
As mentioned earlier, we extracted our traffic sensor datasets

from PeMS. We chose two different regions and seasons to
help test the versatility of our framework. The first dataset
is two months of sensor recordings in the Los Angeles area
(Caltrans District 7), namely January and February 2009.
The dataset includes 28, 818,432 recordings from 1696 main-
line (open freeway) detectors. Note that the full dataset
includes detectors on ramps and freeway to freeway connec-
tors, but we consider only a subset (1696 detectors here) that
are embedded the main highway lanes. The second dataset
is July and August 2011 for the San Francisco Bay Area
(Caltrans District 4) and is 32,587,200 recordings from 1825
mainline detectors. Figure 3 shows the spatial distribution
of sensors and freeways in the two regions.
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(a) San Francisco Bay Area (b) Los Angeles Area

Figure 3: Map of the freeway sensors (black dots)
and major highways (in grey) used for predicting
the impact of incidents. c©Mahalia Miller

We focused on incidents starting on I-5 in eastern Los An-
geles and US Route 101 in Silicon Valley in the San Francisco
Bay Area, because they provide samples with high traffic
volumes and high potential impact on productivity. For the
first dataset, we specifically investigated incidents on south-
bound interstate I-5 between postmiles 116.9 and 130 and
their effect on northbound and southbound I-5 traffic as well
as on connecting highways. There were 173 incidents in this
subset of the corridor during January and February 2009.
This second dataset focuses on incidents on southbound US
Route 101 between postmiles 400 and 410, which numbered
244 during the study period, and their effect on US Route
101 and connecting highways. We investigated weekday inci-
dents only and used recurrent speeds calculated for weekdays
only to be consistent.

For incident details, we used two types datasets from the
California Highway Patrol (CHP) as collected by PeMS and
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also freely available in near real-time from CHP 5. First,
there were structured logs with incident start times and lo-
cations. Second, the incident details were semi-structured
with free text police logs. After parsing the data with aid
from the CHP dictionary of shorthand (can be found at the
URL mentioned above) and including some common mis-
spellings, we extracted features such as the number of of-
ficers on the scene, if a truck was involved, if a tow truck
was mentioned, and the number of vehicles reported. For
example, one line in the police log for a particular incident
is: “11779132,01/23/2009 00:00:00,RP IN A GRY MERZ
BENZ VS WHI BIG RIG L/UP94757,ADD”. This police
log was made available one minute and 2 seconds after the
reported start of the incident and says that the reporting
party (RP) was in a gray Mercedes Benz and in a crash
with a white semi-truck (BIG RIG). From this line of raw
text, our natural language processor identifies that two ve-
hicles are involved. Additionally, it notes that a truck is
present. These clues are then added to the feature vector.

In addition, we extracted hourly rainfall data from the
California Department of Water Resources databases by map-
ping each sensor to the closest weather station 6.

The distribution of both prediction variables is quite skewed
and in Figure 4(a) we plot the distribution of incident delay
(cost divided by a constant factor) in log-log scale from the
LA dataset and observe the high concentration of low delay
events. We observe that the distributions follow a exponen-
tial distribution. Second, in Figure 4(b) we see a similar
trend for the incident duration identified by our method.
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(a) Incident delay[veh-hrs] (b) Duration [minutes]

Figure 4: Probability of an incident having an im-
pact greater than x, where x is incident delay in (a)
and incident duration in (b) (Complementary CDF,
in log-log scale). Note the high number of low mag-
nitude events.

4.2 Results
We evaluate our technique for its accuracy in predicting

the impact class, measured by either incident cost or dura-
tion. The results are obtained with 10-fold cross validation.
We do 10 runs of 10-fold cross validation and present re-
sults averaged over the 10 runs. For each run we choose
the maximum cross validation accuracy (recall that in our
model every run had a suite of classifiers) obtained in the
run and the overall accuracy result is the average over these
runs. For each maximum accuracy, we note the precision,
recall and f-measure for each class and present the average
of these values. We first present results for cost and then
for duration. We present results rounded of to the second
decimal place.

5California Highway Patrol (CHP) Traffic Incident Informa-
tion Page, http://cad.chp.ca.gov
6California Department of Water Resources California Data
Exchange Center,http://cdec.water.ca.gov/intro.html

4.2.1 Predicting Cost
In Table 1 we provide the accuracy results for predict-

ing the cost of delay on the San Francisco Bay Area (SF)
dataset. For each experiment, we describe the number of
classes, the bounds for the classes, the counts in each class
and the overall accuracy. For example, experiment SF-3
has three classes, with buckets being, cost ≤ $10, $10 <
cost ≤ $250 and cost > $250. We have chosen semanti-
cally meaningful buckets and not buckets that might give
us higher accuracy. A cost of less that $10 can be thought
to be insignificant, a cost of $10 to $250 can be thought to
be moderate, $250 to $1000 as high and a cost in excess of
$1000 as exorbitant. We also provide the precision, recall
and f-measure for each class in Table 1. This is useful since
for a skewed distribution we need to make sure that we have
reasonable recall and precision for classes with fewer exam-
ples. We obtain good results for two classes both in terms
of accuracy and precision/recall for each of the individual
classes. In particular, we can decide with high degree of
confidence if the cost of an incident is going to be low (less
than $10). As expected, as the number of classes increases,
our accuracy goes down, but even for four classes (experi-
ment SF-4) we have reasonable results. Table 1 also details
the results from the Los Angeles region (LA) dataset. It is
interesting to note the cost of incidents are in general higher
and the bin boundaries are shifted accordingly (The range
of $250 - $1000 is removed because we have very few train-
ing examples). Since traffic in LA is notoriously bad, these
results are expected.

4.2.2 Predicting Duration
In Table 2 we show the results for the SF and LA datasets

for predicting the temporal duration. The bin boundaries
are in minutes, so the buckets for the three experiments are
(1) duration ≤ 5min and duration > 5min, (2) duration ≤
30min and duration > 30min, and (3) duration ≤ 5min,
5min < duration ≤ 30min and duration > 30min. For
emergency responders, a major decision support need is iden-
tifying a “false alarm” or near 0 duration event. In this 2
class paradigm, our model is over 90% accurate for LA, and
87% for SF.

4.2.3 Comparing Incidents
Finally, from a relative magnitude perspective, we are in-

terested in knowing which of two incidents will have a higher
impact, whether measured by incident cost of delay or tem-
poral duration. Table 3 shows that our model can predict
the relative magnitude of a pair of incidents with high accu-
racy.

4.2.4 Extensions: Transfer Learning and Multi-tiered
Classification Model

To investigate the versatility of our proposed framework
we asked the following question: to what extent will a model
trained on one region transfer to another region? Table 4
show the accuracy for a model trained on SF incidents and
directly applied to predict the impact class of incidents in
LA. The results suggest that we do transfer learning from
region to another and demonstrates the versatility of our
framework. In comparison to the LA results when trained
on LA data, the LA results when trained on SF data gen-
erally show only marginal losses in accuracy. This result
is encouraging and suggests that for practical deployment,

38



a) Summary of experimental results for cost

Experiment Classes Bounds ($) Counts Accuracy
SF-1 2 10 114, 124 95.59
SF-2 2 100 157, 81 87.86
SF-3 3 10, 250 114,54,70 81.09
SF-4 4 10, 250, 1000 114,54,34, 36 73.73
LA-1 2 10 75, 97 91.40
LA-2 2 250 94,78 88.84
LA-3 2 1000 120, 52 82.33
LA-4 3 10, 1000 75, 45, 52 75.87

b) Precision, recall and f-measure for cost

Experiment Class Precision Recall f-Measure
SF-1 1 0.95 0.96 0.95

2 0.97 0.95 0.96
SF-2 1 0.91 0.91 0.91

2 0.82 0.83 0.82
1 0.92 0.96 0.94

SF-3 2 0.62 0.55 0.58
3 0.75 0.76 0.76
1 0.94 0.96 0.95

SF-4 2 0.61 0.62 0.62
3 0.51 0.46 0.48
4 0.47 0.46 0.47

LA-1 1 0.90 0.91 0.90
2 0.93 0.93 0.92

LA-2 1 0.91 0.88 0.90
2 0.86 0.89 0.88

LA-3 1 0.87 0.88 0.87
2 0.72 0.68 0.70
1 0.87 0.92 0.89

LA-4 2 0.56 0.53 0.55
3 0.73 0.72 0.72

Table 1: Results for predicting cost. We showed
high overall accuracy and high precision and recall
for each class.

we will not need to train separate models for each region.
The model-building part of this exercise was a bit tricky
since CHP in LA and CHP in SF had different “types” for
incidents and the distribution of variable values could be
different. While we might expect that collecting more data
regarding a particular incident as time passes might improve
our prediction, we find no significant improvement in accu-
racy in our specific application. One reason might be that
most incidents are of short duration and for longer duration
events, the first few minutes are not full descriptors of the
full progression of the incident impact. More likely, however,
is that we have a limited number of events greater than 15
minutes, for example, and thus need more events to get a
significant improvement over the multi-class baseline model.

4.3 Discussion
The overall classification results are encouraging. In ad-

dition, we discovered models that brought new insights to
the domain experts. For example, the pruned C4.5 tree
depicted in Figure 5, which was discovered for predicting
false alarms in the Los Angeles dataset (70/30 train/test)
has over 90% accuracy. The root node of the classification
tree makes a decision based on how different the speed at a
sensor (two sensors upstream from the incident) is from the
recurrent speed. Then, if the speed is significantly below the
recurrent speed for that location and time of day, the model

a) Summary of experimental results for duration

Experiment Classes Bounds (min) Counts Accuracy
SF-1 2 5 146, 92 87.22
SF-2 2 30 188, 50 81.05
SF-3 3 5, 30 146, 42, 50 72.99
LA-1 2 5 85, 87 91.51
LA-2 2 30 118, 54 79.65
LA-3 3 5, 30 85, 33, 54 71.98

b) Precision, recall and f-measure for duration

Experiment Class Precision Recall f-Measure
SF-1 1 0.89 0.91 0.90

2 0.85 0.82 0.0.83
SF-2 1 0.83 0.96 0.89

2 0.63 0.24 0.35
1 0.92 0.96 0.94

SF-3 2 0.0 0.0 0.0
3 0.47 0.84 0.61

LA-1 1 0.92 0.91 0.91
2 0.91 0.92 0.92

LA-2 1 0.95 0.74 0.83
2 0.62 0.92 0.74
1 0.91 0.86 0.88

LA-3 2 0.43 0.38 0.40
3 0.62 0.71 0.66

Table 2: Results for predicting duration of an in-
cident. We show high overall accuracies and good
precision and recall for most experiments.

Measure Region Accuracy
Cost San Francisco 96.01
Cost Los Angeles 94.89

Duration San Francisco 96.3
Duration Los Angeles 92.21

Table 3: Prediction accuracy (%) for pairwise rel-
ative greater magnitude of incident cost and du-
ration. Our model is able to reliably predict the
relative magnitude of the impact.

predicts that an accident is occurring. If not, the model
checks how densely packed the road is. If the road is rela-
tively empty, then the model predicts the report as a false
alarm. If not, the model checks to see if any police report
mentioned vehicles involved within the first two minutes. If
so, the model predicts that an accident is occuring. If not,
the model classifies the report as a “false alarm” (meaning
that impact would be negligible). This automatically cre-
ated and pruned tree is consistent with intuition and offers
insights, such as that being only k mph slower than recur-
rent conditions at a certain time of day and location given
an incident report is a good indicator that it is not a false
alarm. More generally, these models show which variables
are important for prediction.

In addition, our approach is practical and feasible in real
time since both feature extraction and model execution are
quick.

As with most data mining problems, when modeling real-
world physical systems, having good features is critical. In
this regard, we found that the features we constructed that
were trying to imitate the underlying physical models were
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Measure Bounds Accuracy
Cost $10 90.07
Cost $10, $100 86.05

Duration 5 Minutes 91.28
Duration 5, 30 Minutes 73.84

Table 4: Prediction accuracy (%) by each bin selec-
tion choice for k classes of incident delay trained on
the SF dataset and tested directly on LA: the model
results suggest good transfer learning.

Yes  

False  alarm  

Yes  
No  

No  

(v*-­‐v)up>4.6  

Accident  

Yes  No  

  

#  vehicles>0  

Accident  False  alarm  

Figure 5: Classification tree for predicting “false
alarms” for LA, which predicts with >90% accuracy
and is consistent with intuition of domain experts.

often good predictors. This might point to a way for con-
structing models for physical systems–namely that we look
at some equations from domain experts and capture some of
those relationships in our feature vectors. Furthermore, in
this work we collected features of different types describing:
the incident, changes in the state variable (such as deviation
from recurrent velocity), the environment (such as rain), and
the topology (refinement is ongoing). We have shown that
this exercise also improves the accuracy of our models.

Furthermore, for the predicted variable it is important
to first choose a physically useful quantity to predict (such
as the ranges for cost or duration) even at the expense of
accuracy in models. Making such a choice often causes a
problem with class distribution and makes an already chal-
lenging problem even more so. Nevertheless this is needed
to get useful models that domain experts want to use.

Our results show that given a cyber-physical system, ma-
chine learning techniques can help predict the impact of an
incident. We believe that this way of obtaining details of
incidents from some event database, computing impact us-
ing sensor data and building a model that correlates the two
can be extended to other domains.

5. CONCLUSIONS
In this paper we have proposed a system for rapid pre-

diction of the cost and impact class of highway incidents
that demonstrates the real-world applicability of a predictive
model based on classification models trained on available ur-
ban data. The feature vector is built from structured data
from sensor networks on highways as well as semi-structured
text collected at different points in time. With experiments
on real-world data, we have demonstrated that our models
are good predictors of incident impact. Thus, our work sup-
ports a decision–response to a highway incident–that until
now has relied on human expertise. In addition to advanc-

ing the use of machine learning for highway operations in
practice, these results open the door to further studies on
applying statistical methods to traffic management and re-
lated applications. We are discussing these results with HP
Services and a government agency and expect to deploy the
underlying techniques to real-time operations.
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ABSTRACT 
This paper explores the smart city concept and proposes an 
innovative way of sensing urban places’ life using aggregation of 
devices sensors (cameras…) and human sensors (VGI, geosocial 
networks) datasets. The paper also discusses the need of an 
enabling geospatial information platform to facilitate data 
discovery and access in order to support smart cities’ operations. 
Indeed, in this context, Spatial Data Infrastructure plays an 
important role and acts as an enabling platform linking 
governments authoritative spatial information with crowd 
sourced, voluntary information initiatives. 

Categories and Subject Descriptors 
- Urban sensing and city dynamics sensing 
- Smart recommendations in urban spaces 
See also http://www.acm.org/class/1998/ 

General Terms 
Measurement, Design, Security, Human Factors. 

Keywords 
Smart city, sensors, place, spatial enablement, Volunteer 
Geographic Information, crowdsourcing, enabling platform, SDI. 

 

1. INTRODUCTION 
Our living world becomes more and more complex every day and 
faces growing challenges. Urban areas are especially under 
pressure, as their population will exponentially grow in the 
coming decades. Various economical, environmental, social, 
demographical, etc. issues and stakes will lie ahead in the near 
future. These issues are even stronger while the age of real-time 
and location-aware information accelerates social and spatial 
changes. Building “smarter” (intelligent) urban environments and 
communities is one of the potential solutions that is currently 
proposed and explored to tackle these challenges.  

Smart City is one the most fashionable answers that was firstly 
proposed, and has been used as a marketing artefact by companies 

like IBM (Smarter Planet initiative), CISCO (Smart+Connected 
Communities division) or last but not least and more recently Intel 
(Collaborative Research Institute for Sustainable Connected 
Cities), and also by some of the biggest cities in the world (Rio de 
Janeiro, Singapore, London…). A smart city is roughly described 
as a platform or a system of systems, essentially based on three 
components: Sensors, Networks and Engagement (actuators).  

But is this ‘Smart Cities’ approach makes cities smart enough to 
meet the current and future challenges? The answer is certainly 
NO [1], but it s not obvious. Making a city smarter is neither only 
a technological infrastructure issue, nor a managerial one. It is 
also and essentially providing citizens a better and safer way of 
living in urban areas, in the places where they live, work, have 
fun, consume… Therefore, sensing life in those places is a major 
stake to understand new city dynamics and then to design better 
living urban environments. The Singapore Live project running by 
the MIT SENSeable City Lab. is a good example of such a stake. 

With the many challenges facing society today at multiple scales, 
location has emerged as a key facilitator in decision-making. 
Location data is now commonly regarded as the fourth driver in 
the decision-making process. The location provides more 
intelligent data analysis due to improved analytical and 
visualisation capabilities. Location-based services and information 
are the basic components needed to dynamically describe and 
represent places’ life [2]. We live in the Global Location Age. 
“‘Where am I?’ is being replaced by, ‘Where am I in relation to 
everything else?’” [3]. Indeed with the exponential growing of 
location-based social networks (geosocial), Geoweb 2.0 and 
geoinformation crowdsourcing, citizens are increasingly involved 
in the production of geographic information. This kind of 
information, voluntarily produced and diffused by people, mainly 
refers to the places they live/use. Indeed, people whom live in a 
place are often the “experts” of this place [4]. The active 
engagement of citizens is then a major requirement for smarter 
operations of a city, and this needs for citizens to be spatially 
(digitally) enable [1]. Capturing the sense of places is then a major 
stake for urban communities that look for a smarter way of 
development. Smart city infrastructure has to be based on an 
Enabled platform for aggregating formal data sensed by device 
sensors and sensible knowledge sensed by citizen sensors.  

This stake also poses fundamental research problems: How to 
efficiently and dynamically senses urban places’ life? What kind 
of mechanisms should be developed to actively engage citizens as 
active sensors? What should be included in a Volunteer 
Geographic Service – VGS to make this service useful for 
engaging citizens in smarter city operations? 

This paper precisely aims at providing recommendations for 
sensing urban places’ life by using aggregation of devices sensors 
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(cameras…) and human sensors (VGI, geosocial networks) 
location-based data. It also discusses the data infrastructure that is 
needed to facilitate data access, discovery and linkages. Section 2 
provides a brief overview of smart city challenges, and especially 
argues that a city could not be smart without spatially enabled 
citizens. Section 3 discusses what the concept of Place does really 
mean in the smart city context, and to what extent place does 
matter to make city smarter. Section 4 finally develops the 
proposed methodology, based on a work in progress, for sensing 
places’ life in smart city, and provides example applications (e.g. 
crisis management). 

2. HOW TO MAKE CITY SMARTER? 
2.1 Smart city weaknesses 
A recent Wired.uk.co paper entitled “Surely there's a smarter 
approach to smart cities ?" [5] provides a really good overview of 
the weaknesses of current smart city deployment. Based on the 
analysis of the IBM and Cisco’s projects, this paper concludes 
that this approaches are weak. The main weaknesses (this is not 
exhaustive) are the followings:  

- These smart city approaches are to much technologically 
driven and mainly reflect the most basic functionalities of the 
Internet of Things, 

- These are based on a “One-size fits all” and very top-down 
strategic approach “to sustainability, citizen well-being and 
economic development”, 

- The ‘smartness’ is limited to efficiency and there is most of 
the time nothing really develop to improve and increase the 
flexibility and adaptability of the city’s operations, 

- Citizens are not really considered in these projects, except as 
passive sensors (for instance by unconsciously providing their 
location through their smart-phone activities), 

- These initiatives are not really scalable, only small scale is 
really taken into account, and city is considered as an 
indivisible whole, as a single coherent and predictable unit. 

2.2 Smart city requirements 
The Latin etymology of intelligent (“intelligentare”) refers to the 
ability to learn about/from someone or something, understand, 
interact with one’s environment and, act relevantly. This ability 
particularly consists of adaptability to changes in the environment 
and, capacity for knowledge from this environment.  

Then “smart city” refers to the capability of a city (or a 
community) to understand events or phenomena that characterized 
its internal and external dynamics (crisis, transport issues, road 
traffic, socio-economical transformations, demographical 
changes, etc.).  

Moreover, in the current hypermodern context, a smart city must 
also be able to identify the main components of an event (where, 
when, who, what, how), to analyze it, to provide location-aware 
(and contextual) sense to it and, to react (actuate) properly  (and in 
real-time – at least compliant with the nature of this event). 

In order to achieve these goals, urban infrastructures (transport, 
communication, water supply or energy...) have of course to be 
redesigned and upgraded by articulating their material 
components with existing capabilities of new active and 
communicant sensors and actuators. This refers to the Web 4.0, 
the Internet of Things, the Web of communicating objects. 

But this also requires the cities’ capacities of analysis, diagnosis 
and communication to be substantially and significantly 

improved. This requirement is very much in line with the issue of 
"big data" that increasingly grows while data coming from various 
sensors are multiplied and accumulate. This refers to the Web 3.0, 
the semantic web, this of meaning, of sense, of signs. 

Last but not least, urban society that is to say citizens, institutional 
organizations, public-private stakeholders also have to develop or 
increase (new) adhoc skills to act in this smart urban environment. 
It must negotiate new rules to work all together, new modes of 
opened governance, adapted contribution mechanisms (as 
crowdsourcing), new way of participation. This refers to the Web 
2.0, the participatory geoweb [6], this of geosocial, user generated 
contents, participation, social networks and open data.  

Major issues also arise as regard as citizens’ digital and spatial 
literacy. This active and engaged citizen (see section 3.2) is 
indeed the main driving force of a "smart city". The growing 
amount of location-based contents generated by connected - 
anytime and anywhere - user (citizens' produsers equipped with 
smart phones) ; the exponential growth of volunteered geographic 
information (Foursquare: 20 million users and 2 billion check-ins) 
trough social networks (most of which are Location-Based social 
networks) become the basic features of the Spatially enabled 
society. This is defined as an “evolving concept where location, 
place and any other spatial information are available to 
governments, citizens and businesses as a means of organizing 
their activities and information” [7].   

From a practical point of view, and in the smart city context, 
“spatial enablement” refers to the individuals’ (or collective) 
ability to use any geospatial information and location technology 
as a means to improve their spatiality, that is to say, the way they 
interact with space and other individuals on/in/through space. 
Spatiality is the dynamic component of place making. 

Therefore, more fundamentally a spatially enabled citizen is 
characterized by his ability to express, formalize, equip 
(technologically and cognitively), and of course consciously ‐or 
unconsciously‐ activate and efficiently use his spatial skills. 

Smart urban solutions have to be built on the vision of citizens as 
active sensors on one hand and on spatial enablement of citizens 
via social networks on the other hand. These solutions have to be 
inline with improvement of navigation related spatial skills using 
geographical information and techniques for annotating spaces 
with digital information. These kind of solutions have also to be 
built on the potentials offered both by embedded sensors to 
crowdsource the process of collecting geo-referenced information 
about places in the city and social networks to disseminate this 
information and democratize access to it.  

3. MORE PLACES, LESS SPACE 
3.1 Back to the concept of Place 
In this section we argue that places, and sensing urban place 
especially, are central as a way to understand cities and then to 
smartening its urban management and design. But what the 
concept of Place does really mean in the smart city context, and to 
what extent place does matter to make city smarter?  

Place has different meaning depending on the field of interest. As 
mentioned by Mike Goodchild [8] “The concept of place has a 
long history in geography and related disciplines, but has been 
plagued by a fundamental vagueness of definition”. From a social 
perspective, Place is considered as “an expression of context”, an 
expression of the “value of linking individual behavior to context“ 
[8]. Place is often used in the sense of community or 
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neighbourhood, implying an informal relationship to an area 
surrounding the individual’s place of residence [8].  

From a more geographical point of view, Michel Lussault [9] 
argues, “spaces are socially constructed”; and all space is a formal 
arrangement of artefacts, materials and ideas, and is characterized 
by specific attributes like scale, metric, substance and 
configuration. He considers space as a meta-concept that is 
contextually and contingency shaped as places, areas (territories) 
or networks. In this framework, place are space where Euclidian / 
metric distance doesn’t matter.  

The concept of place does not certainly mean the same in the 
location age context than it meant before. However the potential 
of location-based technologies is not limited to the ability to say 
"where" we are or "who" and "what" are close to us. It could also 
provide extended capabilities to users, such as accessing new 
forms of virtual spaces or increasing physical space in which they 
live (by adding digitals artefacts for instance). A sort of 
“informational thickening” of places and networks (already 
identified in the seminal book of Mitchel [10], appears from these 
new practices. This hypermodern urban contexts and spatially 
enabled society are indeed characterized by its wikinomics [11], 
where places of interest could be identified, sensed and 
characterized by citizen seen as sensors (geosocial 2.0). 

For Manuel Castells [12], this new form of location-based social 
networks characterizes the Society of Flows. Castells said “Time 
and Space do not disappear but they are transformed”, one 
individual could possibly be in two different spaces in the same 
time, people constantly evolve in overlapped multifunctional 
networks. Then, places become multifunctional and multi-
meaningful. Castells finally argues, “The space of flows dominates 
the space of places”. 

3.2 Does Place still matter for smart city?  
As it was highlighted before, people increasingly live in high-
density urban, often high rise and multi functional buildings. 
These increasingly urbanised populations will predominantly live 
in multi-level, multi-purpose, highly engineered, high-rise 
developments. Cities require significant infrastructure above and 
below the ground. Rapidly expanding vertical cities and their 
populations will experience a range of new environmental, social 
and economic challenges. With this in mind, then the question 
would be, does place still matter in a spatially enabled society? 
Contrary to the Castells’ arguments, we believe the answer is 
undoubtedly yes. But it’s not obvious, and the reality more 
complex than a simple tension between place and flow. 

While concepts of place and network are becoming central in the 
“spatially enabled society”, the relevance of the concept of 
territory (space-area) is under erosion. Geographers conceive 
territories as areas, which are sensitive to Euclidian distances, 
bounded by identifiable and clear boundaries, and characterized 
by continuous components and phenomena. Most of those 
territories gradually disappear. In the same time, networked 
places, characterized by a spatial and temporal discontinuity of 
their embodied components become preeminent. In this context of 
hyper-modernity, places become hyper-places where physical 
Euclidean distances do not still relevant, but in which other forms 
of distance (time, connectivity, digital, social...) structure social 
relationships and human spatiality. 

Our daily living spaces may not be reduced to a horizontal layer, 
physically accessible. Instead, "virtual information" that are mixed 
(mashed-up) are fully part of its. This ability to choose to live into 

(with) places, essentially hybrid, in their informational thickness, 
allows individuals to precisely "be fully in their world". Spatiality 
in this context is essentially based on co-spatiality. This capacity 
for engagement / disengagement (for navigation through the entire 
informational thickness of places), is actually part of all spatial 
actions undertaken by individuals, and in this sense refers 
probably to a new type of spatial skills that should be analyzed. 

Further, in the context of cities, the lack of an efficient and 
effective three dimensional solution limits the ability of the public 
to visualize and communicate 3D developments, the ability of 
architects, engineers and developers to capitalize on the full 
potential of 3D city models; the ability of governments and 
developers to visualize multi-level developments resulting in 
increased costs and delays; and the ability of land registries to 
administer a title registration system that can accommodate these 
increasingly complex multi-level developments. 

Having said that, in the general context of geocommunication 
(communication based on location and mobility), places and then 
(by linking) networks become the preeminent forms of space 
(much more than area). More precisely, the construction of spaces 
is mainly based on the aggregation of places; those aggregations 
are more or less organized, more or less sustainable. Those places 
may refer to temporal sequences of positions (location + relations) 
of one mobile and communicant individual, which together 
generate a space-network (formalizing a "route"). But they can 
also refer to locations (in a given time) of various individuals, all 
connected, all members of a "social network", and in this case 
space contextually formalizes the social network. It can finally be 
a hybridization of the first two, that is to say dynamic space-
networks, based on the tangled routes and crossings of the 
members of a given social network. In very rare cases, places 
become territories with fuzzy and shifting boundaries. Then these 
space-areas formalize the spatial extent of the interactions 
occurred between the members of a social network. 

Spontaneous and localized contributions of individuals (localized 
tweets, Facebook Places or foursquare chek-in) are most often 
materialized by Points of Interest (POI). This POI could be 
considered as new forms of spatial projections of social 
relationships and human spatiality. These contributions raised 
through mobile technologies, but accessible from different 
platforms (Internet, PDAs...), act as socio-spatial mediators, in 
charge of telling where people are, what they are doing, with 
whom, what they have in mind, who and what are there with us 
(or around, close to us), what they expect from others, what they 
think about the place, etc. [13]. These contributions are emerging 
as an essential way to access the sense of places. Every place tells 
a story, and user contributions are its more relevant medium.  

Due to the relative pre-eminence of place to understand urban 
environment, and following Mike Goodchild [14] idea, it is time 
to move from a space-based to a place-based geospatial 
infrastructure. This is what the following section is about. 

4. SENSING PLACES’ LIFE 
4.1 SDI as an Enabling Platform 
Spatial Data Infrastructure (SDI) is an integrated, multi-levelled 
hierarchy of interconnected SDI based on partnerships at 
corporate, local, state/provincial, national, regional (multi-
national) and global levels. This enables users to save resources, 
time and effort when trying to acquire new datasets by avoiding 
duplication of expenses associated with the generation and 
maintenance of data and their integration with other datasets. SDIs 
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are increasingly focussing on large scale people relevant data 
(land parcel based data or build environmental data) with the 
result that today it is suggested most SDI activity worldwide is at 
this level. A central aspect in understanding these developments is 
the evolution of mapping, and the growth of land administration 
systems and national mapping initiatives in different countries. 

Data Infrastructures are now in place that enables individuals to 
position themselves and navigate to a chosen destination by 
multiple routes, identifying nearby places and services of interest. 
In this context, SDI and spatial technologies are now used 
routinely in decision making to support city planning and 
forecasting and at the same time to address some of the world’s 
most pressing societal problems. Many countries now recognize 
SDI as an essential modern infrastructure such as information 
communication technology (ICT), electricity or transportation.  

Harlan Onsrud [15] defined SDI as a network-based solution to 
provide easy, consistent, and effective access to geographic 
information and services to improve decision making in the real 
world in which we live and interact. 

Spatially enabled society is "dependent on the development of 
appropriate mechanisms to facilitate the delivery of data and 
services". To be spatially enabled an organization has to: (1) 
accommodate in its very operational logic, a more effective and 
transparent political and electoral process by making relevant 
geographical information accessible to citizens; (2) foster 
economic market improvement through the development and 
diffusion of public geographical information products and 
services; and (3) allow monitoring environmental sustainability by 
using spatial indicators provided by distributed sensor networks 
[16]. Therefore there is a general agreement on the need for a 
"service-oriented infrastructure on which citizens and 
organizations can rely" to have access to geographical information 
and location-based services [17]. Such infrastructure (basically 
close to the last generation of SDI) is seen as the key basis to any 
spatially enabled society, since it provides stakeholders with faster 
and direct information updating and downloading capabilities; and 
deploys mobile and monitoring applications offering augmented 
and virtual reality capabilities for instance [18]. 

4.2 Citizens as sensors 
User generated geographic content and geo-crowdourcing are 
indeed two other major characteristics of spatially enabled society 
as well as smart city. Spatially enabled citizens increasingly use 
technology, particularly mobile technology, to voluntarily 
contribute and provide local information and share place-based 
knowledge on their networks. Users become both producers and 
consumers of this information. Citizens, as sensors, are able to 
provide their (social) network with real-time information about 
their spatial experiences: recording and sharing personal 
memories, reporting on inefficiencies and problem areas within 
the city, or rating the services provided in different locations. In 
this type of user-contribution-based service, community is shaped 
through LBS and, in return, these services rely on community, 
considered as a source of information. This concept of “citizens as 
sensors” [19] is also an important issue for Spatial Data 
Infrastructures (SDIs). Spatially enabled citizens could be 
considered as a dynamic source of information to feed the SDI 
data flows [20], as well as the monitoring system of smart cities.  

If citizens can unconsciously provide useful information to fuel 
smart city (when their traces, their spatial behaviors, or even their 
tweets for instance are tracked and analyzed to better understand 
new dynamics in the city) they also can consciously participate to 

city life and actuation. Several urban computing projects using 
human (e.g. drivers or vehicles) as sensors, have already 
demonstrated to what extent this kind of bottom up approaches, 
could provide city decision/policy makers useful and relevant 
information about city life [21, 22]. Similarly, in the context of 
spatial enablement citizens could take advantage of existing 
Spatial Data Infrastructures -SDI- while creating and sharing 
spatial knowledge, as sensors in their own right. To this effect, 
volunteered Geographical Information -VGI- becomes the most 
prolific sources of information to characterize places. Based on 
both such SDI resources and their own local knowledge, citizens 
as sensors, could not only provides place-based information, but 
also Volunteered Geographical Services – VGS, and then make 
them more and more engaged as active smart city actuator [23].   

As we saw previously, spatially enabled society and smart cities 
have a lot in common, and they both benefit from Spatial Data 
Infrastructures as enabling platforms improving access, sharing 
and integrating spatial data and services. Yet they are still 
conceptual and technical challenges to achieve a fully functional 
system [16]. Smart city as actuating source of spatial enablement 
might probably provide solutions to overcome these challenges. 

4.3 Cameras sensors 
Distributed cameras across cities which are used for many 
applications such as traffic management, or public safety can also 
be useful for other potential applications. These cameras can be 
considered as sensors network for further data collection and 
analysis for live city application of related movement and 
planning or other related areas. With this in mind, this research 
aims to integrate imagery from the city's camera sensor network to 
create an immersive and coherent 3D visualisation of streets and 
their real-time dynamics and events. The camera sensor network 
will include live cameras around the city, traffic control sensors 
and VGI. High-level image processing, including feature 
extraction from live video streaming, will allow for accurate and 
detailed information to be readily available in real-time. A 
dynamic live city has applications as diverse as urban planning, 
disaster management, asset management and intelligent 
transportation systems.  

In addition, recent advancement in digital imaging and computing 
technologies allows for efficient image analysis for 3D object 
reconstruction. Meanwhile, video technologies are pursued for 
analysis of dynamic scenes, moving object detection and tracking. 
In this project, we will further explore vision technology to fuse 
the static virtual city with temporal information such as the 
movement of pedestrians and cars obtained from videos. 

4.4 Aggregation 
In order to aggregate place-based information in a dynamic way 
and to ensure traceability capability, we propose an enabling 
urban platform based on a WikiGIS framework. The WikiGIS 
applies wiki management and integration strategies to geo-data–
geometry (shape and location)–graphic attributes–descriptive 
attributes, and not solely to location-based texts, as in geoblogs 
for instance. More precisely, a WikiGIS is a geographic 
information system (GIS), created online (on the Internet) through 
collective interventions (in this case, data coming from camera-
sensors together with data coming from citizens), which involves 
interactions between participants, followed by the combination 
and traceability of their contributions into coherent geospatial 
representations that are open to improvements [24]. 
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In this context, a potential application will be an experiment 
system which delivers live city allowing for visualizing the 
dynamics and movement in the city, thus, stimulating visual-based 
thinking, space perception, and imagination. Spatially distributed 
live events can be observed on the live city, just as on the spot. 
Such spatially enabled live events in the context of virtual city 
scenes facilitate enhanced comprehension of objects, events and 
patterns, in relation with incidents in the nearby streets. Further, to 
support this idea, a component also would be to develop a holistic 
decision-support system and a smart Spatial Platform for city 
management, in particular in the context of disaster response, and 
recovery. The urban disaster integrated decision-support system 
will provide a dashboard for the strategic, tactical, and operational 
decisions arising during disaster response. This system will 
enhance the cognitive abilities of decision makers, allowing them 
to explore multiple scenarios in parallel, to visualize the 
consequences of their decisions under various assumptions, to 
refine the decisions continuously over time. 

Spatial data is often heterogeneous and distributed in networks as 
it might be created by city’s inhabitants, government or private 
sectors using different techniques, existing IT systems and 
readings form the physical environment [25, 26]. In addition, 
spatial data require interpretation to be relevant in emergency 
situations. In an emergency situation, geospatial data should be 
brought together from different sources, integrated in homogenous 
formats and, analysed and converted to momentous information. 
Currently such a workflow is not automatic and requires a 
substantial input by an individual, which is often not effective in 
emergency response scenarios. 

The aim of this experiment is to develop and implement a smart 
spatial platform that provides access to multiple distributed data 
sources (including data from cameras and live inputs) 
automatically integrates geospatial data, intelligently analyses 
data and generates user friendly information to support decision 
making. The proposed platform consists of four main components 
as illustrated in following Figure.  

 

Figure 1. Smart Spatial Platform. 

The first component is access to SDI which provides spatial data 
from different sources. SDI provides access mechanism for the 
smart platform to connect and download data from distributed 
sources. The SDI also provides a standard access method such as 
internationally compliant web service approaches. 

The second component is access to VGI. This is the spatial data 
that are crowed sourced. The third component is the analysis tool 
that uses optimized models that can replace the human modelling 
skill and knowledge for decision making such as planning or 
disaster management. It includes in particular a VGS for 
validating VGI data, based on comparison algorithm and diff. 
operators (data triangulation) using SDI data and physical space 
description (sensed by cameras) as references to elaborate 
geographical rules [27]. The fourth component is the information 
visualization tool. It provides analyzed data in a user-friendly and 

intuitive manner, both in 3D (cameras sensors) and 2D, so the 
data can be effectively used in different situations. 

5. CONCLUSION 
This paper proposes a place-based urban platform that aims to 
facilitate data access, discovery and linkages in a smart city 
context. This wiki-platform is fed both by camera-sensors 
information and citizen-sensors trough their location-based 
network. By sensing urban places’ life, this platform contributes 
to the smart operations of cities. 

The work related in this paper is a work in progress. The platform 
is currently under development and an experimental protocol 
should be designed and applied to urban crisis management by the 
end of this summer. This paper provides illustrations of how to 
proceed to move urban infrastructures and city components 
towards smarter operational modes. Geospatial technologies, 
information and methods are powerful means to smartening the 
world by providing multi-sensing capabilities, building models, 
improving analyses and capacities to understand and react by 
feeding actuating technologies or engaged people.  

But more important for a smart city is its capability to capture the 
sense of places. A city is not a machine, but rather made by 
people local actions and feeling. This could not be captured and 
represented without active citizens sensors (VGI, 
crowdsourcing…) connected to location based-social networks.  

Capturing the sense of places, in a dynamic and 3D way, is then a 
major stake for urban communities that look for a smarter way of 
development. Smart city infrastructure has to be based on an 
Enabled platform for aggregating formal data sensed by device 
sensors and sensible knowledge sensed by citizen sensors. 
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ABSTRACT
This paper introduces a micro-simulation of urban traffic
flows within a large scale scenario implemented for the Greater
Dublin region in Ireland. Traditionally, the data available
for traffic simulations come from a population census and
dedicated road surveys which only partly cover shopping,
leisure or recreational trips. To account for the latter, the
presented traffic modelling framework exploits the digital
footprints of city inhabitants on services such as Twitter and
Foursquare. We enriched the model with findings from our
previous studies on geographical layout of communities in a
country-wide mobile phone network to account for socially
related journeys. These datasets were used to calibrate a
variant of a radiation model of spatial choice, which we in-
troduced in order to drive individuals’ decisions on trip desti-
nations within an assigned daily activity plan. We observed
that given the distribution of population, the workplace lo-
cations, a comprehensive set of urban facilities and a list of
typical activity sequences of city dwellers collected within
a national road survey, the developed micro-simulation re-
produces not only the journey statistics but also the traffic
volumes at main road segments with surprising accuracy.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining, spatial databases and GIS ; I.6.5 [Simulation
and Modelling]: Model Development—modelling method-
ologies

Keywords
urban mobility, spatial choice, location based social net-
works, agent based traffic modelling
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Figure 1: The road network in Greater Dublin re-
gion used for modelling.

1. INTRODUCTION
New opportunities in the study of human mobility arise

from the availability of digital traces of movement such as
the check-in data of location-based social network services
or Call Detail records of cell phone usage. They allow for
uncovering details about urban mobility previously unavail-
able from traditional travel surveys, such as an evidence of a
long-tail in the daily trip distribution indicating that some
individuals cover distances orders of magnitudes larger in
their typical trips than a majority of other users [7]. Check-
in services such as Foursquare [19] or geo-referenced Twit-
ter [21, 20] provide new insights for transportation modelling
by providing quantifiable evidence about the purpose of in-
dividuals’ travel whether for shopping, leisure or recreation,
or meeting friends and visiting family. These activities gen-
erate a considerable amount of road traffic which needs to
be accounted for in transportation models. However, they
are not covered in detail by traditional travel surveys [3] and
rely on perceived rather then measured trip lengths and are
likely to contain biases.
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1.1 Contributions of this work
In this paper we investigate the usefulness of digital foot-

prints of individual movement for calibrating human mobil-
ity models within an urban traffic micro-simulation frame-
work. We implemented a large scale realistic working day
scenario for the Greater Dublin region in Ireland. Partic-
ularly, the presented approach includes the following novel
contributions.

• We introduced a spatial choice model of the radiation
type for selecting destinations of individual trips (Sec-
tion 2.1), with interpretable parameters and a simple
calibration scheme (Section 2.3).

• The model is applied for facility choice based on a
dataset of points of interest and transitions statistics
observed via geo-referenced Twitter messages and Four-
square check-ins in Ireland (Section 2.2).

• Geographical layout of a social network observed in
country-wide cell phone data is used as a proxy for
modelling destination choice of the socially related trips
(Section 2.4).

• The developed methodology is applied for destination
choice in shopping, leisure and socially related journeys
which account for major part of the traffic flows but
are not available from traditional surveys.

• These activities are integrated into a realistic traffic
scenario calibrated on the daily plans generated in ac-
cordance with a census of population, workplace loca-
tions, daily activities and departure times (Section 3),
and validated on the measured traffic volume counts
at major roads in Greater Dublin region (Section 4).

The paper is organised as follows. Section 2 gives an overview
of spatial interaction approaches to urban mobility studies
with particular focus on spatial choice modelling. We de-
scribe the developed adaptation of the radiation model in
Section 2.1, which is then applied within a comprehensive
framework of activity-based micro-simulation of traffic flows.
This framework is built on the MatSim platform [4] and is
described in Section 3. It uses a dataset of places of work
locations to model commute flows. The necessary technical
details on the datasets used in model development are given
in Appendix 1. Our experimental results presented in Sec-
tion 4 show that the proposed spatial choice model produces
accurate estimates of the daytime traffic volumes at major
roads. We highlight and interpret some characteristic traffic
volumes patterns and compare this model to a naive base-
line nearest neighbour method where all individuals choose a
closest facility for their destination. We discuss the possible
origins of the surprisingly accurate predictions in Section 5
which concludes the paper.

2. URBAN MOBILITY
Traditional transportation planning and forecasting frame-

works stem from travel surveys on origin-destination flows
and apply gravity laws [28], intervening opportunities [24],
competing destinations [13] or an overarching constrained
entropy maximisation framework [27] to investigate the trip
distribution. A more flexible approach using activity-based
models, focuses on modelling travel demand based on the
activities that people need to perform in the course of a
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Figure 2: A probability of observing a commute trip,
a phone call or a check-in displacement longer than
x kilometers.

day. This framework is usually implemented in a micro-
simulation system where each agent is assigned an activity
chain and performs destination choice in the context of this
agenda. Meanwhile, the mobility of individuals is still rel-
atively unexplored within these frameworks. Empirical evi-
dence confirms that regular commute is a dominating mobil-
ity pattern [23], which also governs occasional fluctuations
as people tend to arrange their travel plans by considering
accessibility and convenience with regard to their primary
locations such as home and work. This rational paradigm
and availability of digital footprints opens new ways to en-
rich activity-based models in transportation modelling and
urban planning. Facility choice thus becomes a key element
of the model performance.

Attempting to predict the locations where people travel
for work, recreation, shopping and to live is a significant
challenge with a long research history. Both professionals
and academics have carried out considerable work over the
last century in dealing with this challenge and many posi-
tive findings have emerged. Factors that are taken into con-
sideration regarding the choice of location include: travel
distance and time, size of the store or facility, range of prod-
ucts or services and overall quality and price considerations.
Models of estimating residential location choice include var-
ious logit models [2, 16, 10]. In modelling the choice of
leisure facilities some recent developments are based on hol-
low space time prisms which are derived from leisure trip
length statistics [14].

2.1 Radiation model of spatial choice
The radiation model [22] is inspired by the theory of in-

tervening opportunities [24] and applies emission-absorption
ideas to compute probabilities of interactions for a set of ori-
gins and destinations of known capacities. It is a destination-
constrained parameter free model where distance decay is
replaced with rank-based decay similarly to intervening op-
portunities. We applied this idea at an individual level to
derive a probability of choosing a particular facility from a
set of facilities of the given type with known capacities.

In our model we assign every individual an emission thresh-
old zi which determines a minimum level above which a par-
ticular driving trip will become worthwhile. For example, in
case of shopping destination choice process, an individual
with a large threshold z who is planning a shopping trip
would have high or perhaps very specific demands which
would have to be overcome and so is less likely to be ab-
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sorbed by a nearby facility or shop. We assume there is
some preselected distribution which describes this demand,
p(z). As there is no information on which kind of shopping
trip an individual plans to undertake, we consider that a par-
ticular location choice of an individual at location i is based
on the probability Pmi(z) that a maximum threshold drawn
from p(z) after mi repetitions is equal to z. Suppose that
each possible destination facility at location j has a certain
probability to satisfy that demand Pnj (> z), which is given
by a maximum threshold extracted from p(z) after nj repe-
titions, where nj is the capacity of a facility at j. We must
also account for the probability that none of the intervening
facilities could absorb the traveller Psij (< z) where sij is
the total facility capacity in a circle centred on i of the ra-
dius equal to the distance between locations i and j. Then,
the probability that a person at location i with a demand
threshold mi makes a trip to a facility at j with capacity nj

and no other closer facility, is given by

P (1|mi, nj , sij) =

∫ ∞

0

dzPmi(z)Psij (<z)Pnj (>z), (1)

We perform the integral in a similar fashion to the radiation
model [22] and find

P (1|mi, nj , sij) =
minj

(mi + sij)(mi + nj + sij)
. (2)

In our adaptation we aimed at a model where an unknown
distribution p(z) of the demands of individuals deciding to
commence a car trip can be integrated out.

2.2 Mobility data
The movement dataset we used to model shopping, leisure

and recreation trips is a combination of Twitter data col-
lected in [20] and an Irish subset of the Foursquare dataset
described in [8]. It contains a total of 107218 check-in events
posted by 5287 unique users. Characteristic trip lengths
contained in this dataset as compared to commute distances
and call lengths are presented in Figure 2. Other summary
statistics plots including temporal descriptors of users activ-
ities and their mobility are presented in Figure 5. We use
this data to assess the parameters of the characteristic trip
length for non-working activities.

2.3 Facility choice and parameter fitting
In contrast to the original radiation model where the in-

puts are the known populations of the origin and destination,
we have a quantity mi which relates to the choice of facilities
in a region. Good quality public datasets on facility capaci-
ties are not readily available. We can make some estimate of
our parameter mi for a given region from the user-inputted
data on OpenStreetMaps, but the overall coverage of this
dataset is somewhat sparse. Instead we have found that we
can substitute the mi for a given location with an average
facility choice mopt for the entire region. We have devised
a simple method to determine the optimum value for this
parameter (Figure 3). The facilities are ranked according to
the distance to the trip origin and for each facility we use the
radiation model (2) to find the probability that a trip to the
facility will be made. The data clearly show a long tail, con-
firming that longer trips to lower capacity facilities become
increasingly unlikely. In trying to find a good value of m we
see that if we set it too large, m > mopt, this implies the high
or specific demand which can not be satisfied by nearby fa-
cilities and indeed it can be seen in Figure 3 the probability
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to undertake a trip to a distant facility is significantly in-
creased. Conversely, if m is too small, an individual is much
more likely to make a trip to a nearby facility. The optimal
value of the parameter mopt is found by minimising the dif-
ference between the rank cumulative probability as found by
the radiation model and the observed data. The trip length
distributions resulting from a facility choice dictated by a
radiation model are shown in Figure 4. Again, it is seen
that the m < mopt results in a shorter average path length,
and conversely for m > mopt. The optimal mopt reproduces
the trip length distribution which we find from a database
of check-ins. An example of the theoretical analysis of the
trip length distribution under generic multiplicative spatial
choice models can be found in [25].

2.4 The geography of social networks
Empirical evidence [3, 21, 9] suggests the importance of

social influence on the formation of atypical patterns of mo-
bility. People visit family members or friends, and join them
in recreation, leisure, tourism or shopping trips. It was ob-
served that a probability of befriending a person is inversely
proportional to the number of closer people, i.e. a spatial
rank of the person [18]. Social networks also possess distinct
community structure which often show geographical pat-
terns both at inter-city [11] as well as intra-city scales [26].
One can use the characteristic distances and geographical
layout of these interactions as a proxy for socially related
travel such as journeys to visit friends and family.

The geographical layout of the major communities de-
tected in a cell phone communication network in Greater
Dublin area is presented in Figure 6 (taken from [26]). The
community structure is clearly influenced by the underly-
ing geography. Given that it is much more likely to observe
social links between members of a community than across
different ones, we have simulated a social network for the
population of the agent which reproduces the characteristic
link length distribution, node degree and community struc-
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Figure 5: Empirical CDF for the observed check-ins
dataset show lack of power law tails due to limited
sampling time, relatively low number of messages
registered per user, and bounded geographical area
of observation.

Figure 6: Geographical layout of the major commu-
nities detected in a cell phone comunication network
in Greater Dublin area [26].

ture which we find in the communication network. We will
present further details on this social network generation al-
gorithm elsewhere, and instead show the resulting statistics
of the network in Figure 7.

3. TRAFFIC SIMULATION
Agent-based micro simulation is an effective way to model

and predict traffic. In this approach, each agent is con-
sidered as an individual with an ability to make their own
decisions and manage their daily activities to get the great-
est return. MATSim [4] and SUMO (Simulation for Urban
MObility) [6] are two examples of software frameworks im-
plementing agent-based traffic simulations.

In MATSim each agent is assigned a plan which represents
the desires of that agent for the day, for example, one desire
is the departure time for work. The plan is altered through
different iterations of the simulation in order to maximise
an individual agent’s utility score. Travelling is seen as
having a negative or neutral score whereas spending time
at home has a positive score. Each iteration tries to min-
imise travel time to increase the overall utility score. The
iterations should continue until the system has reached a
relaxed state, known as a Nash Equilibrium where future it-
erations will produce little improvement in the utility scores
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Figure 7: A histogram of a social tie length (left)
and a node degree (right) of the simulated social
network.

of agents. The variables which MATSim can alter during
iterations are the departure time, the route choice and op-
tionally, the location choice for secondary activities, such as
leisure and shopping [14]. Route choice is determined us-
ing the A-Star algorithm [17], while time choice is achieved
using local random mutation [5].

Activity chains, which represent the sequence of activities
undertaken by individuals, are a key input for micro simu-
lations. Generally they are derived from data recorded from
travel surveys and reveal patterns of activities that people
carry out on a normal day. For example, the percentages
of people who travel to a shop immediately after work can
be calculated and integrated into traffic simulations in order
to predict which shopping locations will receive which por-
tions of the road traffic. MATSim has been used by Horni
et al. [14] in this way. By combining data from the Swiss
census regarding work, education and home locations of cit-
izens, with a activity chains collected by the Swiss National
Travel Survey, traffic flows were produced for an average
day. Originally MATSim employed an entirely time based
utility function to calculate where individuals could travel
within the time allocated for shopping trips, however this
was discovered to be insufficient. Therefore, the model was
extended to consider further variables such as shop size or
the density of shops in a given area [14].

3.1 Implementation
We use MATSim to generate a traffic simulation for the

Greater Dublin Area and compare two location choice mod-
els in the simulating traffic flows. One approach considers a
nearest neighbour algorithm while the other uses a variant
of the radiation model detailed in Section 2.1. MATSim has
specific data requirements, including the road network and
agent plans for the study area. Below, the details of the
how this data was prepared for the simulation of traffic in
the Greater Dublin Area are provided.

3.1.1 Network
MATSim requires a network consisting of nodes and links.

The nodes represent road intersections while the links are
the road segments joining these intersections. Using tools
provided by MATSim, the OpenStreetMap(OSM) road net-
work for Dublin was extracted and transformed into the ap-
propriate structure. All roads in an area of approximately
200kms squared around Dublin City were extracted from
OSM, Figure 1. Additionally, all major roads (national
routes and motorways) in Ireland were obtained. Additional
information provided by OSM including the speed limits,
class of road and type of road were also obtained. This per-
mits the simulation to determine the flow capacity of road
segments which is used in route choice.
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Figure 8: Home (left) and work (right) locations.

Figure 9: A close up view on home (left) and work
(right) locations highlight a typical segregation of
residential areas and industrial zones.

Figure 10: Locations of facilities in the area. The es-
timated capacities are denoted by circle size (largest
correspond to major shopping malls).

3.1.2 Population and Demand
MATSim also requires a population, which it will model.

The population represents the home and work locations of
individuals within the study area. The locations are shown
in Figure 8. Figure 9 highlights the contrast between a res-
idential and industrial area. Additionally each individual
needs to have a plan, which consist of the desired activi-
ties they will perform during the day. The plans or activity
chains which include the sequence and duration of activi-
ties represent the demand on the network. Further details
on the datasets used within the micro simulation framework
are given in Appendix 1. One important aspect of creating
the demand is the choice of location where activities will
occur.

3.2 Facility choice implementation
The location of various activity types (schools, gyms, pubs,

restaurants, shops, etc.) were extracted from public datasets
including the OSM and a points of interest database of an
in-car GPS navigator. Additionally, the capacity of each of
these facilities was estimated. The resulting facilities are
shown in Figure 10 where the size of the circle on the map
represents the capacities. This formed the input for deter-
mining the location choice during the generation of the day
plan for each agent. The plans were assigned according to
the survey as described in Appendix 1 and contained the
following activity types: school/education, shopping, per-
sonal business, visiting family/friends, social/entertainment,
sport/leisure, and doctor/medical facility. The radiation
model was applied for each individual choice over all alterna-
tives amongst the facilities of a given type. That is, the same
model was applied both at a strategic choice (a school’s loca-
tion) and a tactical choice level (a pub or a restaurant). For
a social visit, a location to visit was assigned by sampling a
home or work location of a friend from the simulated social
network (Section 2.4). In addition to the radiation model for
location choice described in Section 2.1, a nearest neighbour
location choice was used as a näıve baseline approach. This
model randomly selects a facility within a 4km threshold of
the agents’ current or future location. A sample of 50,000
individuals was randomly selected from the available data
for home and work locations. In total 50 route replanning
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Figure 11: Traffic volume counts and simulation results for location 1.

Figure 12: Traffic volume counts and simulation results for location 2.

iterations of the simulation were used.
MATSim outputs several pieces of data which are useful

to assess the effectiveness of the simulation. Firstly an ani-
mation which shows the movement of the 50,000 agents over
the road network can be rendered to assess traffic volumes
at different periods of the day. The total distance travelled
and trip duration of individuals is also produced. Finally,
count data which shows the number of cars passing each
road segment (link on the network) for each hour of the
day is provided and served as a key validation measure for
assessing the model performance.

4. RESULTS
The count data obtained with a simulation is compared to

observed count information provided by the National Roads
Authority (NRA) in Ireland which counts traffic using hard-
ware embedded in road surface at specific locations. We
have aggregated hourly average volumes for a typical work-
ing day over a summer period of 2006. Figure 14 shows a
summary of the volume of cars using each road segment on
the network during a 24 hour period returned by the simu-
lation with radiation location choice. Not surprisingly, the
motorway (M50 motorway) which surrounds the city sees
the highest volume of traffic and so is assigned the darkest
colour. Figure 14 also shows the physical location of all NRA
count stations used to validate the simulation and highlights
the three (labelled 1 - 3) that are presented in the paper in
Figures 11-13. These were chosen due to their diverse ge-
ographic locations. The count information for these count
stations was extracted from the data returned by MATSim.
As 50,000 agents represents approximately 10% of vehicu-
lar traffic, the counts were scaled appropriately. The re-
sults were plotted alongside the mean NRA observed count
data which were calculated by averaging the count data for
weekdays (Tuesday to Thursday) from the published count
statistics.

Figures 11 to 13 show the count data for each count sta-
tion. All the graphs emphasise the importance of location
choice for secondary activities. The nearest neighbour ap-
proach (dashed line) successfully detects the time of day that

the morning and evening peak in traffic occurs. This is due
to the fact that home and work locations are obtained from
census data. For the remainder of the day when secondary
activities are occurring, the nearest neighbour model signifi-
cantly underestimates the volume of traffic as individuals fail
to travel for better opportunities and instead select activity
locations which are in close proximity to them.

This is in contrast to the radiation model (solid line) which
produces accurate count data throughout the day. Signifi-
cantly, the volumes at the morning and evening peaks occur
within 2 standard deviations of the mean observed counts
for traffic on the M50 motorway (Figures 12,13). Similarly
for the remainder of the day, the volume closely follows the
mean observed count data. Figure 11 shows the count data
for station 1 which is on the M4 motorway that connects
Dublin to cities in the West of Ireland. Here, the peak
for the morning out-bound traffic appears later than the
observed mean values and the evening peak for in-bound
traffic appears absent. This anomaly can be explained by
the experiment set-up in which only individuals working in
Dublin are considered. The simulation does not capture
those that live in the Greater Dublin Area and work outside
the city. Therefore this road is underused in the morning
for out-bound commuter traffic and likewise in the evening
for in-bound traffic.

5. CONCLUSIONS
It is not uncommon to observe the accuracy of models

and the forecasts of volumes within 40% interval of the mea-
sured flows [12], and the observed fit can be considered as
surprisingly good for a generic approach undertaken in this
study. A major impact on the quality of the results is due to
the amount, high detail and spatial resolution of the home
to work data available for the region. Nevertheless, the
newly introduced universal radiation spatial choice model
was shown to perform superior to the nearest facility choice
and was able to reproduce midday traffic volumes at a vari-
ety of major roads. The exact geography of social ties makes
an essential contribution to its performance. We will study
the influence of model components on the traffic system in
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Figure 13: Traffic volume counts and simulation re-
sults for location 3.

more detail. Particularly, we are interested in the impact of
stratification effect that emerges in the coupled considera-
tion of mobility and social influence on facilities choice [15].
Also, the simulated volumes will be increased to the levels at
which the impact of congestion on the route and destination
facility choice can not be neglected.
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Appendix 1.
The population data was obtained from the Irish National
Census which is conducted every five years. The most recent
census was conducted in 2011, however as the data is still
being collated, the 2006 Census was used for generating the
Dublin Simulation. POWCAR (Place of Work - Census of
Anonymised Records) is a subset of the full census which
provides the home location and work location of individuals,
the mode of transport used to commute and the time at
which individuals leave their residence. The home location
is anonymised by giving it at an electoral division level while
the work location is presented a 250 metre grid level. The
time of departure is presented as discrete 30 minute intervals
for the morning period and several modes are encoded in the
means of transport.

To simulate movement within the Greater Dublin Area,
individuals whose place of work is within the Dublin are
extracted. Furthermore, only those who use a private car
or van to get to work are considered. For finer grained
location data, we assign each individual in the POWCAR
dataset buildings to represent their home and work loca-
tions. GeoDirectory, a commercial database, which contains
the location of every building in Ireland was used. The
database contains the coordinates of buildings, the electoral

division they are in and the class of building (commercial,
residential or both). Using this database, each individual
is assigned a random residential building in their electoral
district and a random commercial building with a 250 me-
tre buffer of the work location declared in the POWCAR
dataset. This data was combined with the departure time
information. For the discrete values, a random time instant
in the 30 minute departure segment was selected.

The demand is represented by activity chains and day
plans collected via The Irish National Travel Survey (INTS)
[1]. This Survey was carried out in 2009 as part of the
Quarterly National Household Survey. Over 7000 partici-
pants were randomly selected and issued with a travel diary
to record all journeys for a period of twenty four hours on a
day that was allocated to them. The information gathered
included journey origin and destination type (home, work,
school, etc.), time of departure and arrival, mode of trans-
port, purpose of trip, distance travelled and the time of each
journey.

Activity chains, with durations were extracted from the
INTS and relative frequencies of all travel sequences were
calculated. This enabled a probability to be applied to each
one so that for each individual in the POWCAR dataset,
a day plan was generated. Once the sequence of events is
determined, the duration of the activities needs to be defined
by randomly selecting from all of the durations associated
with the specific activity chain that has been chosen.

6. REFERENCES
[1] National Travel Survey Report. Central Statistics

Office, Government of Ireland, 2009.

[2] J. Abraham and J. Hunt. Specification and estimation
of nested logit model of home, workplaces, and
commuter mode choices by multiple-worker
households. Transportation Research Record: Journal
of the Transportation Research Board, 1606(-1):17–24,
1997.

[3] K. W. Axhausen. Social networks, mobility
biographies, and travel: survey challenges.
Environment and Planning B: Planning and Design,
35:981–996, 2008.

[4] M. Balmer, K. Meister, M. Rieser, K. Nagel, and
K. Axhausen. Agent-based simulation of travel
demand: Structure and computational performance of
MATSim-T. ETH, Eidgenössische Technische
Hochschule Zürich, IVT Institut für Verkehrsplanung
und Transportsysteme, 2008.

[5] M. Balmer, B. Raney, and K. Nagel. Adjustment of
activity timing and duration in an agent-based traffic
flow simulation. Progress in activity-based analysis,
pages 91–114, 2005.

[6] M. Behrisch, L. Bieker, J. Erdmann, and
D. Krajzewicz. SUMO - simulation of urban mobility:
An overview. In SIMUL 2011, The Third International
Conference on Advances in System Simulation, pages
63–68, Barcelona, Spain, October 2011.

[7] D. Brockmann, L. Hufnagel, and T. Geisel. The
scaling laws of human travel. Nature,
439(7075):462–465, 2006.

[8] Z. Cheng, J. Caverlee, K. Lee, and D. Z. Sui.
Exploring millions of footprints in location sharing
services. In ICWSM, 2011.

53



Figure 14: The modelled traffic volumes in Greater Dublin region and locations of counters used for model
validation.

[9] E. Cho, S. A. Myers, and J. Leskovec. Friendship and
mobility: user movement in location-based social
networks. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and
data mining, KDD ’11, pages 1082–1090, New York,
NY, USA, 2011. ACM.

[10] N. Eluru, C. Bhat, R. Pendyala, and K. Konduri. A
joint flexible econometric model system of household
residential location and vehicle fleet composition usage
choices. Transportation, 37(4):603–626, 2010.

[11] P. Expert, T. S. Evans, V. D. Blondel, and
R. Lambiotte. Uncovering space-independent
communities in spatial networks. Proceedings of the
National Academy of Sciences, 108(19):7663–7668,
May 2011.

[12] B. Flyvbjerg, M. K. Skamris Holm, and S. L. Buhl.
Inaccuracy in traffic forecasts. Transport Reviews,
26(1):1–24, 2006.

[13] A. S. Fotheringham. A new set of spatial-interaction
models: the theory of competing destinations.
1(15):15–Ű36, 1983.
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ABSTRACT 
Location-based services allow users to perform geo-spatial check-
in actions, which facilitates the mining of the moving activities of 
human beings. This paper proposes to recommend time-sensitive 
trip routes, consisting of a sequence of locations with associated 
time stamps, based on knowledge extracted from large-scale 
check-in data. Given a query location with the starting time, our 
goal is to recommend a time-sensitive route. We argue a good 
route should consider (a) the popularity of places, (b) the visiting 
order of places, (c) the proper visiting time of each place, and (d) 
the proper transit time from one place to another. By devising a 
statistical model, we integrate these four factors into a goodness 
function which aims to measure the quality of a route. Equipped 
with the goodness measure, we propose a greedy method to 
construct the time-sensitive route for the query. Experiments on 
Gowalla datasets demonstrate the effectiveness of our model on 
detecting real routes and cloze test of routes, comparing with 
other baseline methods. We also develop a system TripRouter as a 
real-time demo platform. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – Data 
mining. 

General Terms 
Algorithms, Management, Performance. 

Keywords 
Time-sensitive query, trip recommendation, check-in data. 

1. INTRODUCTION 
Location-based Services (LBS), such as Foursquare 1  and 
Gowalla2, allow users to perform check-in actions that pin the 
geographical information of current location and time stamp onto 
their personal pages. The rapid accumulation of user check-in 
records can not only collectively represent the real-world human 
activities, but also serve as a great resource for location-based 
recommendation systems. Since the user-moving records 
implicitly reveal how people travel around an area with rich 

                                                                 
1 Fouresquare: https://foursquare.com/ 
2 Gowalla: http://gowalla.com/ 

spatial and temporal information, including longitude, latitude, 
and check-in timestamp, one reasonable application leveraging 
such user-generated check-in data is to recommend the travel 
routes. Indeed, much existing work recommends routes using GPS 
trajectories [2][14] or geo-tagged photos [1][4][18].  

In this paper, instead of purely relying on past moving trajectories 
to recommend traveling paths, we propose a novel time-sensitive 
trip route recommendation framework that takes advantage of the 
user-check-in data. We argue that a proper route recommendation 
system should consider the following factors when designing a 
route: 

 The popularity of a place. Popular landmarks by definition 
should attract more visitors.  

 The proper time to visit a place. In general, the pleasure of 
visiting a place can be significantly diminished if arriving at 
the wrong time. Some places have a wider range of visiting 
time while others are constrained to certain particular time 
slots. For example, most people do not want to visit a beach 
during boiling hot noon, but rather arrive in the late afternoon 
to enjoy the sunset scene. Or certain ball game events usually 
take place at particular time period (e.g. in the evening). As 
shown in Figure 1, as derived from the Gowalla check-in data 
described in Section 5,  visitors visit some places with higher 
probability during certain time slots. For example, people 
usually visit the Empire State Building from about 12:00 to 
the mid night (note that this place is famous for its excellent 
night view), (b) people tend to visit the Madison Square 
Garden in the early evening for a basketball game, (c) the 
proper time to visit the Central Park is during daytime, and (d) 
Time Square is preferred from afternoon to midnight. 

 The amount of time required to transit from one place to 
another. The transit time between places is highly correlated 
to visiting the next places at proper time. To find the next 
place with the proper visiting time, we should consider the 
amount of time spent on traveling from the current location to 
the next. For example, one has bought tickets to a football 
game at a stadium 2 hours away. He will logically choose to 
start traveling toward the stadium 2 hours ahead of the official 
kick off time instead of going to a nearby museum 30 minutes 
away.  

 The visiting order of places.  The visiting order of places is 
important as it depends on the nature of places and human 
preference. For example, going to the gym first then going to 
nearby restaurant for dinner is a better plan than the other way 
around since it is unhealthy to exercise right after a meal. 

While some places are extremely sensitive to the visiting time, the 
others (e.g. movie theaters) might not possess such strict 
constraint. An intelligent route recommendation system should 
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consider such diversity and be able to create a route that has 
higher chance of satisfying users’ needs. This paper argues that by 
exploring the check-in data, it is possible to design a statistical 
model to achieve such goal.  

  
(a)                                                  (b) 

  
(c)                                                  (d) 

Figure 1: The distribution of the visiting probability at each 
time unit (hour) for (a) Empire State Building, (b) Madison 
Square Garden, (c) Central Park, and (d) Time Square. These 
distributions are derived from the Gowalla check-in data. 

 
Figure 2: An illustration of recommending a trip route for a 
query located at the star position with the time stamp 10:00 
AM, in Manhattan area, New York City. The goal is to find a 
trip route connecting some check-in locations with the 
consideration of the mentioned four requirements. 

The online check-in data provide plenty of explicit or implicit 
information that allows us to fulfill the abovementioned 
requirements for the sake of planning a proper trip route. First, we 
can derive from the check-in data the number of people who have 
visited a certain place, and thus derive the popularity of places. 
Second, users in LBS tend to perform check-in actions to keep 
track of their trips in traveling days. As a result, we can obtain and 
consider the visiting order of places. Third, the check-in records 
contain the visiting time stamps of locations. Users in LBS are 
able to collectively reveal the proper visiting time of places. 
Fourth, followed by the check-in time stamps from existing routes, 
we are able to have the transit time between places. Equipped with 
such elements, we utilize the check-in data to recommend the trip 
routes. Let us use Figure 2 as an example to elaborate the major 
idea of our time-sensitive trip route recommendation. Assuming a 

certain user starts to travel from his New York City hotel, marked 
with a star in Figure 2, at 10:00 AM. There are several popular 
attractions he/she can visit in a day, including the four famous 
places mentioned in Figure 1. If the user wants to visit all four 
places, a possible trip route consists of going to Central Park first, 
followed by Empire State Building, Madison Square Garden, and 
finally Time Square. 

Formally, the goal of this paper is to construct a time-sensitive 
route from the check-in data. Given a starting location with a time 
stamp as the time-sensitive location query, we propose to find a 
sequence of check-in locations as the trip route, in which each 
location can be visited at the proper time with the proper transit 
time from one place to another in the route. The benefit of such 
time-sensitive trip route is three-fold. First, the user can maximize 
the capability/price value on visiting each place. Second, with the 
suggested transit time, users are able to control their schedule 
more accurately and manage their time effectively. Third, the trip 
planner can recommend users one or more attractions along the 
way. 

We propose a statistical approach with a greedy search algorithm 
to construct the time-sensitive routes with respect to the query. 
The method consists of two phases. In phase one, we measure the 
quality of a route by devising a goodness function, which 
integrates the abovementioned four requirements. In phase two, 
with the query location and time, we greedily find next visiting 
places by optimizing the goodness function. 

We summarize the contributions of this paper in the following. 

 We propose a novel time-sensitive trip route recommendation 
problem using the check-in data in location-based services. 
We fulfill the idea by developing a TripRouter system based 
on the real-world Gowalla check-in data. 

 Conceptually, we argue that a good route should consider four 
elements: (a) the popularity of a place, (b) the visiting order of 
places, (c) the proper visiting time of a place, and (d) the 
proper transit time between places.  

 Technically, we devise a goodness function to measure the 
quality of a route. By exploiting some statistical methods, we 
model the four requirements of a good route into the design of 
the goodness function. In addition, for the given time-
sensitive location query, we develop a greedy algorithm to 
search for the route by optimizing the goodness function. 

This paper is organized as follows. We describe the related work 
in Section 2. Section 3 devises the goodness of a route and 
elaborates the greedy route search algorithm. We evaluate the 
proposed method in Section 4 and demonstrate the TripRouter 
system in Section 5. Section 6 concludes this work. 

2. RELATED WORK 
Route Planning by GPS Trajectory Data. There is lots of 
related work about route planning using the GPS trajectories. J. 
Juan et al. [14] [15] find the fastest routes to a destination. Z. 
Chen et al. [2] and L.-Y. Wei et al. [11] search for popular and 
attractive trajectories for recommendation. Z. Chen et al. [3] find 
the top-k trajectories connecting some user-given locations. H. 
Yoon et al. [13] and Y. Zheng et al. [17] propose the itinerary 
recommendation by considering user preference based on mined 
trajectory attributes. Y. Zheng et al. [16] [17] aim to discover 
interesting and classical travel sequences. L.-A. Tang et al. [10] 
finds the top-k nearest neighboring trajectories with the minimum 
aggregated distance to some query locations. L.-Y. Wei et al. [12] 
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construct the top-k routes which sequentially pass through the 
query locations within the specified time span. Though there are 
many successful proposals to solve different kinds of route 
planning problems, the issues of proper visiting time of places and 
proper transit time between places are never tackled. To achieve 
such goal, this work proposes to generate the time-sensitive trip 
routes using check-in data. 

We use Table 1 to summarize the differences between our work 
and other relevant studies. Here we list some important issues 
about route planning, including: whether it allows the Query of 
certain Locations (QL), and whether it considers the following 
ideas: Popularity (PO), Visiting Order (VO), Visiting Time (VT), 
Transit Time (TT), User Preference (UP), Distance (DI), Travel 
Duration (TD), and Top-k retrieval (TK). 

Table 1: Summarization of differences between this paper and 
other related work. 

 QL PO VO VT TT UP DI TD TK
[14][15]  ∎ ∎   ∎ ∎ ∎  
[2] ∎ ∎ ∎       
[11]  ∎ ∎      ∎
[3] ∎  ∎      ∎
[13] ∎ ∎ ∎  ∎ ∎  ∎ ∎
[16][17] ∎ ∎ ∎   ∎   ∎
[10] ∎      ∎  ∎
[12] ∎ ∎      ∎ ∎
This work ∎ ∎ ∎ ∎ ∎   ∎  

 
Route Recommendation Using Social Media. The rapid rise of 
social media applications generates huge-volume geo-spatial data 
of human activities, such as geo-tagged photos in Flickr and 
check-in records in Foursquare. Both geo-tagged photos and 
check-in data can reveal how people sequentially visit places in an 
area. Using geo-tagged photos, Y. Arase et al. [1] mine frequent 
route patterns for recommendation. A.-J. Cheng et al. [4] propose 
personalized travel recommendation based on personal profiles 
and visual attributes of geo-tagged photos. X. Lu et al. [7] and T. 
Kurashima et al. [6] construct routes based on user preference of 
must-go destinations, visiting time, and travel duration. Z. Yin et 
al. [18] mine and rank trajectory patterns from geo-tagged photos 
and diversify the ranking results. L.-Y. Wei et al. [12] infer the 
top-k routes traveling a given location sequence within a specified 
travel time from uncertain check-in data. Different from these 
work, we aim to perform knowledge discovery to construct the 
time-sensitive routes. 

3. METHODOLOGY 
3.1 Basic Definitions 
Definition 1: Location. A location li is a tuple, li = (xi, yi), where 
xi is the longitude, yi is the latitude. 

Definition 2: Route of Check-in Locations. A route is a 
sequence of locations with the corresponding time stamps, 
denoted by s, s=<(l1,t1), (l2,t2), ..., (ln,tn)>, where n is the number 
of locations. Throughout this paper, we focus on recommending 
single-day route, which implies tn-t1 is no more than 24 hours. 

Definition 3: Time-sensitive Query. We define the Time-
sensitive Query as Q = (lq, tq), where lq is the initial location of a 
user, and tq is the starting time for this trip. 

Definition 4: Time-sensitive Route. Given a time-sensitive query, 
we define the output Time-sensitive Route as a sequence of check-
in locations sr = <(l1,t1), (l2,t2), ..., (lk,tk)>, where l1 = lq, t1 = tq, and 
k is the number of locations in the route, which can be either 

specified  by  users or determined  using existing time constraint 
of the trip.  

In the following we will describe how to measure the quality of a 
time-sensitive trip route. Based on the proposed goodness 
definition, we are able to search and recommend better time-
sensitive routes given an initial time-sensitive query. 

3.2 Measuring the Quality of a Trip Route 
In order to construct a high-quality route for recommendation, we 
need to first design a proper metric to measure the quality of any 
given route.  We propose that a good trip route should consider 
the following four factors: (a) the popularity of a place, (b) the 
proper visiting time of a location, (c) the proper transit time 
traveling from one location to another, and (d) the visiting order 
of places in the route. We attempt to model these factors into the 
goodness function, and utilize such function to greedily selecting 
locations for the construction of the final trip route. 

3.2.1 Route Popularity 
A popular place, by definition, should be somewhere that attracts 
more visitors in general. If a route contains more popular places, it 
has higher potential to satisfy a user. The popularity of a place can 
be represented by the number of check-in actions performed at 
that place. In our goodness measure of a route, we first consider 
the popularity of places in the route. We define the relative 
popularity of a location li as: ݌݋݌(݈௜) = ܰ(݈௜)ܰ௠௔௫ 

where N(li) is the number of check-in of the location li, and Nmax is 
the maximum number of check-in among all the locations in the 
check-in data. Given a route s=<(l1,t1), (l2,t2), ..., (ln,tn)>, we 
define the popularity-based goodness function fpop(s) as: 

௣݂௢௣(ݏ) = ൭ෑ ௡(௜݈)݌݋݌
௜ୀଵ ൱ଵ௡

 

3.2.2 Proper Visiting Time 
The check-in data reveals that while some locations (e.g. park and 
movie theater) are popular regardless of the visiting time in a 
given day, other locations (e.g. stadium and beach) are more 
attractive during certain time period of the day. We propose to 
learn such time-dependent popularity of each location from the 
check-in data. We begin from defining the Temporal Visiting 
Distribution as the following.  

Definition 5: Temporal Visiting Distribution (TVD) of a 
Location. We define a Temporal Visiting Distribution for a 
location l, TVDl (ti), as the probability distribution of a randomly 
picked check-in record of l occurs at time ti. For example, in a 24-
hour span, TVD can be a legal probability distribution shown in 
Figure 3. TVD can easily be learned from check-in data, 
representing how popular a place is at a given time. 

Using TVD, we can determine whether it is proper to visit a place 
at a given time. For example, assuming we want to know how 
well a decision is to visit a place at 8:00AM, given the location’s 
TVD is represented as the green dotted line in Figure 3. To do that, 
we propose to first generate a thin Gaussian distribution ݐ)ܩ; ,ߤ  ଶ (e.g. standard deviation is 1). And then we can transform theߪ is 8 with a very small variance ߤ ଶ) whose mean valueߪ
original task into measuring the difference between the Gaussian 
distribution with the learnt TVD of such location. Here we use the 
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symmetric Kullback-Leibler (KL) Divergence between ݐ)ܩ; ,ߤ  (ଶߪ
and ܸܶܦ௟(ݐ) to represent the fitness of the assignment. The formal 
mathematical definition of a fitness score between a place l and a 
time t can be defined as  ܦ௄௅(ݐ)ܩ; ,ߤ = ((ݐ)௟ܦܸܶ||(ଶߪ ෍ ;ݔ)ܩ ,ߤ ଶ)௫ߪ ݃݋݈ ;ݔ)ܩ ,ߤ (ݔ)௟ܦܸܶ(ଶߪ + ෍ ௫(ݔ)௟ܦܸܶ ݃݋݈ ;ݔ)ܩ(ݔ)௟ܦܸܶ ,ߤ  (ଶߪ

Conceivably, a smaller KL value indicates better match between 
the assignment and the distribution learned from data. 

Consequently, we formally define the temporal visiting goodness 
function fvisit(s) of a route s=<(l1,t1), (l2,t2), ..., (ln,tn)>, as a 
combination of the popularity of places together with the fitness 
of each location over time, in the following equation. 

௩݂௜௦௜௧(ݏ) = ൭ෑ ;ݐ)ܩ௄௅൫ܦ ,௜ݐ ൯(ݐ)௟೔ܦܸܶ||(ଶߪ × ௡(௜݈)݌݋݌1
௜ୀଵ ൱ିଵ௡

 

If the places in a route s are visited during the proper time period, 
the ௩݂௜௦௜௧(ݏ) value would become higher. 

 
Figure 3: Examples of the temporal visiting distribution (TVD) 
(the green dotted curve) for a certain location li, and the 
duration distribution (DD) (the blue dashed curve) between 
location li and lj. The black solid curve represents a normal 
distribution of a particular time assignment to measure the 
fitness values. 

3.2.3 Proper Transit Time Duration 
To schedule a good trip route, another key element to be 
considered is the visiting time of each place as well as the transit 
time from one place to another. Although the check-in data cannot 
explicitly tell us the above two kinds of information, we can 
simply treat the duration between two checked-in places as the 
summation of the visiting time of the first place plus the 
transportation time from the first to the second place. Such 
duration can further be utilized to evaluate the quality of a trip. 
Here we propose the Duration Distribution, as defined in the 
following, to model such ‘visiting plus transit time’ between 
places. 

Definition 6: Duration Distribution (DD) between Two 
Locations. We define the Duration Distribution (DD) between 
locations li and lj as the probability distribution over time duration 
t, ܦܦ௟೔௟ೕ(ݐ), which can be obtained from the following random 

experiment: randomly pick two consecutive check-in records (li, 
ti), (lj,tj) of a person, and calculate the probability that tj-ti=t.  

Again, we consider only one-day trip, and therefore treat the 
outcome space of DD between hours 0 through 24. For example, 
any legal probability distribution between hours 0 through 24 can 
be a DD (e.g. the blue dashed line in Figure 3).  

Similar to what we do to TVD, given a pair of locations li and lj 
together with an assignment of a given duration ∆ among them, 
we can model ∆ as a thin Gaussian distribution and compare it 
with ܦܦ௟೔௟ೕ(∆) using symmetric KL divergence. Consequently, for 
a route s=<(l1,t1), (l2,t2), ..., (ln,tn)>, it is possible to know how 
good the route is based on the durations between places by 
defining a goodness function of duration: 

ௗ݂௨௥௔௧௜௢௡(ݏ) = ൭ෑ ;ݐ)௄௅൫݃ܦ ∆௜,௜ାଵ; ,௜݈)ܦܶܮ||(ଶߪ ௝݈)൯௡ିଵ
௜ୀଵ ൱ ିଵ௡ିଵ

 

A route s with higher value of fduration(s) indicates such route can 
be visited with proper “transit+staying” time between places. 

Here we use Figure 4 as an illustration to summarize our idea of 
utilizing TVD and DD to measure the goodness of a trip route. 
Given a route s=<(l1,t1), (l2,t2), ..., (ln,tn)>. We use symmetric KL 
divergence to measure the visiting fitness of each location li by 
calculating a DKL(li) value between TVDli and a narrow Gaussian 
distribution. We also use KL divergence to measure the fitness of 
each transition li→lj and derive a DKL(Δij) between ܦܦ௟೔௟ೕ  and a 
thin Gaussian distribution. Eventually we compute the geometric 
mean of such DKL values to be the time-related route goodness. 

 
Figure 4: For a route s=<(l1,t1), (l2,t2), ..., (lk,tk)>, we compute 
2k-1 values of KL-divergence and then take the geometric 
mean of such values as the time-dependent goodness of a route. 

3.2.4 Proper Visiting Order 
Due to the characteristic of each place, there might be certain 
latent patterns about the order of the places to be visited. With the 
check-in data, we are able to learn such orders and exploit them to 
evaluate the quality of a route. For example, going to restaurant 
for dinner and then going back to hotel is better than the other 
way around. In this section, we propose to exploit the idea of the 
n-gram language model to measure the quality of the order of 
visits in a trip route. Using the check-in corpus, we can first 
generate the n-gram probabilities of locations. Then, given a route 
s=<(l1,t1), (l2,t2), ..., (ln,tn)>, we can compute its n-gram 
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probability. We consider such n-gram probability as the goodness 
of visiting order. Technically, we use the average value of the 
probabilities of uni-gram, bi-gram, and tri-gram to estimate the 
goodness of orders. Note that the uni-gram probability is 
corresponding to the popularity-based route goodness. We can 
formally write the probabilities as follows. 

௨ܲ௡௜(ݏ) = ௣݂௢௣(ݏ) 

௕ܲ௜(ݏ) = (ܲ(݈ଵ)ܲ(݈ଶ|݈ଵ)ܲ(݈ଷ|݈ଶ) ⋯ ܲ(݈௡|݈௡ିଵ))ଵ௡ 

௧ܲ௥௜(ݏ) = (ܲ(݈ଵ)ܲ(݈ଶ|݈ଵ)ܲ(݈ଷ|݈ଵ݈ଶ) ⋯ ܲ(݈௡|݈௡ିଶ݈௡ିଵ))ଵ௡ 

Therefore, the goodness of visiting order of a route can be defined: 

௢݂௥ௗ௘௥(ݏ) = ൫ ௨ܲ௡௜(ݏ) + ௕ܲ௜(ݏ) + ௧ܲ௥௜(ݏ)൯3  

Higher forder(s) value represents better quality of route. Note that 
we utilize the add-one technique for smoothing. 

3.2.5 Final Goodness Function 
Here we integrate the goodness measures of the proper visiting 
time, the proper transit time duration, and the proper visiting order 
into the final goodness function f(s). The final goodness function 
contains two parts. The first part is the average value of the 
temporal visiting goodness fvisit(s) and the location transition 
goodness fduration(s). The second part is the visiting order goodness 
forder(s). We use a parameter α ∈ [0,1]  to devise a linear 
combination of such two parts. The final goodness function f(s) is 
defined in the following. ݂(ݏ) = α × ቆ ௩݂௜௦௜௧(ݏ) + ௗ݂௨௥௔௧௜௢௡(ݏ)2 ቇ + (1 − α) × ௢݂௥ௗ௘௥(ݏ) 

A route s with higher value of f(s) will be considered as a better 
route. Experiments in Section 5.3 suggest α ≈ 0.9  being more 
effective on measuring route quality. Such result exhibits the 
usefulness of the proposed time-sensitive route recommendation. 

Algorithm 1. TimeRoute algorithm 
Input: (a) ܴܤܦ݁ݐݑ݋: routes extracted from the check-in data; 
(b) ܳ = (݈௤,  ;௤): the time-sensitive location queryݐ
(c) ݇: the number of locations in the final route. 
Output: a time-sensitive route ݏ௥ = 〈(݈ଵ, ,(ଵݐ (݈ଶ, ,(ଶݐ … (݈௞, .〈(௞ݐ
௥ݏ :1 = 〈(݈ଵ = ݈௤, ଵݐ =  .〈(௤ݐ
2: for ݅ = 2 to ݇ do: 
௜ܥ     :3 = ሼ݈௖|݈௜ିଵ → ݈௖ in ܴܤܦ݁ݐݑ݋ሽ. 
4:     ௠݂௔௫ = 0. 
3:     for each ݈௖ ∈  :௜ doܥ
௧௠௣ݏ         :4 = ௥ݏ + 〈(݈௖,  .〈(௖ݐ
5:         Compute the goodness ݂(ݏ௧௠௣). 
6:         if ݂(ݏ௧௠௣) > ௠݂௔௫ do: 
௥ݏ             :7 =  .௧௠௣ݏ
8:             ௠݂௔௫ =  .(௧௠௣ݏ)݂
9: Return: ݏ௥. 

 
3.3 Greedy Algorithm TimeRoute 
In this section, we formally describe the problem of time-sensitive 
trip route recommendation based on the proposed goodness 
measure. And then we propose a greedy algorithm, TimeRoute, to 
construct the time-sensitive routes for a given query. 

Problem Definition. Given (a) the routes extracted in the check-
in data, (b) the time-sensitive location query Q = (lq, tq), and (c) 

the number k of locations in the final route, the goal is to construct 
a route sr=<(l1=lq,t1=tq), (l2,t2), ..., (lk,tk)> to optimize f(sr). 

To solve this problem, we devise a greedy algorithm, TimeRoute, 
to achieve the local-optimal solution. The basic idea is to select 
next place based on the goodness function f(s). Starting from the 
query location (line 1 in Algorithm 1), when selecting next 
location li (i >2), we first identify a set of candidate locations Ci 
by collecting locations which have been ever followed by li (line 
3). Then for each location in the candidate set ܥ௜, we select the 
candidate lc with the maximum goodness value given the existing 
route, and append it to the final route sr. (line 4-8). Such 
procedure will terminate when k spots are identified in the route. 

4. EXPERIMENTS 
4.1 Dataset and Data Analysis 
We utilize the Gowalla dataset [5] which has been exploited for 
location-based analysis in several places, such as [8] and [9]. The 
Gowalla dataset contains 6,442,890 check-in records from Feb. 
2009 to Oct. 2010. The total number of check-in locations is 
1,280,969. Considering a route as a sequence of check-in 
locations of a user within a day, we construct the route database 
RouteDB containing 2,605,867 routes, among them 1,469,130 has 
only length one and are not used. The average route length is 4.09, 
without considering length-1 routes. Figure 5 shows the 
distribution of the route length, which is highly-skew and heavily-
tailed. Figure 5 also shows that people usually do not prefer 
visiting too many locations in a day, but with some exceptions. 
Figure 6 shows the distribution of the time duration between two 
places. It indicates that people consider places closer to where 
they are when they are planning the next destination. 

 
Figure 5: Distribution of route length in RouteDB. 

 
Figure 6: Distributions of time duration in RouteDB. 

Table 2: The statistics of RouteDB and the three subsets. 

 Total Number 
of Check-ins

Avg. Route  
Length 

Variance of 
Route Length

Distinct Check-
in Locations

RouteDB 6,442,890 4.09 48.04 1,280,969 
New York  103,174 4.46 71.24 14,941 
San Francisco 187,568 4.09 58.36 15,406 
Paris  14,224 4.45 75.73 3,472 
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From RouteDB, we extract three subsets of the check-in data, 
which corresponds to cities of New York, San Francisco, and 
Paris. Some statistics are reported in Table 2. We can find the 
average route lengths and their variance in New York and Paris 
are significantly longer than average. Figure 7 shows the 
distribution of route length in the three subsets of check-in data 
while Figure 8 shows the distribution of the time duration.  

 
Figure 7: Distribution of route length for three cities (hour). 

 
Figure 8: Distribution of time duration for three cities (hour). 

4.2 Evaluation Plan 
In this section, we introduce two evaluation plans for verifying the 
performance of our proposed method using the data in these three 
cites, and compare the results with several baseline methods. 

Experiment 1: Pair-wise Time-sensitive Route Detection. In 
this experiment, we would like to verify whether our goodness 
model can rank the existing routes higher than the non-existing 
ones. We first randomly choose one thousand real routes from the 
check-in data. Note that the time stamp is associated with each 
location l. For each route, we replace a portion of the locations 
with other locations in the city to generate a pseudo route. To 
make the task non-trivial, we adopt a replacing strategy to replace 
a location with a ‘plausible’ one instead of a randomly selected 
one. That is, to replace a location at position i of a route, we only 
choose from candidate locations that once appear right after the 
location at position i-1 (e.g. the bigram probability of them is non-
zero) instead of simply picking a random location. Furthermore, 
after the replacement, we want to make sure the generated pseudo 
routes do not exist in the database. That is, there is no such route 
in the database of the same location sequences together with the 
same associated time stamps. As can be seen in Figure 11 to 13, 
the amount of replaced locations varies from 10% to 50% of the 
total number in a route. We then use our fitness model to examine 
each pair of the existing route and its pseudo route, and record 
how frequently our method ranks the correct one higher. Finally, 
we report the accuracy of our method and compare it with the 
baseline results. The accuracy is calculated as the number of 

successfully detected routes divided by the number of pair 
instances. 

Similarly, we can generate another kind of pseudo route by 
perturbing the time stamps of certain locations in an existing route. 
For example, given an existing route s=<(l1,t1), (l2,t2),… (li-1, ti-1), 
(li,ti), (li+1,ti+1),..., (ln,tn)>, we change ti to a different time tj, where 
ti-1 < tj < ti+1. We expect a proper fitness function to assign lower 
score to such pseudo routes.  

Experiment 2: Time-sensitive Cloze Test of Locations in 
Routes. Given some real trip routes with time stamp in each 
location, by removing some middle locations, the goal is to test 
whether a method can successfully identify the removed location. 
Higher hit rate indicates better quality of recommendation. 

Baseline Approaches. To evaluate the effectiveness of our 
method, we design the following four baseline methods for both 
experiment 1 and experiment 2. 

 Distance-based Approach. This method chooses the closest 
location to the current spot as the next spot to move to. It rates 
a route using the goodness function ௗ݂(ݏ) = (∏ ଵ஽(௟೔,௟೔షభ)௡௜ୀଵ )భ౤, 
where ܦ(݈௜, ݈௜ିଵ)  is the geographical distance between two 
consecutive locations. 

 Popular-based Approach. This method chooses the most 
popular spot of a given time in that city as the next spot to 
move to.  It rates the path using the goodness function ௣݂௢௣(ݏ) 
as have been defined previously in Section 3.2.1. 

 Forward Heuristic Approach. The forward heuristic chooses 
a location li that possesses the largest bi-gram probability with 
the previous location ܲ(݈௜|݈௜ିଵ) as the next location to move 
to. Its goodness function is ௙݂௢௥௪(ݏ) = ௕ܲ௜(ݏ) , as defined 
previously in section 3.2.4. 

 Backward Heuristic Approach. The backward heuristic 
chooses a location li that possesses the largest bi-gram 
probability with the next location ܲ(݈௜|݈௜ାଵ)  as the next 
location to move to. The fitness function can be described as ௕݂௔௖௞௪(ݏ) = (ܲ(݈ଵ|݈ଶ)ܲ(݈ଶ|݈ଷ) ⋯ ܲ(݈௡ିଵ|݈௡))భ೙. 

4.3 Experimental Results 
Section 4.3.1 shows the results of Experiment 1 and Section 4.3.2 
illustrates the outcome of Experiment 2. For both experiments, we 
implement four baseline methods to compare with our proposed 
TimeRoute method. 

4.3.1 Pairwise Time-Sensitive Route Detection  
In experiment 1, we first vary the number of replaced locations 
from 10% to 50% and report the accuracy of different methods. 
Figure 9 contains the results for New York City. Our fitness 
model can achieve around 97% accuracy in distinguishing the real 
routes from replaced ones. The accuracy scores of the forward and 
backward heuristics vary from 89% to 93%. The popular-based 
and distance-based methods do not do a good job here. Similar 
trend happens in Paris (Figure 11), but for San Francisco (Figure 
10), our method shows much higher accuracy comparing with 
others. The results are not surprising because our method does 
consider the location preference over time and location order.  

Figure 12 shows the results of creating pseudo paths by shifting 
time stamp for some locations. Again we vary the ratio of change 
from 10% to 50%. The results show that our model can almost 
perfectly detect such change, better than the popularity-based 
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method (around 15% accuracy). The other competitors do not 
have the capability to distinguish such pairs because they do not 
consider time information during route generation, and therefore 
the fitness scores are identical for such pair of routes. 

 
Figure 9: Accuracy by varying the number of replaced 
locations in New York. 

 
Figure 10: Accuracy by varying the number of replaced 
locations in San Francisco. 

 
Figure 11: Accuracy by varying the number of replaced 
locations in Paris. 

 
Figure 12: Accuracy by varying the number of replaced time 
stamp for our method in the three cities. 

4.3.2 Time-Sensitive Cloze Test in Routes 
In cloze experiment of locations in routes, we calculate hit rate by 
varying the position of missing location. Generally speaking, the 
preceding position of missing location obtains lower hit rate than 
latter one because the system can generally do better when more 
information is revealed.  
As reported in Figure 13-15, the hit rates of the four baseline 
models  are often lower than 10% in these three cities, while we 
can achieve 15%~40% hit rate. 

 
Figure 13: Accuracy by varying the position of missing 
location in New York. 

 
Figure 14: Accuracy by varying the position of missing 
location in San Francisco. 

 
Figure 15: Accuracy by varying the position of missing 
location in Paris.  

 
Figure 16: The impact of α on the time-sensitive cloze test for 
the three cities. 
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Impact of α: Next, we examine how sensitive our model is to the 
parameter α, ranging from 0 to 1. We use the hit rate of cloze test 
and the results are shown in Figure 16. In New York and Paris, 
the best α value is around 0.9. That is, much more weight is 
assigned to time-sensitive models than the visiting order on cloze 
test task. In San Francisco City, α performs well while varying 
from 0.5 to 0.9.  

5. SYSTEM DEMONSTRATION 
Using our model, we develop an online time-sensitive trip route 
recommendation system, called TripRouter. The system snapshot 
is shown in Figure 17. Users first determine the city they want to 
travel, and then select one location as their starting location, 
together with the starting time. TripRouter also allows users to 
specify their estimated travel time duration and the desired 
number of locations of such trip. We list the three major functions 
of TripRouter as below: (a) time-sensitive route recommendation, 
(b) displaying diverse information of locations and routes such as 
location attributes, route statistics, and some geo-tagged photos 
obtained from Flickr, and (c) recommending the transportation 
mode by querying Google Map API according to mined transit 
time duration. 

Below we show three recommended routes querying from Central 
Park at different starting time, where the route length k is set as 4.  

 Central Park at 9PM: Central Park (9AM) → New York 
City Center (11AM) → 5th Ave (5PM) → FAO Schwarz 
restaurant (7PM). 

 Central Park at 2PM: Central Park (2PM) → The Museum 
of Modern Art (3PM) → Bergdorf Goodman (4PM) → Lee's 
art shop (7PM). 

 Central Park at 5PM: Central Park (5PM) → 5th Ave (6PM) 
→ Pulitzer Fountain (7PM)  → Four season hotel (8PM). 

The above examples tell us that our TripRouter system is able to 
recommend the best route based on the specified time and location. 

 
Figure 17: The system interface of TripRouter. 

6. CONCLUSION 
This paper tries to address an important research question: how 
much the check-in data can provide in terms of designing a 
suitable trip route. The solution provided by us seems to be very 
encouraging as it shows that one can indeed squeeze a lot of 
knowledge from check-in data to design a time-sensitive trip route 
that has higher potential of satisfying the users. Note that our 
approach is mostly data-driven, which assures diverse results can 
be learned from different cities in which visiting patterns may 

vary with different culture and characteristics of the city. Ongoing 
work focuses on two directions: using maximum likelihood 
estimator to accurately model the visiting time duration of a place 
and transportation time between places, and further exploit the 
collaborative filtering approaches to take advantage of the user 
and location similarities. 
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ABSTRACT 
In recent years, researches on recommendation of urban Points-
Of-Interest (POI), such as restaurants, based on social information 
have attracted a lot of attention. Although a number of social-
based recommendation techniques have been proposed in the 
literature, most of their concepts are only based on the individual 
or friends’ check-in behaviors. It leads to that the recommended 
POIs list is usually constrained within the users’ or friends’ living 
area. Furthermore, since context-aware and environmental 
information changes quickly, especially in urban areas, how to 
extract appropriate features from such kind of heterogeneous data 
to facilitate the recommendation is also a critical and challenging 
issue. In this paper, we propose a novel approach named Urban 
POI-Mine (UPOI-Mine) that integrates location-based social 
networks (LBSNs) for recommending users urban POIs based on 
the user preferences and location properties simultaneously. The 
core idea of UPOI-Mine is to build a regression-tree-based 
predictor in the normalized check-in space, so as to support the 
prediction of interestingness of POI related to each user’s 
preference. Based on the LBSN data, we extract the features of 
places in terms of i) Social Factor, ii) Individual Preference, and 
iii) POI Popularity for model building. To our best knowledge, 
this is the first work on urban POI recommendation that considers 
social factor, individual preference and POI popularity in LBSN 
data, simultaneously. Through comprehensive experimental 
evaluations on a real dataset from Gowalla, the proposed UPOI-
Mine is shown to deliver excellent performance.  

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning; J.4 [Computer 
Applications]: Social and Behavior Sciences 

General Terms 
Measurement, Experimentation. 

Keywords 
Point-Of-Interest Recommendation, Urban Computing, Data 
Mining, Location-Based Social Network, User Preference Mining. 

1. INTRODUCTION 
The markets of Location-Based Services (LBSs) [7] in urban 

areas, including navigational services, traffic management and 
location-based recommendation, have grown rapidly in recent 
years.  Due to the needs of effectively improving smart urban 
living, it is beneficial for these LBSs to be able to recommend 
users Points-Of-Interest (POIs) where they may be interested in. 
Thus, effective and efficient urban POI recommendation 
techniques for LBSs targeting urban mobile users are desirable. 
The intuitive idea for POI recommendation is based on the 
personal check-in behaviors of a user. Although such strategy 
may reflect the personal preference of users, the recommended 
results are always the POIs that the user has been to. Hence, 
nowadays, new breed of item recommendation methods, called 
social-based prediction, have emerged. Such recommendation 
methods usually use the social properties of users, mined from 
the collections of users’ social network, to recommend the 
probably interesting items (POIs) for a user. Figure 1 shows an 
example of social network information, which typically consists 
of social links of end users and some user-generated data (i.e., 
textual information, check-ins, etc.). Among the social-based 
recommendation studies, Collaborative Filtering (CF) techniques 
[12] have been widely used for influence of interestingness of 
item for mobile user. However, they tend to recommend popular 
items which most of similar users (or friends) are interested in but 
might not match individual user’s preference actually. It may lead 
to the sparse data problem [15]. Additionally, these social-based 
recommendation methods only provide the POIs that the user has 
visited. This may also lead to the lost of applicability for 
recommendations. 

Although the issues of social-based recommendation systems 
based on the users’ check-ins have been discussed in the 
literatures, existing studies mostly consider only on the social 
properties of among users [12]. Notice that social links and check-
ins typically reflect users’ living-spheres, e.g., the environment 
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around users. As a result, CF-based recommendations are 
constrained by the users’ living-spheres if only social properties 
are considered. Take Figure 1 as an example, both user A and 
user B favor to drink coffee. Suppose that user A and user B are 
not friends, and user A’s friends always check in some Chinese 
food restaurants. Thus, some social-based Collaborative Filtering 
recommendations would recommend the Chinese food restaurant 
for user A. Additionally, such social-based Collaborative Filtering 
recommendation only consider the POIs that the user or her/his 
friends have been visited. It does not work well when previously 
unvisited POIs are considered. We argue that it is insufficient if 
merely using social links and check-in history to recommend 
POIs. 

The notion of urban computing has been proposed by Zheng et al. 
[18] [19]. To achieve city-wide computing for serving people and 
their cities, Zheng et al. [18] [19] believe that every device, 
person, vehicle, building, and street in the urban area can be a 
sensor to understand city dynamics. Many POIs in Location-
Based Social Network (LBSN) have been labeled with useful 
tags[16][17] such as coffee shop or pizza restaurant, which are 
crucial for assisting users in searching and exploring new places 
as well as for sensing POIs’ properties. Although we also could 
map users’ current position to some POI databases or road 
networks for understanding the tag of POI that the users stay in, 
this process is not work well in an urban area. The reason is that 
the POIs in an urban area are very crowded so that we cannot 
accurately tag the location just by catching users’ positions. 
Figure 2 shows that there are two totally different types of 
restaurants in the same building. Fortunately, we could view each 
user of LBSN as a sensor to detect the semantic tags of POI for 
improving POI recommendation in an urban area. In Figure 1, 
restaurants are tagged with several semantic tags such as Coffee, 
Chinese Food, Pizza, etc. We observe that both user A and B have 
visited coffee shops, implying that their preferences in restaurant 

are very similar. Suppose user B is a loves to have pizza as shown 
in Figure 1. Thus, it is more reasonable recommending the pizza 
parlor than recommending the Chinese food restaurant for user A. 
According to above reasons, we exploit users’ preferences from 
visited POIs to recommend users the POIs of LBSN in an urban 
area. 

To address the above-mentioned problem, we propose a novel 
approach named Urban POI-Mine (UPOI-Mine) for 
recommending users the POIs in urban LBSN based on not only 
social factors but also users’ preferences.  As shown in (1), given 
a set of users U and a set of POIs P, the problem of POI 
recommendation can be formulated as predicting relevance score 
of a given POI for each user, relevance between user’s preference 
and interestingness of POI,. 

]1 [0,  and , , where,),(  vPrUuvpuf  (1)

Hence, POI recommendation in LBSN can be addressed as a 
numerical value prediction problem. While numerical value 
prediction techniques have been developed for many applications, 
such as demographic prediction [4], bio life cycle analysis [10] 
and prediction of geographical natural [3], the problem has not 
been explored previously under the context of urban computing. 
Furthermore, the context-aware and environmental information 
changes quickly especially in urban areas. How to extract 
appropriate features to support the recommendation from such 
heterogeneous data is also a critical and challenge issue. To 
support POI recommendation based on users’ preferences and 
social properties, we address this problem by learning a 
regression-tree based predictor to realize the prediction of 
relevance score. A fundamental issue is to identify and extract a 
number of descriptive features for each place in the system. 
Selecting the right features is important because those features 
have a direct impact on the effectiveness of the prediction task. 
As mentioned earlier, only considering the POIs that the user or 
her/his friends have visited do not work well. Therefore, we 
explore the users’ preference in visited POIs and seek unique 
features of places captured in the users’ preference. 

By dealing with the observations prompted in the above examples, 
we extract features of user-POI pair in three different but 
complementary aspects: 1) Social Factor (SF), 2) Individual 
Preference (IP), and 3) POI Popularity (PP). Features extracted 
from Social Factor, corresponding to a given POI for a user, can 
be derived from all check-ins among the user’s similar friends at 
the POI based on statistical analysis. In this paper, we extract 
check-in-based features (e.g., number of check-ins of friends who 
have a lot of common check-ins with the user) and spatio-based 
features (e.g., number of check-ins of friends whose living area is 
very close to the user) as relevance descriptions of specific POIs. 

To involve the factor of user preference, we extract features from 
Individual Preference to capture the relatedness between users 
and POIs by exploiting the regularity of user check-in activities to 
POIs with the same tag. Since there are two kinds of tags are 
annotated on a POI, we could make good use of Individual 
Preference by deriving descriptive features of a given place from 
its “related” places. To facilitate extraction of features from 
Individual Preference, we build a preference table for each user 
that captures the relatedness between semantic tags and users by 
exploring regularities of user check-ins to the POI with the same 
semantic tag. We propose a family of preference formulations that 
capture the user-highlight and POI-category from the user check-
in activities. 

As mentioned earlier, such check-in data is very sparse. It leads to 
that the features extracted from both Social Factor and Individual 
Preference do not work well for a new user. We employ the 
popularity of POI to make a maximum likelihood estimation of 
the relative  between user and POI. We argue that different types 
of POIs will be visited in different frequencies. For example, 
people may go to coffee shops every day but rarely visit French 
restaurants. Therefore, we normalize the check-ins of POI based 
on its semantic tag for representing its popularity. This popularity 
is thus treated as a feature of POI Popularity, along with features 
derived from Social Factor and Individual Preference, to feed the 
regression-tree model in the proposed UPOI-Mine approach. 

This research work has made a number of significant 
contributions, as summarized below: 

 We formulated the problem of POI recommendation in an 

?
?

?
?

 
Figure 2. A scenario of POI in an urban area.
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urban area as the problem of relevance score prediction. 
This problem has not been explored previously in the 
research community. 

 We proposed Urban POI-Mine (UPOI-Mine), a new 
approach for urban POI recommendation by mining urban 
users’ check-in behaviors. and propose UPOI-Mine to learn 
a regression-tree for estimating relevance score of each 
user-POI pair. In the proposed UPOI-Mine, we explore 
simultaneously the factors namely i) Social Factor, ii) 
Individual Preference, and iii) POI Popularity by exploiting 
the LBSN data to extract descriptive features. 

 We used a real dataset, which was crawled from Gowalla 
(http://www.Gowalla.com/), to evaluate the performance of 
our proposed UPOI-Mine in a series of experiments. The 
results show UPOI-Mine delivers superior performance 
over other recommendation techniques in terms of the 
popular measures NDCG and MAE. 

The rest of this paper is organized as follows. We briefly review 
the related work in Section 2 and provide our urban POI 
recommendation approach UPOI-Mine in Section 3. Finally, we 
present the evaluation result of our empirical performance study 
in Section 4 and discuss our conclusions and future work in 
Section 5. 

2. RELATED WORK 
In this chapter, we review and classify relevant previous studies 
into three categories: 1) Similarity Measurement, 2) 
Recommendation Systems, and 3) Mobility Prediction. 

Similarity Measurement. For solving the problem of data sparse, 
many researches using Collaborative Filtering (CF)-based 
approach or item-based approach to estimate missing values. The 
fundamental problem of CF-based approach is how to evaluate 
user similarity and location similarity. In [12], Ellen Spertus et al. 
proposed six different measures for recommending online social 
networks. The six measures applied cosine distance, mutual 
information measure, TF-IDF and log-odds functions to measure 
the similarity of community.  

Recommendation System. In recent years, rapid development of 
the Internet brings much information and various businesses.  A 
variety of web sites provide huge data of music, images and 
commodity. How to recommend appropriate items to users is a 
critical problem. There are also a number of researches for 
recommendation systems. Traditional recommendation systems 
usually use CF-based method as the main concept. In [6], Tzvetan 
Horozov et al. proposed an enhanced CF solution for personalized 
POI recommendation. Some trust-based approaches such as [9], 
Paolo Massa and Paolo Avesani proposed a trust-aware 
recommender system. The system builds a trust metric and makes 
use of trust information to recommend items.  

In [5], Mohsen Jamali and Martin Ester proposed TrustWalker. 
TrustWalker combines Random walk model and trust-based CF 
approach to predict the ratings of items for users. Trust-based CF 
approach uses trust values and user-to-item ratings to predict the 
item ratings. A trust value is the user-to-user rating. If you think 
someone’s interest is similar with you, you can give this people a 
high trust value. TrustWalker can solve the “cold start problem” 
with the same precision. The content-based recommendation 
systems like [11], Chihiro Ono et al. used Bayesian network 
modeling user preference for recommending movies. Bayesian 
Networks is highly flexibility so it is appropriate for representing 
complex relations between users’ preference and contexts. In [2], 

Souvik Debnath et al. proposed a way to hybrid CF and content-
based recommendation system. The approach can determine the 
weight values of attributes by the linear regression, which 
obtained from a social network. 

Mobility Prediction. A user’s location is completely related to 
his social relations and personal information. LBSN has become a 
popular application. Many users join a LBSN and share their life, 
photo, music and location history with their friends. They also get 
interesting information from their friends. More and more 
researches on location recommendation with social networks have 
been proposed with the development of LBSN. 

In [1], Betim Berjani and Thorsten Strufe proposed Regularized 
Matrix Factorization (RMF) recommender to recommend 
appropriate spots, which mean locations, for users. This research 
used LBSN data that is crawled from a LBSN website, Gowalla. 
RMF recommender is a personalized recommender for places. 
RMF recommender first maps users and spots to a joint latent 
factor space. RMF recommender exploits regularized Singular 
Value Decomposition (SVD) model to predict the ratings of users 
to spots. 

In [13], Kenneth Wai-Ting Leung et al. proposed a Collaborative 
Location Recommendation (CLR) framework based on co-
clustering. This approach considers location, user and activity to 
build Community Location Model (CLM) graph. Then CLR 
approach uses Community-based Agglomerative-Divisive 
Clustering (CADC) algorithms to iteratively merge and divide 
nodes in CLM graph. After clustering users, locations and 
activities by CADC algorithm, it gets refined clusters of similar 
locations which are visited by similar users and have similar 
activities. For clustering CLM graphs, it models the similarity as 
follows: 

 Two users are similar if they have similar activity patterns 
and have visited similar locations. 

 Two locations are similar if they are visited by similar users 
and take place in similar activities. 

 Two activities are similar if they are done by similar users 
and have similar location sequence. 

However, the refined clusters are still too large for 
recommendation. For this reason, this approach classified users 
into three types: Pattern Users, Normal Users and Travelers by 
their entropies of visited locations. Then, this approach can 
recommend locations according different type users. For example, 
for a traveler, the recommender first finds similar travelers to this 
user. Then, the recommender finds the locations, which are 
visited by these similar travelers and have similar activities. 
Finally, the recommender recommends these locations to the user. 

In [14], Ye at el. proposed a CF-based POI recommendation 
framework. This framework fuses user preference influence, 
social influence and geographic influence to infer the check-in 
probability for a given user to visit a POI. This approach also 
exploits a power-law distribution to build the geographical 
influence among POIs and uses CF method to depict user 
preference influence and social influence. 

3. URBAN POI-MINE (UPOI-Mine) 
In the proposed UPOI-Mine approach, we design a two-phase 
algorithm, as shown in Figure 3, to address the problem of user 
check-in behaviors mining for urban POI recommendation. The 
first phase deals with the feature extraction (see lines 1 to 5 in 
Figure 3), while the second phase takes care of the restaurant 
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recommendation (see lines 7 to 11 in Figure 3). The task of 
feature extraction explores three aspects that are discussed in 
Introduction. For a pair of specific user and POI, we explore the 
Social Factor (SF) as population features which abstract the 
aggregated check-ins of the user’s friends. On the other hand, we 
explore the Individual Preference (IP) between users and POIs in 
order to formulate descriptive features of a given user-POI pair. 
Moreover, to overcome the data sparse problem, POI Popularity 
(PP) is considered as a feature in our recommendation model. The 
features derived from Social Factor, Individual Preference and 
POI Popularity are used to learn a regression-tree model for 
predicting relevance score of each user-POI pair in the POI 
recommendation phase. Given a user-POI pair, the prediction by 
the regression-tree model estimates the relevance between the 
interestingness of POI and the user’s preference. After checking 
all POIs, we obtain all qualified POIs for the user under 
examination. 

3.1 Features from Social Factor 
Our goal is to extract discriminative Social Factor features from 
check-ins among the user’s similar friends at the POI. Intuitively, 
aggregating friends’ relative check-ins of POI could be used for 
influencing the probability of that a user likes the POI. Formally, 
given a friend f and a set of POI P, the f’s relative check-ins of a 
POI p is formulated as (2). 


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
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Accordingly, given a user-POI pair (u, p), the features extracted 
form Social Factor could be generally formulated as (3). 
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where F(u) is the set of user u’s friends. 

As mentioned above, we can significantly observe that measuring 
similarity of two users is the key of Social Factor features. 
Intuitively, living sphere of users and their friends could be 
utilized for measure the similarity between users and their friends 

due to the nature of living style and activities offered by their 
living areas. As a result, different similarities, naturally formed in 
aggregated behaviors of friends to various kinds of POI, are 
embedded in the friends’ check-in activities. In a LBSN data, the 
most important information is user’s common check-ins and 
distance among users for user similarity measurement. In the 
following, we propose to extract two population features to depict 
POI as below. 

 Similarity by Common Check-ins (CheckSim) - We employ 
the  χ2 test for testing relation of check-in behaviors of 
Gowalla users and their friends. If the test shows that a 
relationship is significant, it means the user always checks 
in at a POI where her friends are also checked in. Based on 
the observations from the Gowalla dataset, shown in Figure 
4, we find most of users will check in POI, which her 
friends also check in. Hence, the common check-ins is a 
good for measuring users’ similarity. Based on the 
observations, we formulate the similarity of two users as (4). 
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where cos() indicates cosine similarity and vi indicates the 
check-in vector of user i. Take Table 1 as an example, the 
check-in vector of user i is <1, 0, 2, 5, 0>, and the check-in 
vector of user j is <0, 10, 0, 1, 0>. Thus, the CheckSim of 
user i and user j is 
 

Table 1. An example of check-in log. 

Restaurant ID r1 r2 r3 r4 r5 
user i 1 0 2 5 0 
user j 0 10 0 1 0 
user k 1 1 0 0 0 
user l 1 1 1 1 5 
total 3 12 3 7 5 
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 Similarity by Relative Distance (DisSim) - As discussed 
above, most people will check in the place following their 
friends who live nearby them. Based on the idea, this design 
idea of DisSim focuses on the distance between users and 
their friends. To do so, we must first identify users’ living 
areas. We argue that most of a user’s check-in activities will 
happen in her/his living area. Thus, for each user, we find 
out her/his top k frequently visiting POIs and treat the 
central of these POIs as her/his base-point, as shown in 
Figure 5. Accordingly, we formulate the DisSim of two 

Input:   Social Links Set L 
Users’ check-ins C 
POIs P 

Output: relevance score of each pair of user and POI S 
1 Phase 1. Feature Extraction 
2 Feature Set F  
3 F   F∪SF( L, C, P) 
4 F   F∪IP(C, P) 
5 F   F∪PP(P) 
6  
7 Phase 2. Feature Extraction 
8 Training Set T F∪ relevanceScore(C, P) 
9 Regression Tree R M5Prime_Modeling(T ) 

10 Relevance Score  S R( P ) 
11 Return S 

Figure 3. UPOI-Mine algorithm. 

 

 
Figure 4. result of χ2 test. 

base-pointbase-point

 
Figure 5. An example of base-point 
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users as follow. 
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where Distance() indicates the Euclidean distance of two 
base-points and F(u) indicates the set of user u’s friends. 

3.2 Features from Individual Preference 
As mentioned above, we could view each user of LBSN as a 
sensor to detect the semantic tags of a POI for improving POI 
recommendation in an urban area. In Gowalla website, there are 
two kinds of semantic tags, i.e., category and highlight, as shown 
in Figure 6. The category tag is annotated on a place when the 
place is created. Each place just have only one category tag, e.g., 
coffee, pizza, etc. On the other hand, any user (even the user 
never checks in the place) can arbitrarily annotate the highlight 
tag on a place. 

Since the Gowalla will record the count of highlight tag, we could 
generally determine the possibility of that a tag t is annotated on a 
POI p, as shown in (6). 
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where count(t, p) indicates the number of times the tag t is 
annotated on the POI p ,and T(p) indicates the set of  tags of POI 
p. Take Figure 6 as an example, the possibility of that a 
tag ’coffee’ is annotated on a POI is  
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Accordingly, given a user-POI pair (u, p), the features extracted 
form Individual Preference could be generally formulated as (7). 
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where T(p) indicates the set of  tags of POI p. 

We can significantly observe that measuring a user’s individual 
preference of a semantic tag is the key of Individual Preference 
features. Intuitively, users’ check-in history could reflect their 
preference of the type of POI. As a result, for each user, we 
aggregate the number of check-ins of the POI with the same tag to 
represent each user’s personal preference of semantic tag. In the 
following, we propose to extract two features to depict users’ 
preference. 

 Preference in Category (CPref) - Based our observations 
from the Gowalla dataset, users’ check-in activities are 
fluctuated. Some users frequently check in many places, 

and some users  rarely check in at all. Hence, to measure 
individual user’s personal preference of POIs, we need to 
normalize the aggregated number of check-ins by user’s 
total check-ins. Based on above, we formulate a user u’s 
personal preference of a category tag t as (8). 
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where C(t) indicates the set of POIs with category tag t. 
Take Table 1 and Table 2 as an example, the check-in vector 
of user i is <1, 0, 2, 5, 0>. Thus, the user i’s personal 
preference of a category tag A is 
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Table 2. An example of category tag  

Restaurant ID p1 p2 p3 p4 p5 
Category A A B C A 

 
Table 3. An example of highlight tag  

Restaurant ID p1 p2 p3 p4 p5 
Highlight a, b b, c, d a, d a, c g 

 
Note that, as mentioned above, people will annotate highlight tag 
on a place and repeat the annotation many times.  Based on the 
observation, to measure an individual user’s personal preference 
of POIs, we could not directly normalize the aggregated number 
of check-ins by user’s total check-ins. Take Table 1 and Table 3 as 
an example, suppose that we use user’s total check-ins to 
normalize the aggregated number of check-ins, the user i’s 
personal preference of a highlight tag a is 

1
05201
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


   

It is clear that if we use user’s total check-ins to normalize the 
aggregated number of check-ins, the total of personal preference 
of a user will be greater than 1.0 and the scale of total of personal 
preference of a user will be very fluctuated. 

 Preference in Highlight (HPref) – Based on the above 
observation and condition of highlight tag, we use the 
summation of a user’s total check-ins of each highlight tag 
for normalization of the user’s personal preference of POIs. 
To do so, given a set of highlight tags H, we formulate a 
user u’s personal preference of a highlight tag t as (9). 

           

 


 



Ht thlr

thlr

ruCheckins

ruCheckins

tu

' )'(   

)(

),(

),(

),(HPref
 

(9)

where hl(t) indicates the set of POIs with highlight tag t. 
Take Table 1 and Table 3 as an example, the check-in vector 
of user i is <1, 0, 2, 5, 0>. Thus, the user i’s personal 
preference of the highlight tag a is 
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3.3 Features from POI Popularity 
As discussed in Introduction, check-in data is very sparse. It leads 
to the features extracted from both Social Factor and Individual 
Preference does not work well for new users. We employ the 
popularity of POI to make a maximum likelihood estimation of 
the popularity of POI. However, the type of POI always affects 

Restaurant Frank
Category:  Hotdog & Sausages
Highlight:  Coffee(2), Ice Cream(10), Cheese(88)

Restaurant Frank
Category:  Hotdog & Sausages
Highlight:  Coffee(2), Ice Cream(10), Cheese(88)

Counts of highlight

Restaurant Frank
Category:  Hotdog & Sausages
Highlight:  Coffee(2), Ice Cream(10), Cheese(88)

Restaurant Frank
Category:  Hotdog & Sausages
Highlight:  Coffee(2), Ice Cream(10), Cheese(88)

Counts of highlight

 
Figure 6. An example of semantic tag of a POI.
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users’ check-in will. For example, people may buy a cup of coffee 
in a coffee shop everyday but rarely go French restaurant.  Base 
on this idea, we estimate the likelihood by conditional probability 
which is the probability of that users check in the POI given a 
category, so called relative popularity of POI. In the following, 
we propose to extract the feature to depict popularity of POI. 
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where C(t) indicates the set of POIs with category tag t. Take 
Table 1 and Table 2 as an example, the set of POIs with category 
tag A are p1, p2, and p5. The total check-in of POI p1, p2, and p5 
are 3, 12, and 5, respectively. Thus, the popularity of POI p1 is 

15.0
5123

3

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3.4  POI Recommendation 
After the phase of feature extraction, features derived from Social 
Factor, Individual Preference and POI Popularity are used as 
inputs for the POI recommendation phase to learn a regression-
tree model. We choose M5Prime as the relevance score predictor 
because it has shown excellent performance in similar tasks [3]. 
The M5Prime is one kind of regression-trees, but it is not 
constrained by using M5Prime as the regression-tree model. 
When the model is trained, the training data first will be divided 
according to the decreasing of variance of target attribute. Then, 
each piece of training data will be used for building individual 
regression model. Meanwhile, the procedure of dividing training 
data will be recorded to build a decision tree as shown in Figure 7. 
This modeling process is NOT sensitive for bias data. In other 
words, M5Prime is not easily affected by data sparse problem. 

In addition, M5Prime is an automatic and non-parametric model. 
Therefore, it is more convenient to use. Besides, as mention 
earlier, the LBSN data may growth rapidly, thus the efficiency is 
an unavoidable issue we should face. Fortunately, M5Prime needs 
lower run time. In our proposed UPOI-Mine, all user-POI pairs 
are used for building training model by M5Prime, i.e., a POI with 
high relevance score under examination is considered as the 
candidate with high probability that the user may like. A POI 
tends to be automatically recommended to a user if the POI is 
predicted as a high relevant score for the user. 

4. EXPERIMENTS 
In this section, we conduct a series of experiments to evaluate the 
performance for the proposed UPOI-Mine using Gowalla dataset . 
All the experiments are implemented in Java JDK 1.6 on an Intel 
Xeon CPU W3520 2.67GHz machine with 24GB of memory 
running Microsoft Windows win7. We first describe the data 
preparation on the Gowalla dataset and then introduce the 
evaluation methodology. Finally, we show our experimental 
results for following discussions. 

4.1 Gowalla Dataset 
The Gowalla dataset is a check-in dataset collected from Gowalla 
website. The dataset contains 1,964,919 spots, 18,159 users, 
5,341,191 check-ins and 392,246 friend links. We normalize the 
check-in for each user. Then, we use the normalized check-in as 
the ground truth, which is called “relevance score”.  We 
normalize the check-in values into the range [0, 5]. The process of 
normalization is described as (11). 
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where x indicates the real check-in number of a user. “min”, 
“max” and “avg” indicate the smallest, largest and average check-
in number of a user, respectively. Finally, we use the relevance 
score in our proposed UPOI-Mine to evaluate the score of POI 
based on social, location information and user preference factors. 

4.2 Evaluation Methodology  
UPOI-Mine is based on the ranking of POI score and thus can be 
viewed as an information retrieval system if we consider a user as 
a query term. Therefore, we employ the popular measurement 
Normalized Discounted Cumulative Gain (NDCG) [8] to measure 
the list of recommended POIs. NDCG is commonly used in 
information retrieval to measure the search engine’s performance. 
A higher NDCG value for a list of search results indicates that the 
highly relevant items have appeared earlier (with higher ranks) in 
the result list. For each list of recommended POIs, we can obtain 
a score list, where the scores are provided by ground truth. Such 
list is called the relevance vector. For example, suppose that the 
prediction model estimates the relevance scores of POIs F1, F2, 
F3, and F4 are 4, 3, 2, and 1, respectively. Hence, the POIs will 
be ordered as <F1, F2, F3, F4> by recommender. Suppose that 
the relevance score of ground truth for POI list  <F1, F2, F3, F4> 
is G =<2, 3, 0, 1>. That is the relevance scores of F1 and F2 are 2 
and 3, respectively. The Discounted Cumulative Gain (DCG) of a 
relevance vector G is computed by Equation (12). The premise of 
DCG is that the highly relevant documents appearing lower in a 
search result list should be penalized as the graded relevance 
value is reduced logarithmically proportional to the position of the 
result. Here the parameter b is to control where we start to reduce 
the relevance value. For example, if the relevance vector is <2, 3, 
0, 1> and b is set as 3, the DCG[4] is 2+3+(0/log33)+(1/log34). (In 
our experiments, b = 2.) 
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In particular, NDCG@p, measures the relevance of top p as 
shown in Equation (13). 
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where IDCG[p] indicates the DCG[p] value of ideal ranking list. 
For example, given a ranking list of 5 items with relevance as <4, 
1, 3, 1, 1>, the ideal ranking list of this 5 items is <4, 3, 1, 1, 1>. 
NDCG ranges from 0 to 1. The higher NDCG is, the better a 
ranking result list is. In the above example, the NDCG @5 is 
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Figure 7. An example of M5Prime. 
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. 
However, NDCG is not comprehensive, because it only focuses 
on ranking performance avoiding the absolute difference between 
estimated relevance and ground truth of relevance. For example, 
given a ranking list of 5 items with estimated relevance as <5, 4, 3, 
1, 1>, the ground truth of relevance of this 5 items is <4, 3, 2, 2, 
2>. We can observe that NDCG will be 1.0 that means the 
effectiveness of recommender is pretty good. Excepting the 
ranking performance, we also want to examine the how close our 
predictions are to the eventual outcomes. Therefore, we employ 
the Mean Absolute Error (MAE) to measure the list of 
recommended POIs as Equation (14). 
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where fi indicates the estimated relevance scores of POI i and yi 
indicates the ground truth of relevance scores. The lower MAE is, 
the fewer error is. In the above example, the MAE is  
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4.3 Experimental Results and Discussions 
We divide the experiment into two parts: internal experiment and 
external experiments. For the internal experiments, we first 
compare the performance of our social, location information and 
user preference factors. Then, we compare the effectiveness of 
every feature in all of factors. For the external experiments, we 
compare the performance of UPOI-Mine with TrustWalker [5] 
and CF-based model [14] in terms of NDCG and MAE. 

4.3.1 Comparison of Various Features 
This experiment evaluates how each factor and feature performs 
in the proposed UPOI-Mine in terms of NDCG@10 and MAE. 
Figure 8 shows the NDCG@10 value of UPOI-Mine, considering 
social, location information and user preference, respectively. We 
observe that the effect of user preference is better than that of 
other two factors. The result shows that the check-in behaviors of 

user-self still more important than that of friends. However, we 
still can use location information and social factor to provide 
recommendations when the user is new to this LBSN website. 
Figure 9 shows that the MAE is smallest when combining all 
factors. The reason is that the three factors can be complementary 
of one another when regression model is trained. In Figure 10 and 
Figure 11, we compare all features in terms of NDCG@10 and 
MAE respectively. We observed that the effect of category 
feature outperforms other features because the check-in of user-
self is most important. 

4.3.2 Comparison of existing recommender 
This experiment evaluates the performance of our proposed 
UPOI-Mine comparing TrustWalker [5] and CF-based [14] in 
terms of NDCG@10 and MAE. TrustWalker is a trust-based CF 
method. It uses social factor to recommend items to users. CF-
based POI [14] considers geographic influence, social influence 
and user preference influence with collaborative filtering to 
recommend locations to users. Figure 12 shows UPOI-Mine 
outperforms TrustWalker and CF-based POI in terms of 
NDCG@10 and MAE. The reason is that we consider check-in of 
user-self in the factor of user preference while other methods do 
not. We also observe that the MAE of CF-based POI is large, as 
shown in Figure 13. CF-based POI only considers the common 
check-in of two users when computing social influence and user 
preference influence. Because of the sparsity of LBSN data, 
considering common check-in will lead to many zero scores. So 
the reason of large MAE value is that many zero scores which is 
far away for the relevance scores of users while UPOI-Mine and 
TrustWalker use social relation to generate scores in social factor. 

5. CONCLUSIONS  
In this paper, we have proposed a novel approach named Urban 
POI-Mine (UPOI-Mine) for recommendation of interesting urban 
POIs by mining users’ preferences. Meanwhile, we tackle the 
problem of mining user check-in behaviors in urban computing, 
which is a crucial prerequisite for effective recommendation of 
POIs in urban areas. The core task of POI recommendation in 

 
Figure 11. Comparison of deferent features in terms of MAE.

 

 
Figure 8. Comparison of deferent aspects in terms of 

NDCG@10. 

 
Figure 10. Comparison of deferent features in terms of 

NDCG@10. 

 
Figure 9. Comparison of deferent aspects in terms of MAE.

69



 

urban areas is nicely transformed to the problem of relevance 
score prediction. We evaluate the relevance score of each user-
POI pair by learning a regression-tree. In the proposed UPOI-
Mine, we have explored i) Social Factor (SF), ii) Individual 
Preference (IP), and iii) POI Popularity (PP) by exploiting the 
LBSN data to extract descriptive features. To our best knowledge, 
this is the first work on urban POI recommendation that considers 
social factor, preference relatedness and POI popularity in LBSN 
data, simultaneously. Through a series of experiments by the real 
dataset Gowalla, we have validated our proposed UPOI-Mine and 
shown that UPOI-Mine has excellent performance under various 
conditions. 
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ABSTRACT
Compared with traditional itinerary planning, intention ori-
ented itinerary recommendation can provide more flexible
activity planning without the user pre-determined destina-
tions and is specially helpful for those strangers in unfamil-
iar environment. Rank and classification of points of in-
terest (POI) from location based social networks (LBSN)
are used to indicate different user intentions. Mining on
physical trajectories of vehicles can provide exact civil traf-
fic information for path planning. In this paper, a POI
category-based itinerary recommendation framework com-
bining physical trajectories with LBSN is proposed. Specifi-
cally, a Voronoi graph based GPS trajectory analysis method
is proposed to build traffic information networks, and an
ant colony algorithm for multi-object optimization is also
implemented to find the most appropriate itineraries. We
conduct experiments on datasets from FourSquare and Geo-
Life project. A test on satisfaction of recommended items is
also performed. Results show that the satisfaction reaches
80% in average.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications;
I.2.8 [Problem Solving, Control Methods, and Search]:
Scheduling

General Terms
Algorithms, Measurement, Experimentation.

Keywords
itinerary planning, trajectory mining, location-based sys-
tem, multi-level categories

1. INTRODUCTION
According to the daily experience, the nature of travel ar-

rangement is to look for a group of geographical locations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UrbComp’12 ,August 12, 2012. Beijing, China
Copyright 2012 ACM 978-1-4503-1542-5/08/2012 ...$15.00.

which are connected with most convenient traffic paths avail-
able and best meet the personal demands. As described in
reference [2], the users usually hope to find a set of objects
to meet various needs. For example, a traveler may have the
following needs – shopping, dining, accommodation, sight-
seeing. These needs can only be met by a set of different
geographic locations. Of course, there are many kinds of
criteria to evaluate the final choice. Some people want the
best service, and others pursue the lowest cost. On the ini-
tial stage of itinerary planning, the users usually only have
a general intention. The final decision will be made after
collecting enough relevant information. During the collec-
tion process, they may ask a friend for recommendation, do
research on some Travel Forums, or analyze traffic data, etc.

When someone plans to travel to a new place, his initial
intention is usually not very clear. In order to analyze such
initial intentions, we put out questionnaires to a group of
students in National University of Defense Technology (lies
in Changsha, Hunan, China, about 1500km away from Bei-
jing). The questionnaire includes the following three ques-
tions:

1. How much do you know about Beijing? ( A. Have been
there many times, very familiar. B. Only been there
1-5 times, not very familiar. C. Never been there, not
familiar at all.)

2. Please list your arrangement there for a one-day trip?

3. If someone is willing to help you to arrange your trip,
what demands will you have?

Example 1: The answer of a volunteer who belongs to C
class (Never been there, not familiar at all):

In the morning, he wants to have breakfast in a fast-food
restaurant and visits some historical interests afterwards.
At noon, he would like to have lunch in a restaurant with
local taste. As for afternoon, he is willing to walk besides
a lake in a park. Last but not least, he needs buy some
souvenirs for friends and then go to a party in a bar which
should be convenient to get to. Before going to all these
places, he hopes to get as much information as possible, and
an accurate prospect on both time and money cost on the
traffic.

Result analysis (20 valid questionnaires in total are col-
lected):

Question 1: Numbers in parentheses represent the num-
ber of volunteers belongs to each class: A. (4) B. (8) C.
(8)
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Figure 1: Results of questionnaire.

Question 2: For the convenience of analysis, the arrange-
ments proposed by the users are divided into two categories:
1. Certain activities: activities that have locations and
transportation requirements, for example, visiting the Im-
perial Palace in the morning. 2. General activities: General
activities: activities that only have general intentions (with-
out particular location requirement), for example, having
Sichuan cuisine for lunch. As shown in Fig. 1, according to
different choices made in question 1, users are divided into
3 classes, A, B and C. Users who are familiar with Beijing
(A-class) are more likely to arrange certain activities. In
contrast,most of the users of B and C class only have a gen-
eral intention. Especially for the C-class users, the portion
of general activities is higher than fifty percents. For more,
4 out of the 20 users do not have any precise preference of
traveling locations.

Question 3: Five demands that have the highest oc-
currence rates are (the number in the parentheses indicates
the number of users):1. unique/famous places(7); 2. least
traffic time cost(5); 3.precise location description and best
route(5); 4. avoidance of rush hour of travelers (4); 5. lower
cost (4).

After the analysis above, it is reasonable to summarize
the following features of a common user’s itinerary planning
for a new place.

1. The description of the demanded destination is usually
a category but not a exact geographical location, such
as “a famous attraction” , “a well-known snack bar” ,
etc.

2. Users demand precise information of each place they
want to go such as exact geographical location, the
traffic route, the shortest and average taxi time be-
tween any two locations.

3. Users are interested in knowing other people’s review
about the places.

4. Some of the users’ demands have multiple optimizing
objects, which are clearly expressed and possible to
be mathematically described, such as least time cost
on the traffic; some are very vague and hard to be
described mathematically, such as the most famous lo-
cation available.

It is very difficult for the computer to implement the afore-
mentioned search or recommendation, because the object
description is not clear, and the information in need is too
extensive. Even a human guide will find it hard to give such
recommendations, because it is impossible for him/her to
know clearly about all the restaurants, hotels, attractions

of a city, and the best traffic route and time among them.
Besides, because the GIS-based shortest route search algo-
rithm doesn’t consider the real-time traffic change and the
rush hours (weekends, people going to and off work), it is al-
so very hard for the route search algorithm to figure out the
best travel route and least time cost. To resolve such a prob-
lem and help the users to make the best decision, we jointly
take in use of different users historical trajectories and in-
formation from social networks to provide a category based
itinerary planning service. Luckily, both the current social
networks and trajectory mining technologies can present ef-
fective support to such a service.

Currently, most mobile devices are able to position, based
on the networks or GPS. This feature makes it very easy to
collect the trajectory data of mobile users. In a much larger
scale, the traffic control and city planning departments of a
city are also collecting the trajectory data of quantities of
vehicles and mobile devices. Some large enterprises are also
doing so to carry on relative research. The T-drive project
[11, 12]of Microsoft is an example. Based on the fact that the
taxi drivers have the richest knowledge of the road systems
of a city, researchers provide a real-time navigating service
by mining the driving logs of a large number of taxis.

The location based social networks, such as Jiepang 1 and
Foursquare, support the users with tagging, rating and re-
viewing places they have been to. These user-generated data
have embraced the daily experience of millions of users, and
are very valuable for the recommendation of itinerary plan-
ning.

All these technologies provide us the chance of realizing
accurate itinerary recommendation. To our best knowledge,
none commercial entities have yet provided itinerary plan-
ning recommendation service based on general demands.
This paper will focus on the realization of general itinerary
recommendation.

2. MODEL AND FRAMEWORK

2.1 Model of itinerary planning
It is easy to understand that an activity must be related

to a location. Therefore, an activity can be denoted as a
tuple with three elements:

A :=< P, T, condition >

P (Place) denotes the geographical position, which indi-
cates an exact location, such as the Imperial Palace, the
Olympic Park, etc.

T (Time) denotes the time when the activity takes place.
C (Condition) can be a constraint on any aspect of an

activity. For example, it could be a constraint of having less
cost than $100/person, or traveling by taxi, etc.

It is important to notice that, the places are normally hi-
erarchically organized. According to the analysis result from
the questionnaires, the users usually won’t give an exact de-
piction of the demanded destination. Instead, users are more
likely to give a category such as bar, shopping mall, etc. In
order to solve this problem, this paper takes use of the cat-
egorization of different locations of Foursquare. A category
(C) is a set of different location points:

C := {P1, P1, P1, . . . , Pn}
1JiePang is one of the biggest location based social networks
in China, www.jiepang.com.
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The categories are hierarchical organized. Places belong to
categories.

Ci ⊂ Cj , Pi ∈ Cj

A path indicates the connecting route between to places, i
is the description, such as the time cost.

Path :=< Ps, Pe, i >

A trip is a time-ordered description of several activities and
the path belong them.

Trip :=< A1, Path1, A2, Path2, . . . , An >

In this paper, the interrogation mark (?) is used to indicate
any ONE place, the asterisk mark (*) is used to indicate all
the places in a category. By using the two marks, the user’s
vague demands of itinerary planning could be described as
follows:

Need := {
<?C1, T1, condition1 >,
<?C2, T2, condition2 >, . . . ,
<?Cn, Tn, conditionn >>: Optimizer}

optimizer denotes the optimization goal, such as the short-
est travel time or hot spots of all POIs. According to the
model, example 1 can be described as follow:

{

<?FastFoodRestaurant,Workday � 8 : 00, T axi >,
<?HistoricSite, Workday � 9 : 00, T axi >,
<?ChineseRestaurant,Workday � 12 : 00, T axi >,
<?P laza,Workday � 13 : 00, T axi >,
<?Mall, Workday � 18 : 00, T axi >,
<?WineBar,Workday � 20 : 00, T axi >,
: [MinTravelT ime, AllPopular]}

2.2 Traffic information networks
To find the best trip, we need to build a cost function; the

cost could be the time cost, the service evaluation, or the
total distance along the trip. If we want to find the least
time cost, the information of driving time between any two
places would be necessary. Thus, we build up the semantic
traffic map G of a city based on the taxis’ trajectories:

G := {P, Path}
P is the set of all the geographical places; Path is the set
of all the existing edges between these locations. To build
such a map G, we need to get information of all the places
and path between them. The detailed method of building
the semantic traffic map is presented in Section 3.

2.3 Framework of Joint itinerary planning
This paper access information of geographical locations

from social networks, and build up semantic traffic map by
mining the GPS trajectories, as shown in fig.2. According
to different cost functions, the system will present different
trip recommendations for itinerary planning with detailed
explanations respectively. The explanation includes valu-
able information for the user, such as the popularity of the
places and the driving time between adjacent locations in
the trip. The whole system consists of three repositories:

1. Repositories of location points: We crawling all loca-
tion points, which are provided by different users and
evaluation by millions of users, of the target city from
location based social networks. This collaborative e-
valuated information can more objectively indicate the
popular degree of location points;
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Figure 2: Framework of joint itinerary planning.

2. Categories of location points: It saves classification in-
formation of places. In this paper, we use hierarchy
categories provided by foursquare;

3. Traffic information networks: It preserves the shortest
travel time and the best path between any two arbi-
trary semantic location points of a city. We get seman-
tic locations, which paid close attention by users, from
public transit agencies, and mining taxi history data
to obtain accurate shortest path information (section
3.2 ).

What’s more, itinerary planner is responsible for recom-
mending reasonable itineraries based on the information above,
according to the user’s requirements. The UI module calls
the online map system (such as Google Map 2) to visual dis-
play itineraries, and supports users to modify requirements
interactively.

3. VORONOIGRAPHBASEDTRAFFIC IN-
FORMATION NETWORKS

Traffic departments of many countries and cities are col-
lecting trajectories of public transport vehicles. These GPS
data have high frequency and large time span, hence the
data are very difficult to process. Besides, these trajecto-
ry data only contain the physical space and time stamps,
so they cannot provide any semantic information [9], which
the users can understand better and usually concern much
more. To convert the physical trajectory into feasible se-
mantic knowledge, there are two main obstacles: 1. How to
determine the physical location point that the user under-
stands best and knows most. 2. How to get the shortest
path and driving statistics between any two location points.
In the following part of this section, we propose the seman-
tic position determining algorithm based on public transport
stops, and the semantic traffic map building algorithm base
on Voronoi diagram. These two algorithms make it possible
to get the shortest time and optimized path between any
two places.

3.1 Voronoi based semantic point building
Every city contains thousands or even more geographi-

cal locations, it is very hard for the residents to memorize
all of them, not to say a stranger. In tradition, the most
used method to describe some geographical location is to
combine the “traffic network” and the landmarks. For ex-
ample, No.163 of Haidian West Road, Beijing; or 400m east

2http://maps.google.com/
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Figure 3: Voronoi based semantic point.

to the south gate of the Olympic Park. Fortunately, when
planning a stop or station for public transport, the related
departments always take the population, physical distance,
traffic situation and other factors into consideration. And
these stops are commonly named with semantic marks that
the residents know well. Concerning the planning princi-
ple of these stops, it is reasonable to assume that for any
important location A of a city, there is always a stop B,
so that the time cost from B to A is smaller than a given
threshold, for example, 10 minutes. Based on the assump-
tion above, this paper tries to build up a semantic map
of a city, based on the stops of public transportation. As
shown in Fig.3, the whole city area is decomposed using
Voronoi diagram, taking the stops as seeds. Each cell has
a unique id, and is the named after the seed stop within
it. Thus each cell generates a semantic point with con-
stant id and name(SemiPoint). Voronoi diagram insures
that, for any geographical point(GPS-Point,Point), there
is a corresponding nearest semantic point (in our case, a
stop). So, a GPS trajectory can be described by a seman-
tic trajectory(Semi-trajactory,SemiList), which is a serial
of SemiPoints.The information of all the stops can be ac-
cessed on the traffic department’s website. Voronoi diagram
is built by the classic plane sweep algorithm [3].

For each stop point, we treat it separately as start and des-
tination to build up the semantic traffic map, which is stored
in form of adjacent matrix(Time-Matrix[Stop Num][Stop
Num]). An element of this matrix describes the traffic s-
tatistics between two semantic points. The specific method
to generate these traffic statistics is determined by the ad-
ministrator according to different demands, which is imple-
mented by different statistic methods(StatisticFunction()).
For example, 7 days a week, calculate the shortest time and
best path of every 2 hours. Considering that there’re only 7
days data in the demo system, we only calculate the short-
est time and best path between any two semantic points for
rush hours on weekdays and workdays.

3.2 Run through model based traffic informa-
tion networks building

After decomposing the city map, we need to calculate the
statistics between any two cells. In traditional GIS system,
the best path is simply the shortest path which could easily
be found, and the shortest time could be estimated accord-
ing to the Euclidean distance. However, in the real life,
traffic restrictions, one-way road, dynamic traffic flows, and
many other factors together generate a very complicate sit-
uation, in which the shortest path usually is not the one

with smallest time cost. Furthermore, there isn’t any model
or algorithm yet that can find the path with shortest travel
time both precisely and independently.

Algorithm 1 Voronoi-based Time Matrix Building

Input: Trajectory:traj ; Voronoi-Map: map
Output: Time-Matrix[CellNum][CellNum]: matrix

1: Point p=traj.next();//Fetch a new GPS point
2: SemiList tmpList=new SemiList();
3: while (P !=null) do
4: SemiPoint Sn=M.semi(P); //Get the semi-point

based on physical location
5: if (Sn is different from temList.last() ) then
6: for each SemiPoint Si ∈ temList do
7: Matrix[Si.ID][Sn.ID]=StatisticFuction();
8: end for
9: tmpList.add(semiPoint);

10: end if
11: p=traj.next();
12: end while
13: return matrix ;

The GPS trajectory contains a detailed log of the vehicle’s
travel history. Each GPS point includes the latitude and lon-
gitude coordinates, as well as the corresponding time stamp.
Taking use of these data we can directly get the travel path
and time cost between two locations. To match the semantic
city map, the cell-ID of each GPS is allocated to it as the
Semantic Point. After that, we have mapped millions of POI
points to tens of thousands of stops, largely decrease the s-
torage and computing cost. Considering how the semantic
city map is generated, we can confirm that the timing error,
which were introduced by such a mapping strategy, is no
more than the time cost of vehicle passing through a cell.
Take Beijing as an example, the travel time of buses between
any two stops in Beijing is strictly less than 10 minutes; that
means the final found shortest time cost will include an error
less than 10 minutes, which is acceptable in the scenario of
itinerary planning. Practically, the difficulty is that, there
are not enough trips (a trip, as defined before, is a complete
trajectory from start to the end) for any pair of Semantic
Points to calculate the statistical driving time. Therefore,
we propose that, for all the cells passed by, even they are
not the start or end point for the path, we still treat them
as statistic source. Thus, if we denote a trip as As − Ae,
then after we take into consider the pass-by cells, it can be
denoted as:

< As, A1, A2, A3, A4, . . . , Ae >

As Algorithm 1 shows, when calculating the path statistics
between cell A1 and A3, the sub-trip A1−A2−A3 of As−Ae,
which runs through both A1 and A3, is also taken part into
statistics. Especially, this method can find potential shortest
paths lying behind a longer trip. After entering a new cell,
the algorithm will traverse over all the historical semantic
points in the trip, store the travelling time between each
historical semantic point and the new semantic point, and
update the statistics. (line 5-8)

4. CATEGORY BASED ITINERARY REC-
OMMENDATION ALGORITHM
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Figure 4: Hierarchy of the location points

4.1 Hierarchy of the location points
There are many hierarchical categorization methods of

locations. This paper takes in use the categorization of
Foursquare, one of the earliest and largest LBSN websites
today. Fig. 4 partly shows the hierarchy of this catego-
rization in the form of a tree. As shown in Algorithm 2,
when a user gives his/her demanded location category, all
the locations belong to that category and the corresponding
subcategories are taken into consideration.

4.2 Least-time itinerary planning recommen-
dation

This subsection proposes the itinerary planning recom-
mendation algorithm that uses a cost function considering
time cost, aiming at giving recommendations with least time
cost.

4.2.1 BaseLine: Single-object optimization
We implement the Baseline recommendation algorithm

with three steps. The algorithm enumerates all the pos-
sible locations, and traverses all the feasible trips and tries
to find the best one to recommend. In previous section,
we have received needs of user(needs),built traffic graph
matrix(matrix ) with each elements present cost from two
semi-points(Cost gotten by CostFunction() ),gotten cat-
egory tree from Foursquare(CategoryTree,ct)and built the
index of POIs(POIsIndex,PI )with CategorySet to describe
which categories one POI belongs. As shown in Algorithm
2, in the first step (line 3),the k most popular geographical
locations are given to each activity instance as candidates; in
the second step (line 5-8), pick one from the k locations for
each activity instance, and find the path connecting them by
checking the semantic traffic map; then a recommendation
item is generated; in the third step (line 10), rank the set
of all recommendation items according to the cost of each
item, and generate the final recommendation list.

4.2.2 Challenges of the Baseline algorithm
The baseline algorithm is simple and instinctive, but faces

the following challenges:

1. Combinatorial explosion: the algorithm needs to tra-
verse all the possible combinations of all the activities’
candidate locations, which is at the level of kdim (dim
is the number of activities). When k increases, the
computing cost will increase immensely. For example,
when dim is 6 and k is set to 10, the time cost of
the baseline algorithm reaches 2328 ms, which cannot
meet the real-time needs of online service.

Algorithm 2 Category-based Activity Scheduling

Input: needs; ct ; PI ; matrix ;k
Output: Tuple(POI[n], Path[n-1],Cost):scheduling

1: for all need needs[i] do
2: CategorySet cs[i]=ct.subCategory(needs[i].category);
3: get top-k famous POIs POIs[i][k] belongs to cs[i] ;
4: end for
5: for all composition POI[n] built by geting one ele-

ments from each column of POIs[i][k] do
6: for all i < n − 1 do
7: build Path[i] using POI[i],POI[i+1] ;
8: cost=CostFunction(matrix.pathCost[i]) ;
9: end for

10: scheduling.add(POI[n],Path[n-1],cost);
11: end for
12: scheduling.sortBy(cost);
13: return scheduling ;

2. Over-fitting of single object: when optimization object
is to get least time cost and k is set to a large value
(which means more candidate locations), the algorith-
m may be over-fit to the single object, causing that
the popularity of locations are ignored, and the final
recommendation will be a group of locations geograph-
ically assembling in a small area.

Thus we conclude that the itinerary planning recommen-
dation problem should be treated as a multi-objective op-
timization problem, which do not strictly require the opti-
mized result; the approximate optimization result is accept-
able. In the following section, we propose a multi-objective
optimization algorithm, which aims at finding approximate
optimizations in a short time.

4.3 Ant ColonyOptimization (ACA) basedmulti-
objective itinerary planning

Multi-objective optimization problem is very common in
scientific research and engineering practice. In general, it
has a final object which is composed of several objects. This
kind of optimization is usually high-dimensional and with
large scale, and need to consider the weight allocation for
different sub-objects. However, we cannot precisely design
the weight allocations for different sub-objects of the prob-
lem in this paper. For example, it’s hard to determine which
of the two, the travel time and popularity of the locations,
is more important.

Fortunately, ACA, Simulated Annealing, Genetic Algo-
rithm and Neural Network and other intelligent algorithms
have been developed and applied extensively. This paper
proposed a modified version of ACA to solve the multi-
objective optimization of itinerary planning recommenda-
tion. The modified ACA mainly focus on the weight alloca-
tion for different sub-objects. Furthermore, it is convenient
to adjust the number of ants and running times according
to the system load, improving the service of the system.

4.3.1 Build up the ant colony system
ACA is a bionic algorithm [4]; its main idea is to simu-

late the food seeking behavior of the ants. It initially put
a large number of ants that randomly wander in the search
space, once an ant found the “food”, it put some pheromone
along the path to increase its attraction to other ants; be-
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sides the pheromone evaporates with time goes on. Such
a positive feedback strategy leads the algorithm to a glob-
al optimization. ACA is intrinsically parallel, which makes
it to be easily programmed in parallel. This paper intro-
duces in ACA and makes the following modification: keep
the global optimization object unchanged, i.e. finding the
shortest path; introduces in a heuristic rule, that merges the
popularity of locations into the pheromone updating phase,
making the ants tend to choose the locations with higher
popularity. Activity scheduling is denoted as a ordered list
with elements from n non-intersecting sets.

path = 〈S1, S2, S3, . . . Sn〉
Pij is the j − th POI of i − th set. Here we support every
sets include K POIs. Every POI in a set existing a edge,
E(Pij , P(i+1)l) , between all POIs of neighborhood sets.
In ant colony system, we use follow annotations:

At(k) —describe the state of the kth ant in t times visit.

D(Pij , P(i+1)l)—describe the minimal delay between two
POIs.

It(Pij , P(i+1)l)—describe the information between two POIs
of t times visit.

P t
k(Pij , P(i+1)l)—describe the probility of the kth ant trans-

fer form Pij to P(i+1)l.

H(Pij)—describe the famous value of a POI.

4.3.2 Itinerary planning based on modified ACA
The procedure of modified ACA.

1. Initialization, randomly put each ant on locations of
the first set. (Algorithm 3, line 1-4)

2. The ants traverse the n sets in order, the transfer prob-
ability between two cities is as below. (Algorithm 3,
line 6-10)

P t
k(Pij , P(i+1)l) =

It(Pij , P(i+1)l)H(P(i+1)l)

D(Pij , P(i+1)l)
(1)

3. After all the ants have completed their travel, calculate
the total cost of each path, save the one with the small-
est cost. In the meantime, evaluate the current state
and determine whether the ending condition is satis-
fied. If it is satisfied, return the best path; else, update
the pheromone of each edge. When the ant completes
a round, the pheromone of each edge is changed ac-
cording to the following equation. (Algorithm 3, line
11-18)

ΔIt
k(Pij , P(i+1)l) =

{
Q

Lk
t

ifAt(k)coverE(Pij , P(i+1)l)

aa else

(2)

It+1(Pij , P(i+1)l) = It(Pij , P(i+1)l)(1−γ)+
m∑

k=1

ΔIt
k(Pij , P(i+1)l)

(3)

4. Re-put all the ants, start a new period. (Algorithm 3,
line 19)

According to the procedure described above, the pseudo
code of the modified ACA is given below.

Algorithm 3 Ant Colony based Activity Scheduling

1: for all edge, ant do
2: I1(Pij , P(i+1)l) = Iinitial;
3: Place ant on a randomly choose POI of S1 ;
4: end for
5: Let PathminDelay be the best path and Lmin its delay;
6: for t = 1 to tmax do
7: for k = 1 to m do
8: Build tour Patht

k by applying n-1 times the follow-
ing step;

9: Choose next POI with probability computed by
Formula (1);

10: end for
11: for k = 1 to m do
12: Compute the delay Lt

k of Patht
k produced by ant k;

13: end for
14: if an faster path found then
15: Update the PathminDelay and Lmin;
16: end if
17: for all edge do
18: Update the I(t+1)(Pij , P(i+1)l) by Formula (3);
19: Replace ant on a randomly choose POI of S1 ;
20: end for
21: end for
22: Return the PathminDelay and Lmin;

5. DEMO SYSTEM AND EVALUATION
Foursquare is the largest location based social network,

which has more than 20 million active users. We have built
an experiment system based on Foursquare and T-drive [12]
dataset for Beijing. Information about the experiment plat-
form and dataset is listed as below:

• System configuration: Our experiments are conducted
on a quad-core 2.27GHz Intel i3 CPU with 2G RAM
and a 320G 5400 RPM disk driver. Disk page size is
4KB (4096Byte). OS is Ubuntu 11.04 (Linux 2.6.16).

• Public transportation stops data: We collected 10684
bus stops from the Beijing public transport network,
which covers all the urban and suburb area.

• Foursquare dataset: We collected 30,784 effective POIs
and category information by calling open API provid-
ed by Foursquare Company. Every POI has a variety
of information, such as total ”sign in” times, number
of historical visitors, user submitted reviews, website
address and so on. In order to find all the candidate
POIs the belongs to the same categorie, we built In-
verted index [7] for every category and sort each POI
list by “sign in” times.

• GPS trajectory dataset: Real dataset is provided by
the T-drive project of Microsoft Research Asia, which
includes all the trajectories of 10357 Taxis from 2008-
02-02 to 2008-02-08 in Beijing.

Table 1 lists the recommendation results, computed by the
baseline algorithm and modified ACA with k=3 and k=6 re-
spectively, for example 1. The user interface is as shown in
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Table 1: Itinerary recommendations for Example 1 in Beijing City
Algorithms Activity scheduling Time Evaluation

k=3
(Baseline)

McDonald’s(143)− >(6 Mins)Forbidden City(2914)− >(9 Mins)
Beijing Roast Duck Restaurant (720) − >(5 Mins)Jianwai SOHO(277)
− >(4 Mins)Sanlitun Village(5688) − >(5 Mins)CJW The Place(167)

25 Mins 8.1

k=6
(Baseline)

McDonald’s(143)− >(3 Mins)East Gate: Temple of Heaven(193)− >(3 Mins)
Duck de Chine(287) − >(3 Mins)Jianwai SOHO(277)

− >(2 Mins)Silk Street Market(1017)− >(2 Mins)CJW The Place(167)
11 Mins 7.4

k=3
(Ant colony)

McDonald’s(143)− >(6 Mins)Forbidden City(2914)− >(9 Mins)
Beijing Roast Duck Restaurant(720) − >(11 Mins)Tian’anmen Square(4908)

− >(4 Mins)Joy City(1933)− >(2 Mins)Cepe(94)
32 Mins 8.9

k=6
(Ant colony)

McDonald’s(143)− >(6 Mins)Forbidden City(2914)− >(9 Mins)
Beijing Roast Duck Restaurant(720) − >(5 Mins)Jianwai SOHO(277)

− >(0 Mins)The Place(1798)− >(5 Mins)Enoterra(338)
25 Mins 8.2

Figure 5: User interface.

Fig. 5. The recommendation result includes the location
of each activity and the popularity indicated by “sign in”
number (shown after POI name). What’s more, users can
click the link to browse homepage of every POI and infor-
mation on foursquare website, which contains reviews and
evaluation of other users. At the same time, recommenda-
tion results are drawn in GIS map and the shortest driving
time between two activities has been given (the number in
brackets, in minutes). From the above information, user can
get a full understanding of the recommended itinerary.

The evaluation value in table 1 is the average value of all
the evaluations (a value within 1-10 is used to indicate their
degree of satisfaction) made by the 14 volunteers belong to
class A and B in the questionnaire. The satisfaction de-
gree of all the four recommendations are above 7, indicating
that the results have good user acceptance and important
reference value. At the same time, we find that recommend-
ed results of ant colony algorithm, though with larger time
cost, are better accepted by users than the baseline algo-
rithm. Something interesting is that, when there are more

candidate locations (larger k) taken for recommending, the
satisfaction degree decreases. It shows that, compares to
several minutes’ additional cost, the users care more about
the popularity. Next step, we will provide online services,
which is more sensitive to the recommendation algorithm’s
performance. In the next subsection, the time cost of the
two algorithms are evaluated.

6. RELATED WORKS
This section lists the related studies related to our work

and points out their difference with our work:

• GeoLife project of Microsoft Research Asia collects
165 users’ trajectory data from 2008 to 2010. They
have developed many interesting applications, such as
the traffic navigation system [13], and studied the re-
lations between frequently visited locations and the
users. Their discovery can answer questions such as
“What’s the most popular tourist attractions of Beijing
city?”, “where a tourist, who has gone to the Imperi-
al Palace, will be?”, “which is the most frequent route
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to a certain place?” and so on[15]. They also pro-
vides smart itinerary recommendation services,which
use simplified query composed of start point, end point
and duration to get a complete set of itinerary is au-
tomatically generated based on real user-generated G-
PS trajectories[10]. At the same time,they also imple-
ments a personalized recommendation that provides an
individual with locations matching her travel prefer-
ences[14].However,they have not provided a intention
oriented itinerary recommendation service.

• The research of [5]tries to find out trajectory pattern
and analyze the life style of people. The work asso-
ciates each of the social network users with a specific
geographic location to build a spatial social network
graph. Their main contribution is that they proposed
a serial of operators to the query social networks and s-
patial networks together, and have implemented them
based on both relational and graph databases. The
work has inspired us to combine spatial and social net-
works for exploring new application and technology.

• The classic scene of spatial keyword query is to give
a physical location and a set of keywords to find a s-
ingle object which best matches the input keywords
with minimal distance [1, 6]. The research of [2] ex-
pands spatial keyword search, proposes and realizes
the search for a set of objects, which together match-
es the input keywords with minimum space distance
among all the objects. The applications’ scenarios of
this kind of query are restricted for not fully using all
kinds of background knowledge from other informa-
tion sources. Our work can use collective intelligence
to find out more useful locations and give a reasonable
travel path for the recommended itinerary.

• The work of [8] supports the trajectory retrieval using
k query points. This work requires the user to input k
accurate location points, and then finds out trajecto-
ries pass through or is nearest to all the input points.
However, it doesn’t support category based queries and
can not guarantee that the result trajectory is shortest
or with minimum travel time.

7. CONCLUSION
By jointing the data from social network with physical

trajectories, and take usage of hierarchical categories of ge-
ographical locations, this paper realizes recommendation for
itinerary planning. Based on the sematic traffic information
contained in the historical trajectories, the recommendation
algorithm gives the best path along multiple points, which
satisfies the user’s demands better than the shortest path
searching algorithm. Meanwhile, the recommendations are
presented with related reviews about the recommended lo-
cations on social network, effectively help the user to un-
derstand the final recommendations. Therefore, the recom-
mending results are meaningful for the users to plan their
itinerary.
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ABSTRACT 
The widely use of GPS-enabled devices has provided us amount 
of trajectories related to individuals' activities. This gives us an 
opportunity to learn more about the users' daily lives and offer 
optimized suggestions to improve people's trip styles. In this 
paper, we mine regular routes from a users’ historical trajectory 
dataset, and provide ridesharing recommendations to a group of 
users who share similar routes. Here, regular route means a 
complete route where a user may frequently pass through 
approximately in the same time of day. In this paper, we first 
divide users' GPS data into individual routes, and a group of 
routes which occurred in a similar time of day are grouped 
together by a sliding time window. A frequency-based regular 
route mining algorithm is proposed, which is robust to slight 
disturbances in trajectory data. A feature of Fixed Stop Rate (FSR) 
is used to distinguish the different types of transport modes. 
Finally, based on the mined regular routes and transport modes, a 
grid-based route table is constructed for a quick ride matching. 
We evaluate our method using a large GPS dataset collected by 
178 users over a period of four years. The experiment results 
demonstrate that the proposed method can effectively extract the 
regular routes and generate rideshare plan among users. This work 
may help ridesharing to become more efficient and convenient. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – data 
mining. H.3.3 [Information Storage and Retrieval]: Information 
Search and Retrieval – Clustering, retrieval model. J.4 [Social 
and Behavioral Sciences]: Sociology. 

General Terms 
Algorithms, Experimentation. 

Keywords 
GPS mining, regular route, ridesharing, frequency-based mining, 
grid-based route table. 

1. INTRODUCTION 
Nowadays, traffic congestion has become a worldwide problem 
especially in the metropolitan areas. Lots of measures have been 
adopted to relieve this problem, such as improving traffic signal 
timing methods, adding road lanes, or constructing new streets. 
However, few of these measures worked well under the 
deterioration caused by the massive increase of cars. In Beijing, 
China, where the traffic condition is considered to be one of the 
worst in the world, the government has to require private cars to 
keep off the road for one day a week, and to restrict car purchases 
to combat the serious traffic problems. But the traffic condition is 
still not satisfied especially during rush hours. The main reasons 
are largely because the large number of vehicles on the roads. 
However, if you look closer at traffic, you may easy to find that 
too many people drive long distances alone every day. And there 
is no doubt that many of them are heading the same way. Thus, 
effectively use of empty car seats by ridesharing is definitely a 
quick and effective way to reduce number of vehicles on the road, 
thus improving traffic conditions and reducing green house gas 
emissions.  

In recent years, although lots of websites and projects 1  have 
attempted to promote ridesharing, successful ridesharing systems 
are still in short supplies [1]. A rideshare system can be widely 
accepted only if it is easy, safe, flexible, and efficient. In a typical 
rideshare system, drivers will first issue their trips in advance, and 
riders need to search if there are any routes that match his/her 
request. Most of the time, riders need to do several searches to 
find a satisfied match both in timing and in route. With the 
unfamiliar individual who will share a trip with us, we may 
actually be worried about the "stranger danger" and also the 
journey reliability. The increasing complexity of work and social 
schedules and the related increase in vehicle trip complexity, is 
assumed to have made ridesharing less desirable [2]. 

On the other hand, with the prevalence of GPS-enabled devices, 
more and more people are likely to record their daily trajectory 
logs and to share them with others. These logs contain not only 
their life experiences but also their life modes. This provides us 
an opportunity to learn more about the users’ daily lives and offer 
optimized suggestions to improve people’s trip styles. For 
example, we could find out the daily commute route of each user, 
and provide ridesharing recommendations to a group of people 
who have similar routes. In this way, ridesharing of regular routes 
can be implemented automatically. Furthermore, with days of 

                                                                 
1 http://www.liftsurfer.com/, http://www.rideshareonline.com/ 
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trajectory records, the reliability of the route and route provider 
can also be qualified. 

However, there are still several challenges to realize the idea 
proposed above. Firstly, a regular route (RR) is not a frequent or a 
personal route [3][4]. A frequent route is consisted of route 
segments where a user frequently passes through. But an RR is a 
complete route where user frequently passes through in similar 
times of day. Thus, an RR is a part of a frequent route, but not all 
the frequent routes are RRs. Secondly, users don't always start an 
RR at the same time each day. The variation of the start time may 
be quite different for different users. Thirdly, because of 
uncertainty factors such as traffic conditions or traffic signals, the 
durations of an RR are also different on different days. Users may 
reach a same region at different times, even while having the 
same starting time. Fourthly, an RR may also have different 
trajectory sequences on different days. This happens probably due 
to a GPS signal drift or obstacles on the road etc. Finally, an RR 
may consist of several different transportation modes, like bus-
>walking->bus, or car->walking->subway. There is no explicit 
boundary to divide a trajectory into each individual route. We 
should not give a recommendation to users who all travel by 
public transportation.  

In this paper, we aim to mine regular routes from a user's 
historical GPS trajectories, and made ridesharing 
recommendations according to a group of users' regular routes. In 
our method, we construct user’s GPS data into grid-based directed 
edges, and divide a user's GPS trajectories into each individual 
route. A group of routes which occur at similar times of day are 
grouped together. Based on each route cluster, we perform a 
frequency-based regular routes mining method to infer the RR. 
And the main travel mode of each RR is recognized. Finally 
ridesharing recommendations are made based on the discovered 
regular routes and the recognized travel modes.  

The main contributions of this paper are listed as follows: 

 We propose a method to split the mixed user trajectories 
into each individual route. 

 We propose a frequency-based regular routes mining 
method to infer users' RRs, which could significantly 
distinguish the RRs from frequent or personalized routes. 

 We identify a new feature to improve the accuracy in 
distinguishing travel modes between public transports (bus 
and railway) and private driving (taxi and private car). 

 We evaluate our method using a large GPS dataset which is 
provided by GeoLife [5][6][7]. This dataset contains 178 
realistic user GPS trajectories over a period of four years. 

2. RELATED WORKS 
2.1 Ridesharing Recommendation 
In the past few years, some methods have been proposed to 
provide effective and efficient route matching between drivers 
and riders[8]. In [9], a location-based cab-sharing service was 
proposed to help reduce cab fare costs and effectively utilize 
available cabs. A comprehensive consideration of users’ 
preference when creating a new match was proposed in [10]. In 
paper [11], an approach that assigns users to form ridesharing 
groups according to their routes and fees was proposed. In their 
work, authors tried to improve the quality of ridesharing by 
increasing the driver’s income. In [12], an optimized route for 

multiple riders was proposed based on the Bee Colony 
Optimization Metaheuristic method. However, most of these 
works are based on groups of given routes. Users need to 
manually arrange their routes. 

2.2 Mining Route History 
In [13], a method was proposed to mine long and sharable route 
from vehicles' GPS data. There are several differences between 
their work and ours. First, we do not only mine the sharable 
routes from data generated by cars, but all trajectory logs from 
users. This means we give recommendations not only to driver 
users, but also to users who take public transport as one of their 
common travel modes. Second, our sharable routes are not 
directly generated based on one day’s trajectory log. RRs are 
firstly mined which are more steady and reliable for a ridesharing. 
Finally, compared to a strictly time alignment in regions, we give 
a more flexible time interval because in real traffic, it’s difficult to 
find two cars that are always keep synchronized, even they started 
at the same time and were running on the same road. They may 
pass the next road point at a different time due to the complexity 
of traffic condition.  
Some other similar works are trying to mine various interesting 
knowledge from users’ historical GPS data, such as transportation 
modes [6], interesting locations and classical travel sequences [5], 
and a faster way for driving [14]. Chen et al.  proposed a method 
to mine personal routes from GPS data [3], and to predict the 
destination and future route. The difference between a personal 
route and a regular route is that, a personal route does not 
consider the time factor, and is not a complete route. 

3. ARCHITECTURE 
Figure 1 shows the architecture of our system, which is consisted 
of three components: Routes Processing, Regular Routes Mining, 
and Ridesharing Recommendation. The first two components are 
processed based on each user's trajectory logs, and the third is 
running on the database of extracted regular routes. The user-
based components only need to be preformed once while a user 
submitting his/her logs to the system. 

 
Routes Processing:  This component processes users’ GPS logs 
into individual routes. The main steps contain: 1) Stay Regions 
Subtracting: A stay regions is definitely not a part of a regular 
route. And if there is a stay region within a successive GPS log, 
two routes can be extracted before and after the stay regions 
respectively. Thus, we first need to find and subtract these regions 
from the original GPS logs. 2) Grids Mapping:  Instead of directly 
mapping points into geographical grids, we combine the time 
information with grids, and a series of temporal grids is built. 3) 
Routes Splitting: Finally we segment the trajectory into each 
individual route and pass into RRs mining components. 

Regular Routes Mining:  This component responsible for mining 
RRs from users’ route sets. There are also three steps. 1) Routes 

 
Figure 1. Architecture 
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Grouping: We first group the routes which happened at similar 
times of a day together. 2) Regular Routes Finding: Then RRs are 
mined from each route set. For an RR, it must have been passed 
through by a number of routes which happened at similar times as 
each other. We call these routes as support routes. For a support 
route, most parts of it are also frequently traverses by users. Based 
on this thought, a frequency-based regular routes mining 
algorithm is proposed. 3) Travel Modes Recognizing:  A feature 
of fixed stop rate (FSR) is used to recognize the different travel 
modes of an RR. We notice that, a public transport, not only stops 
frequently, but also stops regularly at fixed positions. Therefore, 
having obtained a series of support routes of each RR, we could 
compare the stop rate at fixed regions. Experiment results show 
that, FSR could achieve a better performance than existing stop 
rate feature only. Finally time properties are added to each RR for 
future use. 

Ridesharing Recommendations: In this component, two steps are 
made to recommend ridesharing among similar RRs.1) Grid-
based Routes Table Building ：We first construct a grid-based 
route table. In this table, each record contains a grid identifier and 
regular routes identifiers which passes through this grid. For a 
regular route generated by public transport, we only record it at 
the starting and ending grids. Otherwise, we record each part of 
the route on the table. 2） Routes Matching: With the grid-based 
routes table, we only need to search two routes which appeared in 
pairs and also have similar time properties.  

4. THE MINING OF REGULAR ROUTES 
4.1 Routes Processing 
The raw trajectories uploaded from GPS devices may contain 
only one route in a short period of time or a whole log during a 
day. In order to discover the RRs of a user, we first need to 
segment these data into individual routes. There are two cases that 
a sequence of GPS points should be split: 1) the time that a user 
stayed in a region exceeding a threshold of STthreh; 2) the time gap 
between two temporally adjacent GPS points is longer than a 
threshold of GTthreh. Where STthreh and GTthreh are two thresholds 
defined by user. In the first case, user may arrive at his destination, 
and when he left, a new route will begin. The second case is 
mostly because the GPS device was shut down or lost satellite 
signal over a certain time. 

STEP 1: Stay Region Subtracting 
Given a raw trajectory T{P1,P2,…Pk } from GPS device (where 
each point is formed as P(lat, lngt, t), here lat, lngt and t are the 
latitude, longitude and timestamp of a point respectively), we first 
extract stay regions based on the movement range within a certain 
time, which is similar to the work of Yu Z. et al. [5]. One 
difference is that, we do not denote this region by a single point, 
but by a pair of indicators (Pm ,Pn), where Pm and Pn are the 
beginning and ending points of the stay region. And then, points 
between Pm and Pn will be deleted from the trajectory. The new 
trajectory P after stay regions subtracting becomes T {P1, P2,… 
Pm, Pn+1,…, Pk }. This means we simply use Pm instead of the 
whole stay region. We could do this because that we do not care 
about the details within a stay region (different of the work by Yu 
Z., in which stay region is the interesting region), but the routes to 
enter into or depart from stay regions. Well then, Pm is just the 
ending point of the route which enters into a stay region, and Pn+1 

is the starting point when user departs from the stay region. 

Figure 2(a) shows a GPS trajectory from user data. And a stay 
region is denoted in Figure 2(b). In Figure 2(c), the result after 
stay region subtracting is shown.  

 

STEP 2: Grids Mapping 
To reduce the huge amount of data, trajectory points are then 
mapped into equally distributed geographical grids (see Figure 
2(c)) as {(g1, t1), (gk, tk)….(gk,tk)}, where gi is the grid identifier. A 
set of consecutive points which mapped into the same grid can be 
grouped together as a temporal gird. 

Definition 1. (Temporal Grid, TG): A temporal grid TG(g, ta, tl) 
stands for a geographical grid g where a user entered at time ta 

and left at time tl. The spatial range of the gird is fixed beforehand. 
If there is only one point (lati, lngti, ti) projected into grid g, we 
set ta= tl= ti. 

STEP 3: Routes Splitting 
Since stay regions have been detected and subtracted from 
trajectories, we need only to consider the time gap between two 
adjacent temporal grids when extracting individual routes.  

Definition 2. (Route): A Route is a sequence of temporal grids 

which denoted as R{TG1,TG2,…,TGn}, where  1≤i<n-1, 
TGi+1.ta-TGi.tl<GTthreh. The start and end time of a route R is 
represented as R.st and R.et, obviously R.st= TG1.ta and R.et = 
TGn.tl. Figure 2(d) shows the result after grids mapping and routes 
splitting. 

4.2 Regular Routes Mining 
Definition 3. (Regular Route, RR): An RR is a complete route 
where a user frequently passed through in approximately the same 
time of day.  There are two parameters when determining an RR. 
The first is Fthreh, which is used to decide the frequency of a route, 
and the second is SimTthreh, which is used to decide a similar time.  

STEP 4: Routes Grouping 
A user may generate lots of routes on a single day. The sheer 
number of these routes is enormous. Although an RR should 
happen usually, the number is still small compared to the total 
number. Therefore it's difficult to extract RRs from all routes 
directly. But an RR should always happen at a similar time of day. 
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Two routes which occurring separately at 11:00 AM and 3:00 PM 
should not be viewed as an RR, even though they have the same 
route. Therefore, a sliding time window of fixed duration (t- 
SimTthreh, t+ SimTthreh) is used to cluster routes by their occurrence 
time. The time window moves along time axis with a step of 
SimTthreh, routes dropped in the window will be grouped together 
as a set of t-Routes tR{Rm,…Rn}, where (Ri.st, R.et)∩ (t- SimTthre, 
t+ SimTthre) ≠Φ, Ri∈tR. The t here represents the center of the 
time window. Since most of the RRs happen during weekdays, 
such as going to work or sending kids to school. And in weekends, 
there may be other kinds of RRs such as going to the supermarket 
and so on. Thus, we group routes not only based on the time of 
day but also the day of the week. Figure 3 shows the distributions 
of a user’s travel time during weekdays between 20/11/2008 to 
20/12/2008 where each line represents a route and the x-axis and 
y-axis represent the occurrence time and occurrence date, 
respectively. Groups of t-Routes with a SimTthreh=60 min are 
shown in table beside it. 

 
STEP 5: Regular routes Finding 
Definition 4. (Directed Edge, DE): A directed edge is a link of 
TG, denoted as DE(TGm→TGn). The velocity on a DE is defined 
as: 

lmln

nm

tTGtTG

TGTGDistance
vDE

..

),(
.


                             (1) 

Given a route R {TG1,TG2,…,TGn}, there are n-1 directed edges 
{DE1 (TG1→TG2)，DE2(TG2→TG3),…, DEn(TGn-1→TGn)}. The 
velocity of the route is separated into {DE1(R).v, DE2(R).v,… 
DEn(R).v}. We denote route R as a support route of these DEs and 
record as DEi.sup={R}.  

Definition 5. (Frequent Directed Edge, FDE): In a set of t-Routes, 
the frequency of a DE is denoted as DE.num. Therefore, a DE will 
have DE.num support routes like DE.sup={R1,R2,…RDE.num}. We 
say a DE is a FDE if DE.num is larger than threshold of fthreh.  

Definitions in a route are represented in Figure4. There are three 
trajectories in Figure4 (a). After grids mapping, the trajectories 
are formed as R1, R2 and R3 in Figure4 (b). Each arrow in Ri is a 
DE. DEm(see Figure) is one of the DEs. There are 2 support routes 
of DEm, which are R1 and R3. The velocities of R1 and R3 passes 
DEm are denoted as DEm(R1).v and DEm(R3).v, respectively. 

As is described above, an RR is a route which is frequently visited 
by a couple of complete routes, but not some parts of a route. This 
means we should not directly use FDEs to represent an RR. In a 
set of t-Routes, FDEs may exist without an RR. But if there is an 
RR, the RR will have large common parts with FDEs. Figure 5 

shows two groups of t-Routes, each group of t-Routes is consisted 
of five routes. The fthreh is set to 2, and FDEs are denoted by red 
broad lines. In Figure 5(a), there are 3 routes, which have a lot of 
common FDEs, accordingly, there will be an RR. But in Figure 
5(b), although there is no RR, there are still some FDEs.  

 

To find specific RRs, a frequency-based regular route mining 
method is proposed as following: 

1. Calculate frequent coefficient (FC)  of each route 
The frequent coefficient is defined as fc(R) =m/n, where n is the 
number of DEs in the route R, m is the number of FDEs in the 
route R. The frequent coefficient can reflect the integrated 
frequency of a route. The higher the FC the more parts of the 
route are frequently traversed by the user.  

2. Find frequent routes 
A route with fc(R)> fcthreh will be deemed as a frequent route. If 
we set fcthreh to 0.8, there are 3 frequent routes in Figure5 (a), 
which are R1,R2 and R3.  

3. Calculate regular coefficient (RC) of each FDE  
The regular coefficient of a FDE is defined as  
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The regular coefficient is used to measure how many frequent 
routes had visited the FDE. If a FDE is a part of a regular route, it 
must be visited by a lot of frequent routes, not just some usual 
routes.  

4. Find Regular FDEs (RFDE) 
Then a FDE has DE.rc> Fthreh is extracted as an RFDE, and an RR 
is the collection of RFDEs, which is denoted as RR{DEm,…,DEn}, 
where DEi∈RFDEs, i =m,…n. If we set Fthreh to 2, the RRs in 
Figure 5(a) is RR{AM→AN, BN→CN, CN→DN,…, IU→JU} 
which are colored in table of FDEs. We call all the frequent 
routes passing through the RR as the support routes of the RR, and 
denoted as RR.sup={R1,R2,..Rn,}. The support routes of the RR in 
Figure 5(a) are R1, R2 and R3. 

5. Use RFDEs instead of FDEs to repeat step 2 to 4.  
To improve the precision, we could repeat the steps from 2 to 4, 
and use RFDEs instead of FDEs in step 2. This could help 
filtering the wrong support routes of an RR, which are just 
frequently visited by FDEs but not RFDEs. 

With the method proposed above, we are able to ensure that an 
RR has been at least visited by Fthreh frequent routes. And fcthreh of 
a frequent route has been visited multiple times than fthreh. A 

 
Figure 4. Definitions in a route 
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common route may also pass through some FDEs, but it will 
make no contribution to an RR. Just like in Figure5 (a), both R2 
and R4 passed the DE (JS->JT), but since R4 is not a frequent route, 
it has no contribution to an RR, DE(JS->JT) cannot be an RFDE.  

 
Once we have extracted RRs from historical trajectories, we add 
time property (ts, td) for each RR, where ts and td denote the start 
and the duration time of the route respectively. Since some 
support routes of RRs are not recorded from the beginning, like R3 
in Figure 5(a), we firstly fill the missing time interval using the 
average time of the other support routes. Then ts and td can be 
calculated as  
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where n is the number of the support routes of an RR. 

STEP 6: Travel Modes Recogning 
Besides the trajectory of each RR, we also need to know its travel 
modes. Since, we should not recommend two users who both 
went to work by bus to share a car. Although walking exists 
highly likely between and/or after a bus transfer, with the aim to 
make a recommendation for ridesharing, we only distinguish the 
main transport modes of an RR, which are public transport and 
private driving. 

In [6], a stop rate is used to distinguish different transport modes. 
Most of the time, a bus is likely to stop more times than a car. On 
the other hand, another feature we observe is that public 
transportation would stop more frequently at fixed regions like 
bus stops or subway stations. Since we have already discovered 

the support routes of each RR, we could observe the stop rate at 
fixed regions between support routes.  

Definition 6. (Stop Probability, SP): Stop probability is used to 
measure the likelihood that each user passed an RFDE with a 
velocity below a certain threshold.  

For an RFDE, there were DE.rc frequent routes passed it, we 
denote these frequent routes as: 

DE.fr={DE.supn}  if (fc(DE.supn)> fcthre )  n=1,…DE.num 

Then the stop probability is defined as  
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Then an RFDE with SP lower than Pstop is a stop region.   

Definition 7. (Fixed Stop Rate, FSR): The Fixed Stop rate of an 
RR is the number of stop regions within a certain distance. We 
could calculate FSR by: 
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where n is the number of RFDE in an RR. 

Figure 6 provides two examples of the stop probability of two 
regular routes. The travel mode in Figure 6(a) is public transport, 
and in Figure 6(b) it is driving. We could see clearly that, a bus 
may always pass some regions with a low velocity. While for a 
car, it may pass uncertainty regions with a low velocity.  

 

5. RIDESHARING RECOMMENDATIONS 
STEP 7: Grid-based Routes Table Building 
To accelerate the matching rate between users, a grid-based route 
table (GRT) is built. In this table, each record contains a grid 
identifier and regular routes which passes through the gird, like 
gi(RRm,…RRn). Given an RR, if it is generated by private driving, it 
will be recorded in each grid it had passed, but if it is generated 
by public transportation, it will only be recorded in its origin and 
destination grids. Table 1 shows an example grid-based route 
table of the RR in Figure 5.  

STEP 8: Routes Matching 
Ordinarily, there are two kinds of car sharing. The first kind is, 
one of the users usually goes to work by public transportation, 
and the other user usually goes to work by private driving. Then 
the first user can be a rider of the second user. The second kind is, 
both of the two users usually go to work by car, and both of them 
can be set as a driver or a rider. Therefore, if a query route is 
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generated by public transport, only routes by driving modes could 
be recommended.  

Table 1. A Gird-Based Route Table 

Grid Identifier RR 
AM->AN R1, R2, R3  
AN->BN R1, R2, R3 

... ... 

Given a query route, we first map the origin and destination of the 
RR into GRT. We use go and gd to represent the origin and 
destination grids, respectively. Then all the grids within the 
distance Dthreh of go and gd will be set as the search regions. We 
select RRs from the GRT where the grid identifiers equal to search 
regions. If there is an RR, which both exist in the origin and 
destination regions, the RR will be selected as a candidate route.  

The second step is travel mode filtering. If the travel mode of RRi 
is public transport, then only the candidate routes with mode of 
private driving will be extracted.  

In the third step, we examine the time property of each candidate 
route. Only those routes with starting time in the range of SimTthre 
of the starting time of the query route will be reserved.  

Finally, to make a recommendation, we need to sort all the 
selected routes. There are two kinds of sort methods. The first is 
to sort by Common Rate (CR), which stands for the common 
extent of two route lines. The CR is calculated as: 

)(

)(
)(

i

n
n RRDistance

RRDistance
RRRC                                    (7) 

where RRn is the candidate route, and RRi is the query route. The 
second method is to sort by duration time of each candidate route. 
A route with less duration will be recommended first. The 
flowchart of the process is shown in Figure 7. 

 

6. EXPERIMENTS DISCUSSION  
6.1 Testing Data 
We test our method based on the GPS trajectory dataset collected 
by Geolife project. This dataset is consisted of 178 users' realistic 
trips over a period of 4 years (from 2007 to 2011). More 
information about this dataset can be found in [15].  

We extracted every user's regular routes from this dataset monthly. 
Some users may have similar RRs during consecutive months, but 
some other users may have different RRs in different months. This 
may happens since a job transfer or the GPS device had changed 
owner. Most of the time, we see all mined RRs as different users’ 
RRs, only if we may make a recommendation between a same 
user. Moreover, to enhance the matching probability, only the 
occurrence time of an RR has been taken into account, without the 
consideration of the date of the route. This means that we may 
make a ridesharing recommendation between two RRs, one 
happened in 2007, and the other happened in 2011 

6.2 Experiment Result 
Figure 8(a) illustrates the total number of original trajectories in 
the dataset. The number of routes after routes processing is shown 
in Figure 8(b). The threshold STthreh is set to 300m, and GTthreh is 
set to 30min. Since most of these data are created in Beijing, 
China, the other data out of Beijing is too few to support a 
ridesharing and have been filtered. That's why most of the route 
numbers are bigger than origin, but some of them become smaller 
after routes processing.  

 

In Figure 9, we compare the influence of the grid size in step 2. 
Figure 9(a) shows two original trajectories, In Figure9 (b-d), 
points are mapped into girds of size 3sec, 10sec, and 20sec 
respectively. Obviously, the smaller the grid size, the larger the 
storage space is needed (just like Figure8 (b)). And the processing 
speed will also be affected by the large data in the following steps. 
But too large a grid size will lose some details of the trajectory 
(just like in Figure8 (d). The ideal size of a grid should be able to 
distinguish two different routes, but also as small as possible. In 
our experiment, we use 10sec as final grids size. 

 
Figure10 illustrates the process of RRs mining. Figure 10 (a) is a 
group of t-Routes which is consisted of 9 routes occurred at 
similar time. Figure 10(b) is the result after grids mapping. The 
RR is extracted in Figure 10(c), and the 3 routes in Figure 10(d) 
are the support routes of the extracted RR. From the results, we 
could see that, our method is robust to slight disturbances in 
trajectory data. This is benefited from the DE-based matching, 
which did not need a complete matching on whole routes. In 
another hand, the method can also distinguish between the 
different routes, as noted in Figure 10(b). 
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In Figure 11, we give another example, where all the trajectories 
are generated by bus. From Figure11 (a), we could see there are 
three buses passing the stop stations near starting and ending 
points. But the three buses had different bus routes, and user may 
take different buses randomly. Accordingly, we mined two 
regular routes within the three bus routes. Only from the result, 
we may think there are two regular routes of the user. But after 
travel mode mining, we find that, both the two routes were 
generated by bus (the FSR of this example has shown in Figure 
6(a)). Thus we only restore the starting and ending points in grid-
based route table for future matching. And this means there is 
only one regular route for the user. 

 
Figure 12 gives all the mined regular routes when Fthre =3 and 
Fthre =8. There are 389 regular routes when we set Fthre to 3, and 
only 31 routes, when set Fthre to 8. Routes short than 2Km has 
been filtered, since they were too short to make a ridesharing. 
From Figure 12(a) we could see the extracted routes match the 
main street in Beijing city well, which is consistent with our 
commonsense. And we could observe that, the regular routes are 
dense in the north of Beijing, especially around the Zhichun Road, 
Haidian District (which has been noted in Figure), where is the 
location of the Microsoft Research Asia. And this is also 
consistent with the owner of the dataset.  

Figure13 shows the effect of using FSR to distinguish traffic 
modes between public transportation and driving. There are only 
69 users who have labeled their trajectories with transportation 

mode in the dataset. Among these users, we mined 89 regular 
routes. Therefore, we only tested our method on this small subset. 
From the result we could see that, when we set the threshold Vthre 

to 17, the accuracy could reach 0.876, which is quite better than 
the accuracy of 0.6 which is obtained by only use the feature of 
SR in [5]. Note that, the velocity is a little higher than our 
common sense of a stop velocity. That’s because this velocity is 
not an instantaneous velocity, but having a different average 
speed on each RFDE.  

 

 

Figure 14 gives several results on routes matching. The ride 
requester has been noted on each figure. The travel mode of the 
two requesters in Figure 14(a) and Figure14 (c) are public 
transport. Thus the recommend routes are all generated by driving 
mode. In Figure 14(b) there are three users who have almost same 
regular routes. Figure 14(d) gives a result, where the travel mode 
of the requester is driving. And we find 3 riders for the driver. We 
noticed that, these riders have different origins and destinations. 
Only one of them will have a whole trip with the driver, and the 
other two riders will either take on or take off at the middle of the 
trip. To our surprise, when set Fthre =3 we successfully find 232 
routes among the 389 routes, which could have a match with 
others. This passed half of the number of the mined regular routes. 
From this point, we also demonstrate that a significant increase of 
the road availability could be made, while ridesharing becomes 
popularized.  

In Table 2, we give the storage requirement of the proposed 
method. The first row is the number of records, and the second 
row is the storage ration between the numbers of the original 
dataset. Obviously, the final gird-based route table is a tiny subset 
of the original dataset. And since regular route mining is 
independent between users, we don’t need to store the data during 
preliminary steps. The storage requirement of this method is quite 
lightweight.  

7. CONCLUSION 
This paper presents an approach to mine regular route from a 
user’s historical GPS trajectories for ridesharing 
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recommendations. In this method, we build GPS data into grid-
based directed edges, and divide trajectories into individual routes. 
A sliding window is used to group routes which occurred at 
similar time of day. To discover every user's regular routes, a 
frequency-based regular route mining algorithm is proposed. This 
algorithm is considered from the following three aspects. Firstly, 
each part of a regular route must be visited frequently. Secondly, 
a regular route should be frequently visited by some complete 
routes called support routes. Finally, most parts of a support route 
must pass through the frequently visited regions. The other 
contributions of this paper contain: A new feature is identified to 
distinguish travel modes between public transportation and 
individual driving; a grid-based route table is established for a fast 
ridesharing recommendation. The proposed method is evaluated 
on a real-world GPS dataset, which is consisted of 178 users over 
a period of 4 years. The experiment results demonstrated the 
effectiveness and robustness of the proposed method. 

Ridesharing recommendations from GPS trajectories can be seen 
as a kind of personal optimizing service, which could further 
motivate users to record and upload GPS data, and may help to 
improve users experience on ridesharing. But in this work, we 
only considered the situation, in which driver and rider both pass 
through a nearby origin and destination region. In fact, there are 
many other types of ridesharing. For example, for some users, 
maybe we could not provide a complete matched ride route, but 
we could find a route which reaches at his/her nearest subway 
station. More flexible ridesharing strategies will be considered in 
our future work.  

 

Table 2. Storage Cost of the Mehod 

Orig. 
points 

After stay 
points delete 

After points 
grouping 

After RR 
extraction 

Grid-based 
routes table

23667828 16013562 1050313 21544 3674 

1 0.676 0.044 0.0009 5x10-8 
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ABSTRACT
A basic task of urban mobility management is the real-time moni-
toring of traffic within key areas of the territory, such as main en-
trances to the city, important attractors and possible bottlenecks.
Some of them are well known areas, while while others can ap-
pear, disappear or simply change during the year, or even during the
week, due for instance to roadworks, accidents and special events
(strikes, demonstrations, concerts, new toll road fares). Especially
in the latter cases, it would be useful to have a traffic monitoring
system able to dynamically adapt to reference areas specified by
the user.

In this paper we propose and study a solution exploiting on-board
location devices in private cars mobility, that continuously trace the
position of the vehicle and periodically communicate it to a central
station. Such vehicles provide a statistical sample of the whole
population, and therefore can be used to compute a summary of
the traffic conditions for the mobility manager. However, the large
mass of information to be transmitted and processed to achieve that
might be too much for a real-time monitoring system, the main
problem being the systematic communication from each vehicle to
a unique, centralized station.

In this work we tackle the problem by adopting the general view
of distributed systems for the computation of a global function,
consisting in minimizing the amount of information communicated
through a careful coordination of the single nodes (vehicles) of the
system. Our approach involves the use of predictive models that
allow the central station to guess (in most cases and within some
given error threshold) the location of the monitored vehicles and
then to estimate the density of key areas without communications
with the nodes.

1. INTRODUCTION
In the context of urban mobility management, a basic task re-

quired by administrators is the monitoring of traffic within a vari-
ety of key locations: main gateways to the city, important attractors
and possible bottlenecks. Some such locations ar well known, and
therefore a monitoring environment can be set up by means of road-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
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side sensors (including cameras), although set up and maintenance
costs might be significant for large cities. Other key areas can ap-
pear, disappear or simply change with time, due to seasonality or
special events. For instance roadworks, accidents or events such
a strikes, demonstrations, concerts, new toll-road fares can change
the status of the city, and make some areas more critical than usual.
In these cases, it would be useful to have a traffic monitoring sys-
tem able to dynamically adapt to reference areas specified by the
user.

A solution can come from recent, growing trends in the deploy-
ment of on-board location devices in private cars mobility. Such
devices continuously trace the position of the vehicle, and peri-
odically communicate it to a central station, that stores it. Such
vehicles provide a statistical sample of the whole population, and
therefore can be used to compute a summary of the traffic condi-
tions for the mobility manager. The analytical power of detailed
and massive GPS trajectory in unveiling the patterns of human mo-
bility behavior data has been shown in [1]. However, the large
mass of information to be transmitted and processed to achieve that
might be too much for a real-time monitoring system, the main
problem being the continuous communication from each vehicle to
a unique, centralized station. In this paper, we use a massive tra-
jectory dataset consisting of approx. 1.5 million travels, sampled at
a high rate from more than 40,000 private cars tracked for a month
in a 50 square km area in Tuscany, Italy — a dataset which clearly
illustrates the computational and economic challenge of continuous
transmission to a central server.

Recently, safe zones were introduced as a principled mechanism
for the efficient distributed computation and monitoring of a global
aggregate function, consisting in minimizing the amount of infor-
mation communicated through a careful coordination of the indi-
vidual nodes (vehicles, in our domain) [2, 3]. The basic idea is
that each node is instructed on how to check locally whether its
changes of position can have a relevant impact on the global func-
tion, or not. In the negative case, no communication is needed. Of
course, that implies a reasonable definition of relevant impact, as
well as some computational capability at the node level to check it.
The safe zone idea, realized through clever computational geomet-
ric methods, has the potential of drastically reducing the number
of communications between the distributed nodes and the central
station, and we checked empirically that this is the case also in our
urban mobility setting.

In this paper, we ask the following question: can the amount of
needed data transmissions from distributed cars to central station
be further reduced by taking into account the regularity of human
mobility? We know that the way people move is highly predictable:
we tend to follow daily routines, dictated by our social constraints,
so that the degree of entropy of our whereabouts very small, as
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shown by many recent empirical studies on large scale data on hu-
man mobility patterns and profiles [4, 5, 6]. Our idea is conse-
quential: if human travel is often systematic and repetitive, we can
exploit such regularity to avoid transmitting data whenever we fol-
low our routines, and instead transmit when we are movements are
outside our typical behavior. In this sense, our aim is to exploit the
fact that the distributed system of cars and central station is techno-
social, and therefore it follows not only general laws dictated by
geometry and mathematics, but also statistical laws dictated by hu-
man behavior. We want to use both properties to optimize the dis-
tributed computation, and empirically measure the obtained results
over realistic scenario. We describe in this paper how to achieve
this goal based on mining different kinds of mobility profiles from
the GPS trajectory data, and show how this novel data-driven ap-
proach significantly improves over the safe-zone approach.

2. RELATED WORKS
The topic of this paper lies at the crossroad of two research fields:

the distributed computation of global functions (a specific instance
of which is treat in this work), and the computation of predictive
models for mobility.

The global function considered in this paper is essentially a sum
of variables, each of them derived from the location of an object.
Existing works in literature provide solutions for this case, for in-
stance [2] deals with the problem of checking whether a linear sum
of variables crosses a given threshold, and develops conditions that
allow the central node to correctly test the threshold check even if
some node does not communicate its latest values. More recently,
also some general approach for very general classes of functions
have been proposed in [3], essentially allowing any function that
can be expressed as f(x̄), where x̄ is the average of the individ-
ual vectors of variables (one vector for each node of the network)
and f is any function. The latter is based on the concept of Safe
Zones, i.e. sets of values that an individual vector of variables can
assume without affecting the global function significantly, i.e. as
long as the vector lies within its Safe Zone, the global function is
guaranteed not to cross the threshold even if the coordinator still
uses older values of the vector. The Safe Zone approach works
particularly well when the individual vectors are expected not to
change too much in time, while they might be less effective when
significant variations are common. In the specific context consid-
ered in this paper, the individual vectors are locations of vehicles
and derived quantities, which typically can have large variations
during the day, therefore the Safe Zone approach is expected meet
efficiency issues. Similar considerations have been performed in
[7], in the area of distributed query tracking. Their basic idea con-
sists in combining data compression methods for limiting the size
of the transmitted data (namely, sketches) with a predictive model
that allows to avoid communication whenever a node behaves as
expected. In our work we try to merge the Safe Zones ideas (though
limited to the simplest case, since we deal with a linear function)
with the use of predictive models suitable for mobility data.

The kind of predictive model required by our application should
describe the expected mobility of a moving object throughout a typ-
ical day. Therefore, we are interested in extracting periodic patterns
of movements, that link the routes followed with their time within
the period (e.g. the hour of the day). In literature, the work in [8]
approaches this problem by partitioning the period (e.g. the day)
into time slots (e.g. hours), and defining a periodic pattern as a de-
scription of a representative location for each time slot (or * if no
such representative can be found). Another approach, described in
[5], consists in looking for typical trips, i.e. trips that repeat them-
selves approximately several time in the history of an individual,

Figure 1: Example of vehicle density estimation for a reference
point RP1, on a single dimension, with a Gaussian kernel.

thus considering whole routes. The basic analytical methods derive
from trajectory mining tools previously developed and combined
into the M-Atlas framework [1]. Both approaches – location-based
and route-based – are considered in this paper, adapted to our con-
text and experimentally compared.

3. PROBLEM DEFINITION
Our reference application consists in evaluating the density of

vehicles in correspondence of a given set RP of nRP points in
space, called reference points. In particular, density is estimated
through a kernel-based approach, i.e., the density in a point is com-
puted by counting all vehicles in space, yet weighted according to
their distance from the point.

The application involves a central controller that computes (or
estimates) the vehicle densities, and a set of nodes, each repre-
senting a vehicle. Each node receives a stream of location updates
(coming from the on-board GPS device) and communicates the new
location to the controller whenever needed to keep the global den-
sity estimates correct.

Definition 1 (DMP: DENSITY MONITORING PROBLEM).
Given a set RP = {RP1, . . . , RPnRP } of nRP reference points,
a set V = {V1, . . . , VnV } of vehicles and a kernel function K(.),
the density monitoring problem consists in computing, at each time
instant, the function fDMP (V ), defined as fDMP (V ) = [K1, . . . ,
KnRP ]T , where:

∀1 ≤ i ≤ nRP . Ki =

nV∑

j=1

K(V xy
j −RP xy

i ) (1)

Here, V xy
j ∈ R2 and RP xy

i ∈ R2 represent, respectively, the
actual position of vehicle Vj and the position of reference point
RPi.

In this paper the kernel function used is a Gaussian as shown in
Figure 1 where the the DMP for a single reference point is repre-
sented as sum of the contributions given by six vehicles.

Whenever the number nV of vehicles or their location update
frequency (or both) reach high values, it is necessary to trade the
exactness of the estimation defined above with a reduction of in-
formation exchange and processing. The loss of precision, in our
context, is bounded by a parameter ε, that represents the deviation
from the exact output for the DMP.

Definition 2 (ADMP: APPROXIMATE DMP). Given a DMP
with reference pointsRP = {RP1, . . . , RPnRP }, vehicle set V =
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{V1, . . . , VnV } and kernel function K(.), and given an error tol-
erance parameter ε, the approximate density monitoring problem
consists in computing, at each time instant, a function fADMP (V )
that approximates fDMP . In particular, given the following error
function:

error(KA,K) =
nRP
max
i=1
|KA

i −Ki|

where K = fDMP (V ) and KA = fADMP (V ), it always holds
that error(fADMP (V ), fDMP (V )) ≤ ε.

In other words, given an error threshold ε we require that the
density estimate of each single RP provided by fADMP differs at
most of ε from the corresponding value provided by fDMP .

Solving a DMP or a ADMP consists essentially in defining a
process able to satisfy their requirements in every possible status
and evolution of the overall system. The latter aspect can be mod-
eled by a stream of status changes that each node senses during the
monitoring period; the “process”, then, basically defines a proto-
col used by nodes and controller to communicate only the essential
information needed to satisfy the requirements of the (A)DMP.

In this paper several different ADMP solutions will be explored,
in order to evaluate the impact of applying different levels of in-
telligence (in particular, learning from history) and usage of back-
ground knowledge.

4. BASIC APPROACHES FOR DISTRIBUTED
DENSITY MAP MONITORING

Level 0: Communicate all
The trivial solution to the ADMP problem consists in having all
the nodes sending an update to the controller for each update they
receive. Obviously, that allows the controller to produce a perfect
estimate of the global function (it actually yields a solution for the
DMP problem, equivalent to ε = 0), since it always knows the ac-
tual value of the variables it involves, at the price of communicating
everything.

Level 1: static Safe Zones
This solution follows strictly the ideas based on Safe Zones [3], and
therefore assumes that most objects are static or most of the time
they move around some specific points in space, such as the home
or work location. The basic idea, then, is to define a default location
for each object v, and when no update arrives to the controller, it
assumes that v is inside its default location.

More concretely, through analysis of historical data each node
can be assigned to an optimal location that is used as its default po-
sition; then, basically the controller computes densities assuming
that each node lies in its default position. Each node has assigned
a geographical area such that, as long as it moves within that area
the value computed by the controller is still a good approximation
(w.r.t. the error threshold ε provided as parameter of the applica-
tion). When the node moves outside its given area, it communicates
the location update to the controller, which will use it to compute a
correct estimation.

However, the context of mobility is characterized by massive and
rapid changes in the data, since locations are highly dynamic, mak-
ing this approach inadequate. For this reason, we will not further
consider it, and instead will propose a variant that (in principle)
better fits our scenario.

Level 2: adaptive Safe Zones
The basic assumption behind this approach is that the objects are
not necessarily static, yet their movements are relatively slow. As

an effect, when an object visits a given location, its associated re-
gion (see description of static Safe Zones above) will most likely
contain several of the next locations of the object, yet no single
location is able to capture a large part of the mobility of the object.

The protocol works as for static Safe Zones, but when an update
must be communicated, the node is assigned to a new default loca-
tion and to its corresponding geographical area, computed around
its most recent measured location. Recomputing a new region (es-
sentially, a new Safe Zone) is made possible and easy by the lin-
earity of the global function to monitor (a sum of contributions),
which enables to modify the Safe Zone of a node without compro-
mising those of other objects. This kind of approach is much more
problematic in contexts where the global function is more com-
plex, since in those cases a change to a single object might involve
changes to several other objects to reach an overall balance.

5. DISTRIBUTED DENSITY MAP MONITOR-
ING BASED ON PREDICTIVE MODELS

Since recent studies on human mobility claim that the latter is
dominated by regular movements and therefore is highly predictable
[4], here we analyze a segment of recent history of each node, in
order to identify its regularities and use them as models to predict
their locations in the next future. In particular, two variants of this
idea are considered:

Most Frequent Location (MFL): we assume that the average user
tends to visit (or cross) everyday the same places at the same
hour of the day, therefore we look for single spatio-temporal
locations that occur frequently, i.e., in many different days
of the period. In this approach we do not try to link the
frequent locations of a node, therefore the predictive model
might contain consecutive sequence of locations that do not
form consistent trajectories.

Mobility Profiles: here we make a stronger assumption, i.e. that
the user tends to repeat the same trips everyday (home-to-
work, and vice versa, for instance), thus involving an higher
level concept of frequent trip, that requires a coherent se-
quence of spatio-temporal locations.

Both approaches create a typical daily schedule of each user,
possibly with gaps for those moments of the day where the his-
torical data did not reach a consensus on which location/trip to as-
sociate to them. The protocol, then, consists in letting the controller
use at each instant the location predicted by the predictive model.
In case of gaps (therefore no suggestion is provided by the predic-
tive model) a default model is applied whose prediction is equal
to the last known real location of the object. This is equivalent to
adopt an adaptive Safe Zones solution limited to the gaps.

We remark that the Mobility Profiles approach implicitly adds a
coherence constraint in the predictive model generation, therefore
it will tend to produce predictive models with more gaps than the
Most Frequent Location approach, yet the predictions provided are
more likely to be reliable. Essentially, here we trading coverage for
accuracy (to use information retrieval terms), and it is not clear a
priori which solution might yield the best trade-off.

We collectively name the approaches mentioned above as proto-
cols of the family Level 3: predictive models. In the following we
describe the extraction and usage of the two variants.
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5.1 Level 3.1: Most Frequent Location

5.1.1 MFL definition
In order to exploit the mobility habits of people, we start to build

schedules of expected behaviors by using their most frequent vis-
ited locations. To do so, we need to acquire mobility information
during a training period where the learning of habits will take place,
then define frequency thresholds and build for each user a schedule
that associates each time slot of the day to the most frequent loca-
tion that occurred in that time slot throughout the training period,
filtering out those locations that have an insufficient frequency w.r.t.
the given threshold. The kind of model built with this approach is
similar to the one described in [8].

Definition 3 (MFL USER DAILY SCHEDULE). A MFL sched-
ule is defined as the time-ordered set of the most frequent locations
visited by an user within a specified observation periods. The daily
schedule is discretized in time slots of equal durations.

In order to identify what are the most frequent locations, de-
fined by their GPS coordinates, we impose two constraints: (i) a
time constraint, (ii) a spatial constraint. These two information are
needed to build and align the daily schedule of a user.

Definition 4 (TIME SLOTS). To determine to which time in-
terval belong each single location we split each day in several slots
of the same size. We define ∆t as the time span that identifies the
width of time frame reserved to each slot.

Once defined a set of time slots we assign to each of them the set
of locations visited by the user during the time slot. From this set
we want to obtain a single representative location. A wide set of
alternatives are possible to decide which location to choose as rep-
resentative of the set (compute the center of mass, took the centroid,
etc.). In this paper we choose to maintain the most dense location,
i.e. the location that has the largest number of observations close to
itself.

Definition 5 (SPATIAL RADIUS, NEIGHBORS). Given a thresh-
old ∆s, called spatial radius, two locationsA andB are considered
neighbors if ||A− B||∞ ≤ ∆s, i.e. all their coordinates differs at
most by ∆s.

5.1.2 MFL extraction
Once we have for a specified user a complete schedule of the

visited locations during different days we need to synthesize a gen-
eral schedule. In order to do it, we align all the daily schedules by
collecting for each time slot all the observed locations that corre-
spond to the time slot over the whole period; then, we calculate the
most frequent location for each time slot. To avoid situations where
the most frequent location appears only in a small fraction of the
analyzed period, we impose a minimum support threshold.

Once this model is built we can use it as a proxy for the user
mobility behaviour to the extent of predicting the location in which
the user will be at a given time.

5.1.3 MFL-based prediction
The prediction phase rely on a direct query to the MFL schedule

for the desired user. Given a query, defined as couple (u, t) com-
posed by the user u and a timestamp t, we map t into the relative
time slot and retrieve the MFL for the user u in that time slot, if
it is defined. If a MFL for timestamp t does not exist, we apply
a default model, that always suggests the last known location (i.e.,
the last one communicated to the controller).

5.2 Level 3.2: Mobility Profiles

5.2.1 Mobility profiles definition
We recall the concepts introduced in [5] where the user’s his-

tory is defined as ordered sequence of spatio-temporal points H =
〈p1 . . . pn〉 where pi = (x, y, t) and x, y are spatial coordinates
and t is an absolute timepoint. This history contains different trips
made by the user, therefore in order to distinguish between them we
need to detect when a user stops for a while in a place. This points
in the stream will correspond to the end of a trip and the beginning
of the next one:

Definition 6 (USER’S TRIPS). Given the history H of a user
and the thresholds thstop

spatial and thstop
temporal, a potential stop is de-

fined as a maximal subsequence S of the user’s history H where
the points remain within a spatial area for a certain period of time:
S = 〈pm . . . pk〉 |0 < m ≤ k ≤ n ∧ ∀m≤i≤kDist(pm, pi) ≤
thstop

spatial ∧ Dur(pm, pk) ≥ thstop
temporal. Finally we define a trip

as the subsequence T of the user’s history H between two consec-
utive stops in the ordered set S or between a stop and the first/last
point of H .

where Dist is the Euclidean distance function defined between the
spatial coordinates of the points, and Dur is the difference in the
temporal coordinates of the points. Our objective is to use the user’s
trips in order to find his/her routine behaviors, this can be done
grouping together the trips using a spatio-temporal distance func-
tion and extracting the medoid trip:

Definition 7 (ROUTINE). Given a trip group g with at least
thsupp elements and the distance function δ used to compute it, its
routine is defined as the medoid of the set, i.e.:

routine(g, δ) = arg min
t∈g

∑

t′∈g\{t}
δ(t, t′)

where thsupp is the minimum size threshold used to reeve small
groups which are not considered useful. Now we are ready to define
the users mobility profile as the set of routine discovered over the
history of the user:

Definition 8 (MOBILITY PROFILE). Given a set of trip groups
G of a user and the distance function δ used to compute them, the
user’s mobility profile is defined as his/her corresponding set of
routines:

profile(G, δ) = {routine(g, δ) | g ∈ G}

The mobility profile in other word represents a summarization
of the movements of the user discarding the small variations which
appear occasionally in his history.

5.2.2 Mobility profiles extraction
The extraction of mobility profiles from the user history is imple-

mented as a sequence of modules which realizes the steps described
above: Stop detection, Trip generation, T-Clustering equipped with
a spatio-temporal function called Synch Route Similarity. The first
module analyzes the user’s history checking if the spatial distance
between two consecutive points is lower than the threshold thstop

spatial,
when this happens the modules incrementally checks, and eventu-
ally stores, the following points until the constraint is not satis-
fied anymore. At the end of this process the module checks if the
the sequences found satisfy also the temporal constraint using the
thstop

temporal threshold, if this is satisfied the sequence will be con-
sidered as a stop for the user. The second module builds the trip
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Figure 2: An example of mobility profile extraction: (a) The entire set of trips of a user, (b,c) the two clusters extracted, and (d) the
remaining trips which are not periodic.

as sub-sequences of points between the begin and the first stop,
each two consecutive stops and between the last and the end of
the history. The last module runs a density-based algorithm called
T-Clustering [9] using a spatio-temporal distance DSRS which is
a slight modification of the Route Similarity. This distance func-
tion starts comparing the initial timepoints of the two trips and it
the temporal distance between the two are more than a give thresh-
old (i.e. one hour) it returns an infinite distance without any fur-
ther computation, otherwise it returns the distance computed as the
route similarity. To obtain the clusters the T-Clustering algorithm
checks if the following predicate is satisfied:

DSRS(t1, t2) ≤ (t1.lentgh+ t2.length) ∗ cPRadius

where cPRadius is a the Spatial Profile Radius representing the tol-
erance used in the profile construction.

At the end of the process the clusters are filtered by their size,
defined as number of trips, using the thsupp threshold. Finally,
from each survived clusters a medoid is extracted and grouped ob-
taining the mobility profile of the user. In Figure 2 a real example
is presented: here the user’s trips are shown (a) including both the
systematic and occasional ones, in (b) and (c) the two clusters ex-
tracted are presented showing a group of trips which are similar and
synchronous, and in (d) the other trips which are the occasional
movements that will be not considered. It is important to notice
how the two clusters are very similar but reversed in the direction,
this is usual due the fact that a big percentage of the users have two
main reasons to move: going from home to work and viceversa.

5.2.3 Mobility profile-based prediction

Figure 3: A profile composed by three routines. Only part of
the day is covered, while holes are filled by the default model

Having extracted the user’s mobility profile, we want to use it to
predict the user’s position at a certain time. It is important to notice
that a mobility profile does not necessarily cover the whole daily
schedule of a user. Let consider the two possible cases shown in

Fig.3: (i) the prediction is made for the time instant t1, correspond-
ing to a period of the day where the profile is defined, and (ii) the
prediction is made for the time instant t2 corresponding to a period
of the day where the profile is not defined.

In the first case the prediction will be the spatial interpolation be-
tween the two temporally closest points which surround t1, namely
p1 and p2. In the other case the prediction will be the last known
point of the routine preceding temporally t2, namely p3. This corre-
sponds to adopt a default model that always suggests the last known
location, as done for MFL.

6. EXPERIMENTS
In this section we evaluate the different approaches presented in

the paper, measuring the communications they save over the trivial
protocol (“communicate all”).

6.1 Dataset description
The dataset used in the following experiments is produced by a

set of 40,000 cars, which represents the 2% of circulating cars in
the coastal area of Tuscany. These points were tracked using GPS
receivers with a sampling rate of 30s and a positioning system error
of 10-20m in normal conditions over a period 5 weeks. The area
covers a large territory with mixed land usages (residential areas,
industrial zones, countryside, suburbs, etc.). The dataset was col-
lected by Octotelematics S.p.A.[10], and a small sample is shown
in Figure 4. Previous experiences on this data source (e.g. [1])
provided strong evidence of its validity and representativeness.

6.2 Experiment setup
A crucial aspect of the application is the position of the RPs in

space. In order to test the effectiveness of the methods on a real
scenario, we decided to use the positions of a set actual sensors
used by the mobility agency in Tuscany, placed on the main gates
of the city of Pisa plus one over the main bridge of the city center
and two on two important neighboring towns. In Fig.5 the complete
set of sensors is shown, and in Fig.6 a detail of Pisa is shown where
each entrance of the city is monitored. The physical devices placed
on the territory are permanent sensors based on laser technology,
which can count the number and estimate the speed of cars passing
nearby.

The testing of the methods presented in this paper requires to
consider the following kinds of parameters:

• data-dependent parameters: in particular, we consider the
sampling rate of the input GPS data in terms of average time
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Figure 4: Sample of the dataset used for experiments

Figure 5: Location of RPs adopted in the experiments, and
buffers representing kernel widths for the density computation

Figure 6: A detailed view of the sensors and the focal area in
the city of Pisa

gap between consecutive location updates received by the ve-
hicles. Where not explicitly mentioned, the sampling rate
will be set to the default value of one point every 5 minutes
(average);

• application-dependent: beside the set of RPs, which was cho-
sen and fixed above, the application requires to specify (i) the
width of the kernel adopted in computing the density over
each RP, and (ii) the maximum (absolute) error tolerated in
computing such densities. The width of the kernel is ex-
pressed as the distance for the vehicle at which its weight in

the density computation is equal to 0.1. Where not explicitly
mentioned, such width is set to 4 km. The error threshold,
instead, is set to 5% of the overall average density of all RPs;

• predictive model-dependent: each predictive model is built
on the base of its own parameters. In particular, we will
explore the impact of the model spatial radius used, which
defines how accurate must be the model. The lower is the ra-
dius, the higher is the accuracy but also the higher is the num-
ber of gaps in the model, since it is more difficult to find sat-
isfactory predictive models. Where not explicitly mentioned,
the spatial radius for the Most Frequent Location model is set
to 1 km, and the Profile spatial radius is set to 0.3. Moreover,
the temporal granularity adopted in MFL (i.e. the ∆t used
to define time slots) is set to the double of the data sampling
rate, in order to have on average two points for each time
slot.

In the following sections we will study the impact of the ap-
proaches proposed, and provide some spatial exploration of the re-
sults.

6.3 Data sampling rate
In this section we present an overall study of the performances

of the system using the different methods discussed in the paper,
compared against the trivial protocol Level 0 (“communicate all”).
In Fig.7 we show the communication rates varying the sampling
rate of the data:

Adaptive SZ : the increasing trend shows that the adaptive Save
Zones solution is affected by the sampling rate. Indeed, longer
temporal gaps between location updates means an higher spa-
tial distance between them, rising the probability of crossing
the actual Safe Zone, and therefore requiring to communicate
and update the Safe Zone more frequently;

MFL : we can see that the communication rate increases very
quickly, due the fact that with an higher sampling rate the
method cannot find (dense) groups in the time intervals. This
affects mostly the MFL models of users with a small number
of points, which become less stable or disappear completely;

Profiles : the Profiles-based solution appears extremely stable while
changing the sampling rate, thanks to the fact that it tries to
find a systematic whole trip of the user, with the result that
the profiles which are extracted with different sampling rates
are composed by less points but maintain their semantics, i.e.
they still describe the same trip (though less accurately).

6.4 Application-dependent parameters
The impact of these parameters is very regular. Therefore, due

to space limitation, we simply summarize their overall effect.
The width of the kernel (expressed as a distance, as described

above) was studied in the range of values between 1 km and 10 km.
In all methods applied, the communications increase monotonically
with the kernel width.

Similarly, the density error threshold was studied in the range
of values between 1% and 10% of the overall average of densities
over all RPs. In all methods applied, the communications decrease
monotonically with the error.

6.5 Model-dependent parameters: MFL
Fig.8 shows the number of MFL models created while changing

the spatial radius parameter, hence the number of users which has a
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Figure 7: Overall analysis of the four methods varying the sam-
pling rate of the data.

Figure 8: Number of MFL models created by the nodes using
different tolerance values.

frequent behavior in at least a time interval. The trend is clearly in-
creasing and tends to reach saturation. However, as shown in Fig.9,
this does not mean that the performances of the method increase as
well, in fact the total communication rate slightly increases with in-
creasing tolerances, highlighting the fact that the MFL models cre-
ated are not good in the prediction. The figure also shows the ratio
of updates for which MFL could be applied (i.e. MFL provided a
prediction) with success, thus saving a communication. Similarly,
it shows the ratio of updates for which MFL could not apply, yet
the default model successfully avoided the communication. We can
see that the two ratios are rather symmetric, therefore resulting in
overall very stable communication savings.

6.6 Model-dependent parameters: Profiles
In this section we present the performances obtained using the

Profiles approach. As described in Section 5.2 here during the ini-
tial phase each node builds a profile and sends it to the controller.
Then, when the system starts, the nodes check if their actual posi-
tions are coherent with their profiles. If not, they communicate to
the controller, otherwise nothing is communicated, since the con-
troller can predict the position using the profiles. In Fig.10 we show
how the Profile spatial radius value changes the number of profiles
extracted during the initialization phase: increasing the radius the
number of profiles increases, i.e. the number of nodes who have a
profile. Indeed, higher radii make the similarity between the user’s
trips less strict, thus making the formation of groups and profiles
easier. It is interesting to notice how the number have a big in-
creasing when the radius passes from 0.3 to 0.5 detecting a crucial

Figure 9: MFL performances compared to adaptive Safe Zones
approach and the communication saved by MFL and default
model.

Figure 10: Number of profiles created by the nodes using dif-
ferent tolerance values.

Figure 11: Profiles and adaptive Safe Zones performances and
communication saved by profiles and default model.

point for the profile construction. Having more profiles does not
mean to have better performances. Indeed, loose profiles lead to
loose predictions. This can be seen in the Fig.11 where the perfor-
mances of the system remain almost the same even if the number of
nodes with a profile increases. Moreover, with radius equal to 0.3
the performances decrease, meaning that a critical point is reached
and the profiles become too loose and the errors in profile predic-
tion becomes higher. If Fig.11 we compare the performances of the
profile approach against the adaptive Safe Zones. As we can see,
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Profiles gain a saving of 6.5%, meaning that the concept of profiles
actually produces significant benefits. More in detail, analyzing the
communications saved by the profiles and the default model (used
when there is no profile to apply) we can see that profiles tend to
replace the default model, improving the overall performances.

6.6.1 Spatial exploration of results
In this section, we provide an exploration of the performance

results on the map. Fig.12 shows where the relative errors occur
during the execution of the system. The color scale goes from red,
representing a big percentage of errors, to blue which represents a
small percentage of errors. Clearly, the error percentage is affected
by the proximity to the RPs, in fact the error threshold is more likely
exceeded in proximity of each focal point where the kernel function
reaches the maximum. In other words, in those areas a small error
in the location prediction leads to a big error on the density com-
putation, therefore causing more likely a communication from the
node to the controller. Fig.13 shows a detailed view of the city at

Figure 12: Distribution of relative errors occurred during the
system execution.

Figure 13: A detailed view of the relative error distribution in
Pisa city using a smaller granularity.

a finer granularity, which is covered by several RPs. It is clear how
the distribution of the errors in space is not homogeneous, in fact
the city center (where an RP is placed) seems to be less affected by
errors than the main gates and their relative roads.

7. CONCLUSIONS
In this work we developed and compared several approaches to

the problem of computing population density over key areas in a
distributed context, trying to reduce as much as possible the com-
munication required. The approaches mainly differed for the way
they tried to exploit the recent history of the moving objects in-
volved, in some cases by estimating an optimal static default loca-
tion for each object, in other cases by learning their mobility habits
and exploiting them as prediction means. The experimental com-
parisons performed provided several insights on the effectiveness
of each approach, in many cases with surprising outcomes.

Several new questions and open issues arose during the develop-
ment of this work. We mention three of them: (i) since the compu-
tation involves potentially sensible information about individuals,
can the proposed framework be made privacy-preserving? (ii) are
there parts of the map more difficult to "learn"? E.g. highways
are expected to be difficult, due to the high presence of occasional
trips and occasional passers-by; (iii) if taken collectively, individual
non-systematic behaviors might form typical paths, e.g. vehicles on
the highways: how to integrate them in the framework? Aspects to
consider on this way include the fact that typical paths cannot be as-
sociated to the vehicle ID (therefore there must be a different way
to choose a "model" for a given model-less vehicle, such as prefix
match), and to mine typical paths it is needed a centralized compu-
tation, therefore nodes might send to the controller, for instance, all
trips not described by a profile.
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ABSTRACT   
Urban geographers, planners, and economists have long been 

studying urban spatial structure to understand the development of 

cities. Statistical and data mining techniques, as proposed in this 

paper, go a long way in improving our knowledge about human 

activities extracted from travel surveys. As of today, most urban 

simulators have not yet incorporated the various types of 

individuals by their daily activities. In this work, we detect 

clusters of individuals by daily activity patterns, integrated with 

their usage of space and time, and show that daily routines can be 

highly predictable, with clear differences depending on the group, 

e.g. students vs. part time workers. This analysis presents the basis 

to capture collective activities at large scales and expand our 

perception of urban structure from the spatial dimension to 

spatial-temporal dimension. It will be helpful for planers to 

understand how individuals utilize time and interact with urban 

space in metropolitan areas and crucial for the design of 

sustainable cities in the future.   

Categories and Subject Descriptors 

H.2.8 [Database Applications]: data mining, spatial databases 

and GIS; I.5.3 [Clustering]: clustering algorithms and similarity 

measures. 

General Terms 

Algorithms, Design, Measurement, Human Factors, Performance 

Keywords 

Urban spatial-temporal structure, Human activity intensity, Kernel 

density estimation, Time-cumulative spatial activity density, 

Computational social science 

1. INTRODUCTION 
Cities, home to billions of people, are complex systems [1, 2]. For 

decades, urban spatial structure, measured by the degree of spatial 

concentration of population and employment, has been studied by 

urban scholars to describe the structure and organization of cities, 

and their function and role in people’s life [3-5]. On the one hand, 

with the improvement of transportation systems, cities have 

evolved from monocentric to polycentric forms in their spatial 

configurations [3, 6-8].  On the other hand, with the advances in 

information and communication technologies (ICT), cities have 

been racing to be “smarter”, in terms of their human, social, and 

environmental capital profiling [9, 10]. As a result, today swelling 

cities have become incidentally data repositories of human 

activities (gained from the emerging massive urban sensors such 

as GPS, mobile phone, and online user-generated social media). 

These facts, plus the spectacular ability of researchers to collect 

and analyze data, have helped us understand the nature of human 

mobility (e.g., high predictability in daily routine [11, 12]) and the 

dynamics of cities [13, 14], and provided a great potential for 

planners to optimize the value of existing infrastructures in the 

city [15]. 

While celebrating opportunities these massive urban sensing data 

bring to us, researchers have also realized challenges of adopting 

them, due to privacy and legal restrictions and economic 

constrains. With little or no information about either the social 

demographic characteristics of the individuals or the types of 

activities they are conducting, our understanding of the causes and 

underlying reasons of human behavior are still inadequate [16]. 

For example, in the study by Becker et al. [17], although it is 

promising to see plausible estimates of the spatial distribution of 

residence by users of different phone usage patterns (e.g., 

classified “workers” or “partiers”) based on call detail records 

(CDR), we still cannot get a complete picture of human activities 

in non-home/work categories, as it is hard to infer or validate 

those types of activities from the CDR data. Yet since cities have 

been playing increasingly important roles as consumption centers 

[18], urban planners are pressed to know how cities are used by 

different types of people for different types of activities. Given the 

nature of these urban sensing data (such as CDR), similar 

challenges are faced by other studies (e.g., Eagle et al. [19]),  

where non-home/work activities are hard to be differentiated. 

Meanwhile, it is also unclear how knowledge gained from 

targeted groups of communities (e.g., universities [19]) may apply 

when the scale is enlarged to metropolitan area and beyond. 

Activity-based travel surveys collected by planners to develop 

transportation and activity models for cities, on the other hand, 

have the potential to complement the new insights in human 

activities and mobility gained from massive urban sensing data as 

discussed above. If responded accurately, travel surveys can 

inform us about “who, what, when, where, why and how of travel 

for each person in a surveyed household” [20]. These questions 

have been in the center of urban planning, geography and 
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transportation fields for decades [21-26], due to their importance 

in helping us understand the complexity and dynamics of cities. 

In this paper, we concentrate on numerical methods to mine the 

spatial-temporal activity patterns of individuals obtained from a 

recent travel diary survey in the Chicago Metropolitan Area. The 

advances of this study lie in three folds.  

First, we expand the traditional understanding of urban structure 

from spatial dimension based on static density of population to 

spatial-temporal dimension, which we call urban spatial-temporal 

structure. We measure this structure by defining a spatial 

distribution of activity intensity with temporal information 

extracted from the travel survey data.  

Second, we cluster individuals according to their daily activity 

patterns and spatial-temporal traces. By doing so, it enables us to 

go from the traditional classification of individuals as students, 

workers and other types to more diverse groups, and enriches our 

understanding about human activities in the city. Combining the 

clusters of individuals with the spatial dimension, we identify sub-

regions of the metropolitan area with inherent connections to the 

performed activities.  

Finally, we combine the above measures together to analyze and 

visualize the time-cumulative spatial densities of various activity 

types by sub-regions of Chicago for different types of individuals. 

By comparing the spatial distributions of the intensity of various 

activities, we demonstrate that enormous information about urban 

spatial-temporal structure can be quantitatively analyzed and 

vividly illustrated. It will be very useful for urban planners to 

understand how urban areas have been used in space and time by 

different types of individuals, and will be crucial for them to 

propose solutions for sustainable cities.  

2. DATA SOURCE AND STUDY AREA 
To understand the urban spatial-temporal structure, in this 

research, we study the Chicago Metropolitan Area as an example. 

We employ a publicly available large-scale “Travel Tracker 

Survey” 1  conducted by the Chicago Metropolitan Agency for 

Planning (CMAP) in 2008 [27]. As this survey is designed to 

estimate the regional travel demand, the carefully planned 

sampling strategy ensures a good representation of the total 

population in the region, which includes eight counties—Cook, 

Du Page, Grundy, Kane, Kendall, Lake, McHenry, and Will—

from the Northeastern Illinois Region, and two counties—Porter 

and LaPorte—from the Northwestern Indiana Region.   

In this study, since we focus on the urban spatial-temporal 

structure on weekday, we use the survey records from Monday 

through Thursday as a sample to represent an average weekday, 

which contains daily activities of 23,527 distinct individuals. For 

each distinct individual, the survey records every activity 

destination, arrival and departure time, location (the longitude and 

latitude pair), activity type (such as home, work, school, shopping, 

recreation, etc.), and duration at the destination, in 24-hours of the 

surveyed day. To facilitate the analysis of this study, we transform 

the individuals' survey records as described above to minute-by- 

minute records with information of latitude and longitude location, 

time and activity type 2 . This data transformation allows us to 

                                                                 
1
 Source: http://www.cmap.illinois.gov/travel-tracker-survey. Retrieved on 

June 12, 2012. 
2

 Since we do not know individuals' exact travel path between 

destinations, and the movements usually amounts to a small portion of 

people's daily life within 24-hours (around 5%), in order to fill in the 
gap between two consecutive destinations, we make a simplified 

explore the spatial-temporal structure of the Chicago metropolitan 

area in this study.  

3. URBAN SPATIAL-TEMPORAL 

STRUCTURE 
Urban spatial-temporal structure (USTS) extends the traditional 

concept of urban spatial structure by incorporating the temporal 

information. Specifically, it contains information of time stamps 

of individuals’ activities, activity locations, activity types, and 

optionally, personal attributes (which are not indispensible, but 

may provide rich socioeconomic context). In this section, we use 

kernel density estimator (KDE) to estimate several measurements 

of USTS and present empirical findings of the Chicago urban 

spatial-temporal structure. 

3.1 Measurements of Urban Spatial-

Temporal Structure 
In order to capture the urban spatial-temporal structure, we 

propose to measure a “spatial-temporal activity density” at each 

time instant of the day and analyze it through KDE. For the 

purpose of visualization and demonstration, we integrate this 

density with respect to time, and get a “time-cumulative spatial 

activity density”, which measures spatial distribution of activity 

intensity— a normalized sum of individuals’ activity duration in a 

study area during a time period of interest. Human activity 

intensity can be crucial for many purposes, such as the analysis 

and prediction of energy consumption, infrastructure usage and 

business opportunities, etc. 

3.1.1 Preliminary 
We use a 3-dimensional space   to describe time and 2-

dimensional activity locations as follows: 

                                                  (1) 

where  ,  , and   are the time, longitude, and latitude, 

respectively,         defines the time period of interest (e.g., one 

or several minutes, hours, days, weeks, etc.), and   is the set of 

(longitude, latitude)-pairs for the study area.  

3.1.2 Spatial-Temporal Activity Density 
We use the distribution density   on   of a particular activity in a 

study area   during a time period of interest (       ) as the 

measurement of urban spatial-temporal structure. We call the 

measurement   the spatial-temporal activity density, which is 

defined as the probability density of individuals' presence at 

destination3 (x, y) at time t for the corresponding activity purpose, 

and the density   satisfies 

     
 

                  
         

  .       (2) 

                                                                                                           
assumption that people move in a straight line with constant speed when 

they travel.  It is worth noting that this filled-in information is only used 

in subsection 4.2.2 Clusters of Daily Traces, and due to the small 

proportion of time spent in travel, the estimation error caused by this 
approximation is very limited. Readers should also note that since travel 

is not considered as activities at destinations, therefore this treatment of 

data transformation will have little effect on the estimation of urban 
spatial-temporal structure discussed in the paper.  

3 We define destination as a place where people go due to the need of 

committing a certain type of activity (e.g., work, school, shopping, 

recreation, etc.). Here, we do not consider individuals’ movement en 

route while measuring activity density. Therefore our treatment of traces 
will not affect the accuracy of the estimation of spatial-temporal activity 

density and the time-cumulative spatial activity density. 

96



To understand the urban spatial-temporal structure, it would be 

helpful to visualize the spatial-temporal activity density. 

However, as it is defined on a 3-dimensional space  , a direct 

static visualization becomes impossible. To circumvent the 

visualization barrier of spatial-temporal activity density, we 

explore two alternatives. One is to examine the distribution 

density      on   at a fixed time instant   .4 The other is to consider 

a time-cumulative spatial activity density. 

3.1.3 Time-cumulative Spatial Activity Density 
A time-cumulative spatial activity density      on   is defined as 

follows  

                         
     

                       (3) 

where              , and      is a positive constant to make 

     satisfy the restriction that the integral of density      on   

equals 1, i.e.,      is a constant of normalization.5 We use this 

measurement to understand the spatial distributions of intensity of 

various activity types and explore urban spatial-temporal structure 

quantitatively, which will be presented in section 3.2. 

3.1.4 Kernel Density Estimation 
In this study, we use the kernel density estimator to estimate the 

time-cumulative spatial density of a certain set of activities. 

Suppose that we have n observations of a set of activities       

                  
         , then the corresponding time-

cumulative spatial density is estimated by 

             
 

 
     

 
    

  
  
   

   , 

where the bandwidth matrix   is a     symmetric positive 

definite matrix, 

    
 
                   

 
   , 

and   is a 2-variate kernel function that satisfies 

    
 
    

      . 

Here we follow the popular practice to take   to be the standard 

2-variate normal density, a spherically symmetric kernel,6  

   
 
    

 

  
     

 

 
        , 

which implies that     
 
    

  
  
   is the    

  
  
     density 

in vector  
 
    To simplify the selection of  , we assume that 

     , where     and   is the     identity matrix. It is 

clear that a larger bandwidth parameter   leads to a smoother 

estimation and a smaller   gives more fluctuations. In this study, 

the bandwidth   is chosen to minimize the mean integrated 

squared error (MISE). For detailed discussion about 

nonparametric kernel density estimation and the MISE criterion, 

                                                                 
4
 The notation    means that it is obtained from   via normalization. 

5
 Note that      and      are closely related: If we assume that   is 

continuous in t (which is a very reasonable assumption), then we have 

         , as       . 
6 Normal density is in the class of admissible kernel functions, and people 

often choose it for the simplicity of interpretation. For detailed 
discussion about choice of kernel functions, please refer to [28] Wand, P. 

and Jones, C. Kernel Smoothing. Chapman & Hall, 1995. 

and the applications of KDE on topics of interests in the urban 

realm, readers may refer to Wand and Jones [28], Kwan & Hong 

[29], and Yuan et al.[14], respectively. 

3.2 Chicago Metropolitan Area General 

Spatial-Temporal Structure  
By using kernel density estimation method described above, we 

estimate the activity intensity in the Chicago Metropolitan Area 

over 24 hours to understand the Chicago Urban Spatial-temporal 

structure.  Figure 1 shows the 

time-cumulative spatial 

activity densities in the 

Chicago metropolitan area by 

activity categories of home, 

work, school, shopping/ 

errands, and recreation/ 

entertainment.  

Figure 1 Chicago time-cumulative spatial densities of different 

activity types (a) home, (b) work, (c) school, (d) shopping and 

errands, and (e) recreation and entertainment, on an average 

weekday. 

We can see from the figure that areas with intensive person-hours 

for home activities are along the north lakeshore, south lakeshore, 

and around Oak Park.  Downtown Chicago alone has extremely 

intensive work activities—very high total person-hours for 

working—compared with the rest of the region. School activities 

in the region are mainly concentrated in the city of Chicago 

(where major universities and schools are clustered), and the 

southeastern part of the region (where Purdue University is 

located). Several regions with intensive person-hours for shopping 

activities exist, including the downtown and northern part of the 

City of Chicago, the City of Evanston, Schaumburg, southeast 

area of the region (cities of Hammond and Schererville). Areas 

that have been visited and used intensively for entertainment 

and/or recreational activities is narrower than their counterparts 

for shopping activities in space, but with some overlaps, including 

the downtown and northern part of the City of Chicago, City of 

Evanston, Oak Park, and the southeastern part of the Chicago 

metropolitan region. 

As discussed in the introduction section, these results are 

interesting and informative; however, we want to further explore 

how the urban spaces are utilized by different types of individuals 

with different activity patterns. In other words, we want to ask “do 

students, workers, or other types of individuals use urban spaces 

in similar or different ways?” “Are there differences in activity 
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intensities by similar types of individuals across different subareas 

of the region?” “In what ways are their activity intensity and 

usage of urban areas in space and time similar or different?” 

4. CLUSTERING DAILY ACTIVITY 

PATTERNS AND TRACES 
In order to answer these questions and to further understand urban 

spatial-temporal structure, clustering individuals both by their 

daily temporal-activity patterns and by their spatial-temporal trace 

becomes important and natural components of this study.   

4.1 K-Means Clustering via PCA 
The K-means algorithm has been widely applied to partition 

datasets into a number of clusters [30]. It performs well for many 

problems. However, the computational cost can be very high, 

when the dimension of the data is large [31]. As the principle 

component analysis (PCA)/eigen decomposition method is widely 

employed for dimension reduction, it is a common practice to 

utilize the K-means algorithm via PCA and obtain successful 

applications [32, 33]. In an earlier study [34], we explain in detail 

the processes and validity of applying the K-means algorithm via 

PCA method to cluster individuals into different groups according 

to their activity patterns in the Chicago Metropolitan Area. For 

details about the K-Means clustering via PCA method, readers 

may refer to Section 4 of Jiang et al. [34]. 

4.2 Daily Activity Pattern and Trace Clusters 

in Chicago 
In this section, we first review the clustering results of activity 

patterns in the Chicago Metropolitan Area on an average weekday 

[34], and then we cluster individuals’ daily spatial-temporal traces 

using a similar process.  

4.2.1 Clusters of Daily Activity Patterns 
Figure 2 summaries the analysis results of individuals’ daily 

activity pattern clusters on an average weekday in the Chicago 

Metropolitan Area.  

 

Figure 2 Clustering of individuals' weekday activity patterns 

in Chicago, with clusters (a) students, (b) regular workers, 

(c) early-bird workers, (d) afternoon workers, (e) stay-at-

home, (f) morning adventurers, (g) afternoon adventurers, 

and (h) overnight adventurers. Adapted from [34] Jiang et al. 

The first column of Figure 2 displays individuals’ daily activity 

sequences for each cluster. The second column shows the 

aggregated volume of different types of activities in the 

metropolitan area during a specific time interval over 24 hours. 

The results contains 8 types of personal activity patterns, 

including students (12.50%), regular workers (17.90%), early-bird 

workers (13.50%), afternoon workers (3.10%), the stay-at-home 

(33.20%), the morning adventurers (13.00%), the afternoon 

adventurers (5.50%) and the overnight adventurers (1.30%). 

Notice that this represents much richer information about urban 

groups than the traditional classification in which only 47% of the 

individuals can be categorized as students or workers based on 

their daily activity patterns. 

4.2.2 Clusters of Daily Traces 
We cluster individuals’ spatial-temporal traces according to their 

space-time similarities by applying the K-Means algorithm via 

PCA in a very similar procedure to the study we conducted earlier 

[34].  

First, we sample the individuals’ locations and activities every 

five minutes, using the transformed data described in Section 2. 

Let    denote the total number of individuals in the sample, then 

for each individual i =1, …,   , we have an 576 (=288×2) 

dimensional vector                                   to 

describe his/her trace, where      and      is individual i's 

longitude and latitude in the j-th time instant being sampled.  

Second, we deal with    in the same way as we deal with    in 

Section 4 of Jiang et al [34]. We arrange the thus obtained 576 

eigenvalues in descending order, i.e.,               , 

and the eigenvector    that corresponds to the k-th eigenvalue is 

called the k-th eigentrace. 

Third, we reconstruct the individual i’s spatial-temporal trace   , 
by using a subset of eigentraces as follows. Let         , 

where    
 

  
   
  
    is the sample mean, and suppose the 

projection of    onto the first h eigentraces            are 

          .  According to formula                      

                                                   (4) 

we obtain a vector                                                . 

We define the reconstruction error       for     as the average 

reconstruction deviation, namely,                        

       
 

   
                                
   
                 (5) 

where                                 is the distance (in kilometers) 

between two locations             and              . Given any ε > 0, 

we can find some h > 0, so that the average reconstruction 

error,  
      
  
   

  
, caused by neglecting the projections onto the 

ignored eigentraces               is no greater than ε. Let ε0 > 0 

be the acceptable error level, and define h(ε0) to be the smallest h 

such that the average reconstruction error induced by using the 

first h eigentraces is no greater than ε0. We then call h(ε0) the 

appropriate number of eigentraces. In this study, we take ε0 = 0.5 

kilometers, and we get h(ε0) = 33. Thus, eigentraces            
are used in the reconstruction of    and in the K-means clustering 

of individuals’ spatial-temporal traces.  

Lastly, according to Dunn's Index (DI), which maximizes inter-

cluster distances while minimizing the intra-cluster distances,  our 

analysis shows that with a clustering number of 2, it provides the 

most stable partition of individuals (i.e., the higher the index, the 
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Figure 4 Counties in the 

Northeastern Illinois 

Region and Northwestern 

Indiana Region 

 

better the clustering results) (see Table 1). However, since we are 

more interested in a sophisticated clustering of individuals than 

the dichotomy grouping, we find that when the clustering number 

is 5, it provides a second-best alternative yet much richer partition 

of individuals’ daily traces.  

Table 1. Cluster numbers (k) and the Dunn’s Index (DI)  

k 2 3 4 5 6 

DI 2.431 1.501 1.853 2.017 1.253 

k 7 8 9 10 11 

DI 1.288 1.365 1.38 1.387 1.230 

k 12 13 14 15 16 

DI 1.370 1.059 1.063 1.088 1.092 

 

Figure 3 shows the clustering results of individuals’ spatial-

temporal traces with k=5 in space. The left panel of the figure 

shows a 2-D view of the clustering results with each color 

representing a cluster, and x-, y-axes representing longitude and 

latitude; while the right panel of the figure shows a 3-D view of 

the same clustering results, with an additional vertical z-axis 

representing the time dimension. This type of 3-D view of 

individuals’ traces is called spatiotemporal prism by geographers 

[35], and is visually helpful to understand people's movement in 

space and time.  

 

Figure 3 Clustering of individuals' daily traces on an average 

weekday in Chicago (cluster number=5). 

As we know, in people's daily 

life, their travel from one 

destination to another in space 

and time is not usually 

confined by administratively 

defined boundaries such as 

county boundaries. Therefore 

clustering a region into 

subdivision by using 

individuals' spatial-temporal 

traces can reveal underlying 

inherent connections in the 

region better than using 

administratively defined areas 

such as counties.  

Figure 4 shows the geographic location of counties that define the 

Chicago Metropolitan.  From the geographical coverage of the 

clustered traces in Figure 3, we find that Cluster #1, depicted in 

dark blue, covers the Lake County (south to Cook) and the 

southeast corner of Cook County. Cluster #2, depicted in cyan, 

covers most area of Du Page, the north part of Will and Grundy, 

and eastern side of Kane and Kendall counties, and the northern 

part of Grundy County. Cluster #3, depicted in green, covers the 

north part of Cook County, the Lake County (north to Cook), and 

the McHenry County. Cluster # 4, depicted in yellow, covers the 

Porter County and LaPorte County (in the State of Indiana).  

Cluster # 5, depicted in orange, covers the center of the Cook 

County, or the City of Chicago. It is interesting to analyze further 

the intrinsic reasons of this regional clusters defined by the user 

traces. It may be possible to find some demographic or economic 

reasons inherent in these aggregations. 

5. URBAN SPATIAL-TEMPORAL 

STRUCTURE BY REGION, ACTIVITY 

PATTERN AND TYPE 
With the previous analysis we obtained clusters of individuals by 

their daily activity patterns and their spatial-temporal traces (in 

Section 4). Together with the proposed measurement (i.e., time-

cumulative spatial activity density) to estimate urban spatial-

temporal structure (in Section 3), we are able to further explore 

the detailed urban spatial-temporal structure for individuals with 

different daily activity types defined as students, regular workers, 

early workers, afternoon workers, stay-at-home, morning 

adventurers, afternoon adventurers and overnight adventurers. We 

can observe now how these types of individuals distribute across 

different clustered sub-regions based on their time-cumulative 

spatial activity density. 

Due to limited space of the paper, and the importance of the City 

of Chicago, in terms of intensity of various activities (shown in 

subsection 3.2), as a demonstration, in this section we further 

explore the spatial temporal structure for individuals whose daily 

activities are heavily concentrated in this sub-division of the 

region (i.e., Cluster # 5 obtained from the trace clustering result in 

subsection 4.2.2), and focus on five types of activities for the eight 

types of individuals (obtained from the activity pattern clustering 

results in subsection 4.2.1). We first discuss the spatial 

distribution patterns of activity intensities on home, work and 

school activities for individuals engaged in a fixed daily activity, 

namely: students and workers (including early workers, early-bird 

workers and afternoon workers) in subsection 5.1. Then discuss 

the spatial distribution patterns of intensity of the same five types 

of activities for stay-at-homes and the three types of adventurers 

(i.e., morning, afternoon and overnight adventurers). The latter 

group includes individuals that are not traditionally classified by 

activity patterns and are much harder to model in urban simulators. 

5.1 The Students and Workers 
As depicted in Figure 5, we find that the spatial distribution of 

home activities for students and workers are quite similar—

heavily concentrated in the downtown area and northern part of 

the city of Chicago (Figure 5, row 1). It also shows similar 

patterns in the work activity intensity for the three types of 

workers, but quite different for the students (with multiple centers 

in the west part of the city) (Figure 5, row 2).  

The spatial distribution of school activity intensity for students 

matches in a very similar way to that of their home activity 

intensity. While for regular workers and early-bird workers, there 

are two centers—one in the north part of the city, and one in the 

downtown area of the city. For the afternoon workers, the school 

activity intensity is very weak, but mostly concentrated in the far 

northern and western edge of the city (Figure 5, row 3).  

Shopping activity intensity for the regular and early-bird workers 

are similar—concentrated in downtown Chicago; and with two 

additional sub-centers for the students—one in the north, and one 

in the northwest (around the O'Hare airport). And there are two 

centers hand-by-hand in the center of Chicago for the afternoon 

workers.  
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Interestingly, we see that the intensity of recreational activity for 

regular and early-bird workers are similar in geographical location 

(concentrated in downtown Chicago) compared to their shopping 

activity, but with stronger intensity— meaning that for these two 

types of workers, there are either more of them doing recreational 

(e.g., eating out with friends)/entertainment activities and/or they 

spend longer time in these activities than in shopping on weekday 

in the downtown area (Figure 5, row 4).  The spatial distribution 

of recreation/entertainment activity intensity for afternoon 

workers are more dispersed in space and time than their 

counterparts of regular and early-bird workers. For students, their 

recreational activity centers are distributed along the lake shore 

from north to downtown Chicago, and also in the western part of 

the city. 

To summarize, similar spatial distribution patterns of intensity 

exist for students' home and school activity, as well as for 

workers' home and work activity. In terms of the spatial 

distribution of shopping and recreational activity intensities, they 

are quite similar for regular and early-bird workers (concentrated 

in the city center), but exhibit diverse and multiple centers for the 

afternoon workers (which can be explained by their space-time 

flexibility during the day compared with regular and early-bird 

workers). For students, their spatial distribution of recreational 

activity intensity is similar to that of their school activity, but with 

lower density, and their shopping activity are more concentrated 

in the center and northern part of the city, as well as in the 

northeastern corner of the city near the O'Hare airport.  

5.2 The Stay-at-Homes and Adventurers 
Different from the students and workers, who spend most of their 

day on (spatially and temporally constrained) activities of school 

and work, adventurers have more time flexibility; and the stay-at-

homes are more limited in terms of their spatial flexibility.  

 

We can see from Figure 6 that the spatial distributions of activity 

intensities of various types (except for home activity) are very 

diverse in space for the adventurers, but very uniformly 

concentrated for the stay-at homes. For the morning and afternoon 

adventurers, the second most intense activity right after the home 

activity is recreation/entertainment, and they are heavily 

concentrated in the city center, and moderately concentrated in 

both the north and south parts of the city for morning adventures, 

and only in the north for the afternoon adventurers.  

Shopping activities for the overnight adventures are heavily 

concentrated along the southwestern corridor, and their 

recreational activities are also distributed in the far north part of 

the city.   

The school and work activity intensity distribution in space for 

morning and afternoon adventurers are even more diverse  and 

dispersed compared with their shopping and recreational activities, 

which means that very few adventurers conduct work/school 

activities, and their spatial distribution is more spread in the city 

than concentrated in the downtown area.  

Interestingly, the spatial distributions of home and work activity 

intensities for the overnight adventures are very similar. But that 

of their school activity intensity is very diverse and spreads over 

different parts of the city.   

6. CONCLUSIONS 
This paper introduces a new concept of urban spatial-temporal 

structure, which expands the traditional theories of urban structure, 

and offers a framework to study and analyze it using activity-

based travel survey data. We discuss the advantages of travel 

survey data in terms of their richness in revealing individuals’ 

activity types, space and time presence, and we provide a new 

 

Figure 6 Time-cumulative spatial densities of shopping/ 

errands & recreation/entertainment activities in the Chicago 

sub-region by (c-1) stay-at-home, (c-2) morning adventurers, 

(c-3) afternoon adventurers, and (c-4) overnight adventurers. 

 

 

Figure 5 Time-cumulative spatial densities of home, work, 

and school activities in the Chicago sub-region by (a) 

students, (b-1) regular workers, (b-2) early-bird workers, 

and (b-3) afternoon workers on an average weekday. 
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perspective on how to mine survey data as complements to the 

recently emerging massive urban sensing data.  

With the introduction of spatial distribution of activity intensity, 

measured by time-cumulative spatial activity density, and the 

employment of the kernel density estimator, we provide an 

approach to analyze the proposed urban spatial-temporal structure.   

In order to discover similarities and differences in human activity 

patterns and spatial-temporal traces, we apply K-means algorithm 

via PCA method to cluster individuals into groups. By estimating 

and visualizing the time-cumulative spatial densities of various 

activities by person types (obtained from the clustering of daily 

activity patterns) in one of the sub-regions of the Chicago 

Metropolitan Area (identified from the clustering of individuals’ 

traces), we are able to explore the diverse spatial-temporal 

structure of Chicago. Due to space limit, we do not demonstrate 

the results for the rest of the four sub-regions in the Chicago 

metropolitan area in this paper. However, abundant information 

obtained from other sub-regions will help planers gain solid 

understandings on “how different sub-regions of the metropolitan 

area have been utilized by different types of individuals for 

different activity types”.  

Answering these questions will be essential for urban planners 

and scholars to understand the dynamics and complexity of the 

polycentric city, and this paper offers new insights for urban 

planning through the estimates of spatial distributions of various 

activity intensities for different types of individuals. As activity 

intensity is very closely related to energy consumption, business 

opportunity and infrastructure usage, the measurements and 

approaches proposed here will be helpful for urban planners to 

design sustainable cities in the future.  
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ABSTRACT
Trajectory similarity search studies the problem of finding
a trajectory from the database such the found trajectory
most similar to the query trajectory. Past research mainly
focused on two aspects: shape similarity search and seman-
tic similarity search, leaving personalized similarity search
untouched. In this paper, we propose a new query which
takes user’s preference into consideration to provide person-
alized searching. We define a new data model for this query
and identify the efficiency issue as the key challenge: given a
user specified trajectory, how to efficiently retrieve the most
similar trajectory from the database. By taking advantage
of the spatial localities, we develop a two-phase algorithm
to tame this challenge. Two optimized strategies are also
developed to speed up the query process. Both the theo-
retical analysis and the experiments demonstrate the high
efficiency of the proposed method.

1. INTRODUCTION
Trajectory similarity search is a hot research topic in re-
cent years due to its broad range of applications, such as
friend recommendations, trip planning, traffic analysis and
carpooling. It studies the problem of finding a trajectory
from the trajectory database such that the found trajectory
is most similar to the query trajectory. A fair amount of re-
search works were involved in the past decades on this topic,
some [1, 15, 11, 16, 9, 4, 3, 13] focused on shaped-based sim-
ilarity search, in which each trajectory consists of a sequence
of equally important sample points; while others [17, 10, 20,
19, 12, 14] focused on the semantic aspects, in which each
trajectory is represented as a sequence of meaningful enti-
ties, such as POIs, locations or regions.

The similarity for the shape-based search depends on how
many common parts the trajectories share, while for the
semantic-based search it depends on how many significant
common parts shared. Clearly, the second kind of similarity
is more reasonable as it considers more of those significant
parts instead of treating each part equally. To measure the

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or
a fee. UrbComp’12, August 12, 2012. Beijing, China. Copyright
2012 ACM 978-1-4503-1542-5/08/2012 ...$15.00.

second kind similarity, it employes variuos huristic methods
to identify which parts are important and meaningful and
this, inherently, has two disadvantages:

• Due to the quality of the training data or the imperfec-
tion of the mining method, it cannot gurantee to find
all of the important parts. Some significant places may
be missed.

• Among all those important parts, they are not equally
important to all users. In other words, this method
cannot provide personalized service to different users.

To overcome these disadvantages, we propose a new type of
query: user-oriented trajectory similarity search, in which
each user can specify the relative importance of each part
in the query trajectory. This new query has the advantages
that:

• It can provide personalized query without missing those
important parts, as whose importance have been des-
ignated by the user.

• It supports flexible and even highly complex query pat-
terns. For instance, the relative importance of all parts
in the query trajectory follows standard normal distri-
bution.

The key challenge here is the efficiency issue. More specif-
ically, given a user specified query, how to efficiently find
out the most similar trajectory from the trajectory database
which may contain huge number of trajectories.

Unfortunately, no existing solutions can readily be used to
conquer this challenge. Vlachos et al. in [13] explore dis-
covering similar multidimensional trajectories by building
a cluster-based hierarchical indexing tree. This method,
however, suffers from finding good clusters and representing
points to build the hierarchical indexing tree on which the
performance heavily depends. Besides, it considers shape
similarity allowing spatial shifting between trajectories, which
is totally different from our settings: no spatial shifting is
allowed. Chen et al. in [3] exploit edit distance to measure
trajectory similarity and provides three pruning techniques
to efficiently retrieve the most similar trajectory. But under
the user specified query in which the relative importance of
every sample points are considered, these pruning techniques
are no longer hold. A typical example is that one pruning
technique works by bounding the number of common Q-
grams for two sequences within edit distance k, where k is
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supposed to be an integer, while in our settings, due to the
relative importance involved, this condition is hard to be
guaranteed.

In this work, our major contributions are:

1. We propose a new type of trajectory similarity search
with the merits of considering users’ preferences and
supporting personalized query.

2. We carefully define a new data model for this query
and develop an efficient method to answer the similar-
ity query. Two optimized strategies are also developed
to speed up the query process.

3. We do theoretical analysis, carry out experiments on
real dataset and both demonstrate the high efficiency
of our method.

The remainder of this paper is organized as follows. In sec-
tion 2, we define the data model and the problem. We then
develop a two-phase algorithm and two optimized strategies
in Section 3. Theoretical analysis and the experiments are
conducted in Section 4 and Section 5, respectively. We dis-
cuss related work in section 6 and conclude this paper in
section 7.

2. DATA MODEL AND PROBLEM
With the advancement of the modern GPS technologies, it
is not unreasonable to assume that all trajectories in the
database have similar sampling rate. If not, we can interpo-
late the trajectory data to make them satisfied the assump-
tion condition.

Let T = {p1, p2, · · · , pn} be a data trajectory, where |T | de-
notes the size of sample points in T . Each sample point
pi = 〈loni, lati〉 is a pair of real values, where loni and
lati correspond to longitude and latitude respectively. A
user trajectory database is a set of data trajectories DB =
{T1, T2, · · · , TN}, where N is the number of trajectories in
DB. Let Q = {q1, q2, · · · , qm} be the query trajectory, in
which each sample point qi is a triple of real values, namely
〈loni, lati, wi〉, where wi ≥ 0 is the user assigned weight
indicating the importance of the sample point. We say
sample points qi and pj matched if |loni − lonj | ≤ ε and
|lati − latj | ≤ ε; here the ε is the matching threshold.

There are several methods to measure trajectory similar-
ity: Euclidean-based methods [1, 15, 11], DTW [16, 9, 4],
ERP [2], EDR [3] and LCSS [13]. Among these methods, the
first three (Euclidean-based methods, DTW and ERP) are
sensitive to noise; the EDR concerns more about the dissim-
ilarities between trajectories, as it only penalizes the gaps
while ignores their common parts; the LCSS, on the other
hand, is more robust to noise and more accurate to compute
the similar parts, because just like its name (Longest Com-
mon Subsequence), it measures how many common parts
two trajectories share and a larger value implies a better sim-
ilarity. Here in this paper we use the same idea behind LCSS
to measure the similarity between a data trajectory and
a query trajectory. Specifically, given the aforementioned
T and Q, we define the similarity measure Heaviest Com-
mon Subsequence (HCSS) between them as the weighted
sum of their longest common subsequence and denote it as

HCSS(T,Q). The specific value can be derived from the
following recursive computation:




0 if n = 0 or m = 0,
w1 +HCSS(Rest(T ), Rest(Q)) if p1, q1 are matched,

max

{
HCSS(Rest(T ), Q),
HCSS(T,Rest(Q))

otherwise

where Rest(.) denotes the rest part of a trajectory with the
first sample point removed.

Problem. Given a query trajectory Q, find T from the
trajectory database DB such that HCSS(T,Q) > 0 and

HCSS(T,Q) ≥ HCSS(T ′, Q),∀T ′ ∈ DB and T ′ 6= T.

In the extreme case that ∀T ∈ DB, HCSS(T,Q) = 0, we
would say no trajectory in the database is similar to the
query trajectory and therefore have no obligation to return
any trajectory.

3. QUERY PROCESSING
One naive solution for the problem is to compute the similar-
ity values with every trajectory in the database, then choose
the one with the largest HCSS value. The cost of this
method is prohibitively expensive simply because it has to
load every data trajectory from the external memory into in-
ternal memory in order to compute the HCSS value, which
would introduce tons of IOs, not mention the computation
cost is quadratic to trajectory length.

To reduce the IO as well as the computation cost, we have
the following observation.

Observation 1 Trajectories in the database are spatially
scattered and the query trajectory is only within some limited
area.

Based on this observation, instead of retrieving all trajecto-
ries from the external memory, we only need to retrieve those
trajectories having at least one sample point included by a
small range that covers the query trajectory as a candidate
set and it is highly likely that the candidate set contains the
most similar trajectory. The key issue here is how large the
covering range should be to make the candidate set surely
containing the most similar trajectory. If it is too large, it
may retrieve excessive number of trajectories at the price of
a fair amount unnecessary IOs; on the other hand, if it is
too small, it may miss the most similar trajectory as well.
Therefore a proper covering range should be provided so
that it dose not produce too many unnecessary IOs while at
the same time it can still guarantee the correctness of the
candidate set without introducing false dismissals.

Definition 1. (ε-buffer) Given a query trajectory Q, we
define its ε-buffer Bε(Q) as the union of rectangular areas
of all sample points, where the rectangular area of a sample
point qi is [(loni− ε, lati− ε), (loni + ε, lati + ε)] and ε is the
threshold (Figure 1).

Theorem 1. The ε-buffer of query trajectory Q can serve
as a covering range without introducing false dismissals.

Proof. Let T be the most similar trajectory. From the
problem definition we know HCSS(T,Q) > 0, which im-
plies T must have at least one its sample point included by

104



qi
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(a)

q1 q2 q3 q4 q5

(b)

Figure 1: Examples of rectangular area and Bε(Q)

the covering range Bε(Q) and therefore is included in the
returned candidate set.

Theorem 1 indicates us that we only need to search the query
trajectory’s ε-buffer to find the most similar trajectory, and
in terms IO cost, it is a dramatic improvement over the naive
method in which the correctness is achieved by searching the
whole data space. Inspired by the above analysis, we get our
first algorithm to find the most similar trajectory.

Before presenting the algorithm, we claim that every trajec-
tory T in the database has a unique id called tid, and each
sample point in T contains the tid information. If we get a
sample point, we then know which trajectory it belongs to.
Also we use an R-tree [7] to index all sample points in the
trajectory database; by doing this, we can conduct range
search on the R-tree and thus reduce the search cost.

Algorithm 1: MST(TR, Q, ε)

Input: R-tree root TR, query trajectory Q, threshold ε
Output: The unique id of the most similar trajectory

1 id←∞;
2 /* Filter phase */
3 ListC ← φ; // the candidate set
4 foreach qi in Q do
5 rect← [(loni − ε, lati − ε), (loni + ε, lati + ε)];
6 ListP ← TR.rangeSearch(rect);
7 foreach sample point p in ListP do
8 tid← p.getT id();
9 if ListC.contain(tid) is not ture then

10 ListC .add(tid);

11 /* Refinement phase */
12 distance← −∞;
13 foreach tid in ListC do
14 T ← retrieve the tidth trajectory from external

memory;
15 hcss← HCSS(T,Q);
16 if distance < hcss then
17 distance← hcss;
18 id← tid;

19 return id;

The algorithm adopts a two phases strategy: filter and re-
finement. In the filter phase (lines 2-10), we generate a can-
didate set based on R-tree range search (i.e., search the area
covered by Bε(Q)) without introducing false dismissals; in
the refinement phase (lines 11-19), we retrieve each trajec-
tory appearing in the candidate set from the external mem-
ory, compute the exact similarity values, choose the one with
the largest HCSS value and return it as the most similar

trajectory. The correctness of the algorithm is guaranteed
by Theorem 1.

3.1 Adaptive Filter Strategy
If we look carefully at the filter phase, we will find that
Algorithm 1 conducts range search for every sample point
in the query trajectory. This, however, may not necessary,
as indicated by the following observation.

Observation 2 The query trajectory consists of a series of
sequential sample points which are usually spatially close.

As a result, there are many overlaps between the range
searches conducted in Algorithm 1. In Figure 1(b), we can
clearly see the overlaps between consecutive range searches
(rectangular areas). The multiple searching of these over-
lapping areas is obviously undesired as it will introduce un-
necessary IO cost. To remedy this, we introduce the concept
of grouping consecutive query points.

Definition 2. (Grouped area) For any two consecutive
points qi, qi+1 in the query trajectory, let their correspond-
ing rectangular areas are [(loni,1, lati,1), (loni,2, lati,2)] and
[(loni+1,1, lati+1,1), (loni+1,2, lati+1,2)], respectively. We group
them together and define their grouped area G(qi, qi+1) is as
[(lon1, lat1), (lon2, lat2)], where

lon1 = min(loni,1, loni+1,1)

lat1 = min(lati,1, lati+1,1)

lon2 = max(loni,2, loni+1,2)

lat2 = max(lati,2, lati+1,2)

In the same way, we define grouped area for k+1 consecutive
points qi, qi+1, · · · , qi+k as G(qi, qi+k). Figure 2 shows an
example, in which two smaller rectangular areas are grouped
together to form the larger one with red dashed edges.

(lon11, lat11)

(lon12, lat12)

(lon21, lat21)

(lon22, lat22)

(min(lon11, lon21), min(lat11, lat21))

(max(lon12, lon22), max(lat12, lat22))

Figure 2: Grouped area G(q1, q2)

To overcome the drawback caused by redundant IOs, one
solution is to group certain number of consecutive points to-
gether so that we can have just one range search to cover
the union of their rectangular areas. As illustrated in Fig-
ure 3(a), instead of conducting 5 range searches, we group
the 5 query sample points together and only search once
the grouped area G(q1, q5) bounded by the black box. This
method works in the reason that it covers more than the
original searching area (i.e., the ε-buffer of the query trajec-
tory) and therefore guarantees no false dismissals, while the
cost saved from overlapping search is quite enough to com-
pensate the extra cost from searching new dead space (the
white space between the shaded area and the black bounding
box in Figure 3(a)).
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Figure 3: Points distribution vs. dead space

A problem with this solution is how many consecutive points
shall be grouped together so that the extra cost introduced
by searching new dead space will not cancel out the saved
cost. If we group too few points, although the extra cost is
small, it may not effective to reduce the redundant IO cost;
if we group too many points, although the saved cost may
be a lot, it may also introduce too much new dead space and
the search cost on which would turn back canceling out the
benefit earned from the saved cost. Therefore, in pursuit of
keeping the total range search cost as small as possible, a
proper grouping strategy shall be developed to ensure the
balance between saving redundant IO cost and introducing
new cost.

One strategy is simply grouping fixed number of consecutive
points. This method, however, has the risk of bringing in too
much dead space if the consecutive points are distributed
as Figure 3(b) showing. To get rid of the risk, we need
to take the grouping process under control and develop an
adaptive grouping strategy. More specifically, we need to
develop a bound for the search space so that after grouping,
the grouped area will not surpass the boundary, thereby
bounding the introduced dead space. Under this condition,
we can aggressively group those consecutive points.

Definition 3. (α-boundary) Given a polyline L = {p1, p2,
· · · , pn} and α ≥ 0, let every line segment (pi, pi+1) be
moved α distance along both directions that perpendicu-
lar to it to get the upper and lower lines, we define the area
between all upper and all lower lines plussing the two outer
half circles centered at the end points of L with radius α as
the α-boundary of L, or Dα(L), as illustrated in Figure 4.

A B

C

D E

α
α

α

α

α

α

Figure 4: L = {A,B,C,D,E} and Dα(L)

We can easily see that the ε-buffer of the query trajec-
tory Q are covered by Q’s

√
2ε-boundary, namely Bε(Q) ⊆

D√
2ε(Q), because the perpendicular distance from every

point in Bε(Q) to the polyline Q is less or equal than
√

2ε.
However, we cannot use this boundary as a bound to do
grouping work owning to the fact that it is too tight to
group any consecutive points. In other words, we need a
more looser boundary.

Line simplification technique like Douglas-Peucker [6] algo-
rithm may drop us a hint on this. Given a distance thresh-
old δ > 0 and a polyline specified by a sequence of n points
{q1, q2, · · · , qn}, the goal of Douglas-Peucker algorithm is to
derive a simplified polyline to which the perpendicular dis-

tance of every point in the original polyline is at most δ.
The algorithm initially constructs the line segment (q1, qn).
It then identifies the point qi furthest to the line. If this
point’s perpendicular distance to the line is within δ, it re-
turns (q1, qn) and terminates. Otherwise it recursively ap-
plies the same process on the two sub-polylines {q1, · · · , qi}
and {qi, · · · , qn}.

After simplification, the original polyline is completely lying
within the δ-boundary of the simplified polyline, and this
implies if query trajectory Q is the original polyline, then
Q’s ε-buffer is completely within the (

√
2ε+ δ)-boundary of

the simplified polyline Q′, or formally, Bε(Q) ⊆ D√
2ε+δ(Q

′).

D√
2ε+δ(Q

′) can thus serve as an acceptable boundary for
grouping work. In specific, for every simplified segment,
we start grouping all those consecutive points from its start
point aggressively until the next to be grouped area sur-
passes the boundary. After grouping, if there are still some
points between the simplified line segment left ungrouped,
we then start the next grouping process until all points end
up within their own grouped areas. Algorithm 2 shows this
adaptive grouping strategy.

Algorithm 2: generateGroupedAreas(Q, ε, δ)

Input: query trajectory Q, threshold ε, threshold δ
Output: A list of grouped areas

1 ListG ← φ;
2 Q′ ← DouglasPeucker(Q[1 : m], δ);
3 j ← 2;
4 rect← [(+∞,+∞), (−∞,−∞)];
5 for i← 1 to m− 1 do
6 if i < Q′[j].subscript then
7 /* Grouping in the same simplified segment*/
8 rectcurr ← rectangular area of Q[i];
9 recttemp ← grouped area of rectcurr and rect;

10 if recttemp within D√
2ε+δ(Q

′) then
11 rect← recttemp;
12 else
13 ListG .add(rect);
14 /* Start the next grouping process */
15 rect← rectangular area of Q[i];

16 else
17 ListG .add(rect);
18 /* Start grouping the next simplified segment */
19 j ← j + 1;
20 rect← rectangular area of Q[i];

21 ListG .add(rectangular area of Q[m]); // The last one
22 return ListG ;

In Algorithm 2, line 10 checks whether the next to be grouped
area recttemp is within the (

√
2ε + δ)-boundary of Q′. It

does so by checking whether the perpendicular distances of
the four vertices in recttemp to the current simplified line
segment (Q′[j−1], Q′[j]) are all within

√
2ε+ δ. If yes, then

it returns true; otherwise it returns false.

As an example, for Q = {q1, · · · , q9}, Figure 5 shows the
grouping results, namely G(q1, q5),G(q6, q8) and G(q9, q9),
represented by the three red-edged rectangles. Also, the
black line {q1, q6, q9} in the figure represents the simplified
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polyline Q′ while the black dashed boundary depicts the
corresponding (

√
2ε+ δ)-boundary.

q1
q2
q3
q4
q5

q6q7
q8

q9

Figure 5: An example of grouped areas

In the best case, we can group all points between a simpli-
fied line segment into one grouped area (such as the G(q1, q5)
in Figure 5); while in the worst case, we cannot group any
two consecutive points at all. Fortunately, the worst case is
rare due to the loose boundary derived from line simplifica-
tion. Overall, the grouping effectiveness is influenced by a
variety of factors, including consecutive points distribution,
underline trajectory data distribution, and in particular, the
value of the distance threshold. Heuristically, setting δ to
ε/2 achieves good grouping effectiveness as confirmed by the
experiments.

According to the result in Figure 5, we now only need to
conduct 3 times of range search instead of the originally 9
times to produce the no-false-dismissal candidate set. This,
obviously, greatly reduces the search cost as the introduced
dead space is much smaller than the repetitive searched over-
lapping areas. Since we solve the problem caused by over-
lapping search, we can slightly modify Algorithm 1 to adopt
the new adaptive filter strategy. Specifically, we call Algo-
rithm 2 between lines 3 and 4 to produce a list of grouped
areas ListG , replace line 4 with “foreach rect in ListG do”
and delete line 5 to get the new algorithm.

3.2 A Better Refinement Strategy
For the refinement phase in Algorithm 1, it simply retrieves
every candidate trajectory from the external memory and
conducts the quadratic HCSS computation w.r.t. Q to get
the most similar trajectory, which, in some extent, bears
heavy IO and computation cost. Also, comparing with the
original filter strategy, the adaptive filter strategy although
successfully reduces the overall range search cost, but it also
raises the chance to return more candidate trajectories ow-
ing to search the introduced dead space. This may further
increase the cost of the refinement phase. Is it possible to
reduce this cost?

Observation 3 Among the large number of returned can-
didate trajectories in filter phase, only one or a few trajec-
tories have the chance to be the most similar trajectory.

This observation suggests us designing a better refinement
strategy is not impossible. Such as if we develop an upper
bound for HCSS, we then can prune most of the unrelated
trajectories.

From the adaptive grouping strategy in previous section, af-
ter grouping, we know every point in the query trajectory
belongs to one and only one grouped area, although be-
tween grouped areas some small overlaps may exist. For one

grouped area, let k be the number of grouped consecutive
points, and let w be the largest weight among the k corre-
sponding weights. Then the product value k∗w is called the
group weight or denoted as W. Each grouped area carries
its own group weight. For example, the first grouped area
G(q1, q5) in Figure 5 grouped five points, if we assume the
largest weight among the five corresponding weights is 0.7,
then we have k = 5, w = 0.7, and G(q1, q5) carries the group
weight W = 5 ∗ 0.7 = 3.5.

Definition 4. (HGSS) For any T in the trajectory database,
givenQ and the corresponding grouped areas {G1,G2, · · · ,GK},
we define the Heaviest Grouped Subsequence between them

HGSS(T,Q) =

K∑

i=1

F (i)

where F (i) = Gi.W if T has at least one sample points in
grouped area Gi, otherwise F (i) = 0.

Lemma 1. HGSS is an upper bound of HCSS, that is,
HGSS(T,Q) ≥ HCSS(T,Q).

Proof. Let Q = {q1, q2, · · · , qm}, then HCSS(T,Q) =∑m
i=1 f(i), where f(i) = wi if during the computation pro-

cess qi contributes wi to the final HCSS value, otherwise
f(i) = 0. Consider any grouped area Gj(qs, qe), if T has one
sample point within this area, then

F (j) =

e∑

i=s

max{ws, ws+1, · · · , we} ≥
e∑

i=s

wi ≥
e∑

i=s

f(i)

otherwise F (j) = 0 =
∑e
i=s f(i). Thus, we have

∑K
i=1 F (i) ≥∑m

i=1 f(i).

Since the HGSS can be obtained in the filter phase with
negligible cost, we now can design a better strategy for the
refinement process.

As shown in Algorithm 3, in the refinement step, we sort
all returned candidate trajectories in descending order by
HGSS value (line 12), and then visit the first element and
compute the exact HCSS value (lines 15-16). If it no less
than the HGSS of the next unvisited trajectory (lines 20-
22), we return the one with largest HCSS value among all
visited trajectories as the most similar trajectory and then
terminate, as the HCSS values of the rest trajectories are no
larger than the current HCSS value; otherwise we continue
this process with the next unvisited trajectory.

Integrated with the adaptive filter strategy and the better
refinement strategy, Algorithm 3 is the final optimized algo-
rithm to our user oriented trajectory similarity search.

4. THEORETICAL ANALYSIS
Our upcoming experiments show that our method can ef-
ficiently handle the query process. In this section, we do
a theoretical analysis to demonstrate the complexity of the
proposed method.

Let the database contain N trajectories and every trajectory
on average has the length of n sample points. Let the query
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Algorithm 3: OptimizedMST(TR, Q, ε, δ)

Input: R-tree root TR, query trajectory Q, threshold ε,
threshold δ

Output: The unique id of the most similar trajectory
1 id←∞;
2 /* Filter phase */
3 ListC ← φ; // the candidate set
4 ListG ← generateGroupedAreas(Q, ε, δ);
5 foreach rect in ListG do
6 ListP ← TR.rangeSearch(rect);
7 foreach sample point p in ListP do
8 tid← p.getT id();
9 if ListC.contain(tid) is not ture then

10 ListC .add(tid);

11 /* Refinement phase */
12 Sort ListC in descending order by HGSS;
13 distance← −∞;
14 for i← 1 to ListC .length do
15 T ← retrieve the ListC [i].tidth trajectory from external

memory;
16 hcss← HCSS(T,Q);
17 if distance < hcss then
18 distance← hcss;
19 id← tid;

20 if hcss ≥ ListC [i+ 1].HGSS then
21 /* Prune the rest trajectories */
22 break;

23 return id;

trajectory have the length of m. Let the average cost retriev-
ing one trajectory from the database be C. As the similarity
value HCSS is derived in a dynamic programming manner,
its computation cost is O(mn). For the naive method, as
it has to retrieve every trajectory from the database and
compute the exact HCSS value, its complexity consists IO
cost O(NC) as well as computation cost O(Nmn), namely
O(N(C +mn)).

Let CR be the average range search cost on R-tree; let ξ1 be
the candidate trajectory rate. The complexity of Algorithm
1 consists two parts: filter cost O(mCR) and refinement cost
O(ξ1N(C +mn), therefore it is O(mCR + ξ1N(C +mn)).

Let ξ2 be the actually processed trajectory rate after prun-
ing; let m′ be the number of grouped areas. Obviously,
ξ2 < ξ1 and m′ < m. As in the adaptive filter strategy
we bound the introduced dead space, we expect the aver-
age range search in Algorithm 3 is almost the same with
CR, or at most constant times of CR, therefore the filter
cost of Algorithm 3 is O(m′CR), and the complexity of it is
O(m′CR + ξ2N(C +mn)).

To sum up, the complexities of the three algorithms are
shown in Table 1.

Generally, the range searching cost is far less than the cost
of retrieval all trajectories from database, i.e., mCR � NC,
and the rates ξ1 and ξ2 are also expected to be small, such as
less than 10%, then Algorithm 1 and 3 are far more efficient

Table 1: Algorithm complexity
Algorithm Complexity

Naive O(N(C +mn))
MST O(mCR + ξ1N(C +mn))
OptimizedMST O(m′CR + ξ2N(C +mn))

than the naive method, as confirmed by our experiments.

5. EXPERIMENTS
In this section, we refer Algorithm 1 as MST , Algorithm 3
as OMST , and the naive method as Naive. We then design
experiments to answer the following questions:

1. Compared with the Naive method, what are the per-
formance of our methods: MST , OMST?

2. In terms of saved IO cost, what is the performance of
the adaptive filter strategy?

3. In terms of saved cost (both IO and computation),
what is the performance of the better refinement strat-
egy?

We measure the IO cost in question 2 with the number of
disk blocks that the algorithm visits during the range search;
meanwhile, we measure the saved cost in question 3 with
the number of trajectories retrieved from disk and processed
during the refinement phase.

Since the matching threshold ε is application dependent [13],
we run several probing programs on each dataset and choose
the one close to human observations. Also, we set the dis-
tance threshold δ as ε/2.

5.1 Settings
Dataset: We use Beijing dataset for the experiment. The
dataset is a three-day taxi trajectory dataset whose distri-
bution is shown in Figure 6. After cleaning, the dataset
contains 6176841 sample points and consists of 30284 tra-
jectories with lengths varying from 20 to 1400.

Figure 6: The Beijing Dataset

To mimic the scenario that the dataset is too large to resi-
dent in main memory, we put the dataset in external mem-
ory and use an R-tree to index it. In the R-tree, we set the
page size 4096 bytes, the capacities and the fill factors (both
node and leaf) 100 and 70%, respectively.

The query trajectories are divided into six groups whose
lengths are 40, 80, 160, 320, 640, 1280, respectively. Each
group consists of 50 trajectories and the cost is obtained
from the average of the corresponding items. For each query
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trajectory, we use a random function to weight its sample
points.

Environments: All these algorithms are implemented in
Java and examined on a Windows XP platform with Intel
Core i7 CPU (2.93GHz) and 3.5GB memory.

5.2 Performance
Figure 7(a) shows the query time of the three algorithms
in histogram. From it we can see the Naive method takes
the longest time for each query. As a matter of fact, even
for queries as short as 40, it still takes about 20 seconds to
get the answer. While for our proposed method MST , the
answering time is significantly shorter. Even for the longest
queries, it only takes about 20 seconds to get the answer.
The optimized OMST algorithm is the most efficient algo-
rithm. Its answering time is significantly shorter than the
corresponding time of MST and drastically shorter than the
corresponding time of Naive.
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Figure 7: The query time

Figure 7(b) shows the query time in the real length scale.
As the computation cost of the similarity value is quadratic
to the query length, if we only count on the computation
cost, the query time should be quadratic to the length. But
the real time is nearly linear. This implies that the IO cost
plays an important part in the query process.
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Figure 8 illustrates the number of disk blocks that the two al-
gorithm visits during the filter phase with the range queries.
Since algorithm OMST adopts the adaptive filter strategy,
from the figure, we can see its IO cost is significantly smaller
than the corresponding cost in MST , which implies the
adaptive filter strategy is quite effective.

In Figure 9, the MST denotes the number of trajectories
in the candidate set in Algorithm 1 and also the number of
processed trajectories in the refinement phase; the OMST
denotes the number of trajectories in the candidate set with
the adaptive filter strategy in Algorithm 3 and the OMST -
prune denotes the number of actually processed trajectories
in the refinement phase after pruning. We can see the num-
ber of trajectories of OMST is significantly higher than that

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0  200  400  600  800  1000  1200  1400

Pr
oc

es
se

d 
Tr

aj
ec

to
rie

s

Query Length

MST
OMST

OMST-prune

Figure 9: Processed trajectories

of MST due to the introduced dead space in the adaptive
filter strategy, while after pruning, the number of actually
processed trajectories is much smaller than that of MST
and OMST , which implies the pruning ability of the upper
bound is quite good.
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Figure 10: The prune power

Figure 10(a) shows the relative prune power of the prun-
ing techniques over MST and OMST . The relative prune
power is defined to be the fraction of candidate trajectories
being pruned in the refinement phase. We can see both the
relative pruning powers in MST and OMST are around
80%, which from another perspective demonstrates the ef-
fectiveness of our pruning techniques. Figure 10(b) shows
the absolute prune power of Algorithm 1 and Algorithm 3,
where the absolute prune power is the fraction of trajectories
being pruned in the refinement phase w.r.t. all trajectories
in the database. For Algorithm 1, the prune power is above
83%; while for Algorithm 3, the prune power is above 95%.
Having the ability to prune most trajectories in the database
is the main reason that Algorithm 1 and Algorithm 3 are far
more efficient than the Naive method.

6. RELATED WORK
Trajectory similarity search has been studied for decades.
From the earliest similarity measures like Euclidean-based
distance [1, 15, 11], Dynamic Time Warping (DTW) [16, 9,
4] to the more recently similarity measures like Edit Distance
on Real sequence (EDR) [3], Longest Common Subsequence
(LCSS) [13], a consider amount of methods have been pro-
posed. Among these methods, Euclidean-based distance and
DTW are sensitive to noise, while the EDR and LCSS are
more robust and accurate. However, none of these work con-
siders user oriented similarity search, which is exactly what
we study in this paper.

In [13] Vlachos et al. suggest using LCSS as the similarity
measure, which matches two sequences by allowing them to
stretch, without rearranging the sequence of elements but
allowing some elements to be unmatched. As a result, the
LCSS measure can efficiently handle outliers (or noise) that
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often exist in trajectories due to sensor failures, error in de-
tection techniques and disturbance signals. A cluster-based
indexing is proposed to improve the retrieval efficiency using
LCSS. The performance of this indexing method depends on
the clustering results. However, due to LCSS not following
triangle inequality, it is hard to find good clusters and rep-
resenting points in the data set [8]. Besides, [13] considers
shape similarity allowing spatial shifting between trajecto-
ries, which is quite different form our settings: the spatial
shifting is strictly prohibited.

Chen et al. in [3] propose EDR as a similarity measure
which considers spatial shifting as well as assigning penalties
according to the sizes of gaps in between similar shapes.
Three pruning techniques are also developed to speed up
the query process. But under the condition of user specified
query where the relative importance of each sample point is
considered, the pruning techniques are no longer hold.

In the query trajectory, if we set all the significant points as
weight 1, and other points as weight 0, then this work bears
some resemblance to [5] in which Chen et al. explore search-
ing trajectories by specifying a series locations. However,as
the number of specified locations may be a few, in our work,
we study a more general problem with arbitrary number of
sample points (theoretically) where each sample point may
pertain to arbitrary weight.

There are also some interesting work [20, 19, 18, 17, 10] us-
ing data mining techniques to find the semantic aspects of
trajectories. In these work, each trajectory is firstly trans-
formed into a semantic trajectory, then based on semantic
representing the system does friends recommendation. Dif-
ferent from these work, our work towards providing person-
alized recommendation in which the preference (or signifi-
cance) is designated by users.

7. CONCLUSION
In this paper, we study a new problem of user-oriented tra-
jectory similarity search, in which each user can specify their
own important parts in the query trajectory to get the per-
sonalized searching results. We identify the efficiency issue
as the key challenge and develop a two-phase algorithm tak-
ing advantage of the spatial localities to conquer this chal-
lenge. As we observe that there are some redundant IOs in
the filter phase and only few trajectories have the chance to
be returned in the refinement phase, we develop two opti-
mized strategies to speed up the query process. The theo-
retical analysis and the experiment results demonstrate the
effectiveness of the two optimized strategies and justify the
advantage of the proposed methods over the naive method
for at least an order of magnitude. Furthermore, the pro-
posed methods are easy to implement and incorporate into
trajectory databases.
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ABSTRACT
We introduce our vision for mining fine-grained urban traf-
fic knowledge from mobile sensing, especially GPS location
traces. Beyond characterizing human mobility patterns and
measuring traffic congestion, we show how mobile sensing
can also reveal details such as intersection performance statis-
tics that are useful for optimizing the timing of a traffic sig-
nal. Realizing such applications requires co-designing pri-
vacy protection algorithms and novel traffic modeling tech-
niques so that the needs for privacy preserving and traffic
modeling can be simultaneously satisfied. We explore pri-
vacy algorithms based on the virtual trip lines (VTL) con-
cept to regulate where and when the mobile data should be
collected. The traffic modeling techniques feature an inte-
gration of traffic principles and learning/optimization tech-
niques. The proposed methods are illustrated using two case
studies for extracting traffic knowledge for urban signalized
intersection.

Keywords
Urban Traffic Knowledge, Mobile Sensing, Location Traces,
Traffic Theory

1. INTRODUCTION AND MOTIVATION
The recent proliferation of Global Positioning System (GPS)
equipped vehicles and devices have led to the emergence and
rapid deployment of mobile traffic sensors, which move with
the traffic flow they are monitoring. Mobile sensors can
collect detailed location traces of individual persons or ve-
hicles, information that promises great advances in many
science and engineering fields, including public health mon-
itoring/diagnostics [19], extraction of personal or social be-
haviors [7] and mobility patterns [8], and transportation [12,
2].

In the transportation area, mobile sensing has recently moti-
vated two important investigations, namely, city-scale trans-
portation knowledge extraction and fine-grained urban traf-
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fic knowledge extraction. The former concerns with large
scale (i.e., city-scale) traffic congestion patterns such as travel
times [26], routing [26, 25], social activity patterns [16], ur-
ban planning [28], land use [23], human mobility patterns
[8], among others. Chapter 5 in [29] provides a summary of
city-scale transportation knowledge extraction, focusing on
possible patterns that can be extracted from location traces
(trajectories). Other related critical issues are also discussed
in [29] such as privacy concerns. On the other hand, fined-
grained urban traffic knowledge extraction emphasizes on
detailed, smaller-scale descriptions of urban traffic flow, such
as traffic states and performances, as well as associated traf-
fic operations and control. Applications for fine-grained ur-
ban traffic knowledge extraction can be broadly categorized
as those for highways and urban arterials. Highway traf-
fic can be generally modeled as continuous flow [11, 12, 24].
Arterial traffic however is often disrupted, e.g., by traffic sig-
nals, resulting in discontinuities and kinks in arterial traffic
flow states. Such unique features can actually be utilized
to reconstruct arterial traffic flow patterns such as delay (or
travel times) [2] and queue lengths [1, 6], as well as signal
timing information [9].

City-scale and fine-grained urban knowledge extraction rep-
resent, respectively, the macro-level and micro-level model-
ing of urban transportation systems. They are thus equally
important for better understanding, describing, and man-
aging the urban transportation systems. They share many
commonalities, e.g., their methodologies require integration
of data mining tools and some domain knowledge, privacy
seems to be a concern to both areas, etc. Their also have
distinctive differences, in terms of their specific application
domains and the detailed study methodologies. In partic-
ular, city-scale applications require wide-area data cover-
age but may tolerate coarse resolution accuracy in time or
space. For example, Taxi GPS data reported in a 2-5 minute
interval can be used to mine routing and city-scale traffic
conditions [26, 25]. Fine-grained urban knowledge extrac-
tion however requires much finer resolution especially in the
time domain (second-by-second location traces is usually de-
sirable) and relatively high penetration [1]. On the other
hand, fine-grained applications usually need only smaller-
area data coverage (e.g., signal performance modeling based
on mobile data only needs location traces that cover a single
intersection or several intersections).

In this paper, we focus on fine-grained urban traffic knowl-
edge extraction to estimate real time traffic signal perfor-
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mances using mobile sensing especially location traces. We
show that the traffic knowledge that can be mined from mo-
bile sensing is much richer than the traffic congestion and
mobility pattern knowledge that has been the focus of most
research so far for city-scale urban knowledge extraction.
For example, it has been a long-standing challenge to collect
traffic data in urban environment such as arterial signalized
intersections. The primary source of data collection has been
traditionally via fixed-location sensors such as loop detec-
tors. However, the deployment of such detectors are limited
and the cost to expand their coverage is prohibitive. For ex-
ample, the New York City has over 95% of its total 12,225
traffic signals as pre-timed and no detector is deployed at
most of these intersections [1]. As a result, recently the
National Traffic Signal Report Card assigned the grade ”F”
(the lowest) to the detection and data collection system for
traffic signals in the United States (NTOC, 2007). The wide
deployment of mobile sensors will eventually allow collecting
traces at low cost from a significant fraction of the popula-
tion, which enables the estimation of detailed traffic system
states, i.e., fine-grained urban traffic knowledge extraction,
from individual drivers sharing their location/driving infor-
mation via mobile sensors. This in turn can greatly benefit
existing and emerging applications in urban traffic knowl-
edge extraction, such as performance measurement of traffic
signals and arterial networks.

Fine-grained urban traffic knowledge extraction using mo-
bile sensors can be considered as a special form of Human
Centric Sensing which needs to address a set of challenges
[20]. In this paper we focus on two of them that are particu-
larly important to transportation modeling applications: (i)
the development of novel modeling methodologies to utilize
the unique format of mobile data; and (ii) privacy protec-
tion. First, compared with fixed-location sensor data, data
from mobile sensors has distinct features. Figure 1 illus-
trates the difference of the two data types in a time-space
coordinate system at a signalized intersection. We show the
red time duration and green time duration at the location
of the intersection. Short line segments represent the fixed-
location sensor data collected by the loop detector system
which consists of a presence detector at the stop line and
an advanced detector in the upstream link. Two long thick
curves in the figure represent the trajectories obtained from
the mobile sensors. As shown in the figure, fixed-location
sensors collect traffic flow measures, such as volume, den-
sity, and speed, for all vehicles, but only at spatially discrete
locations where sensors are deployed. Mobile sensors on the
other hand can reveal detailed behaviors and provide (al-
most) spatially continuous trajectories of vehicles, but only
for a sample of the traffic flow. Since part of the traffic flow
is hidden, we cannot obtain accurate aggregated measures,
such as traffic volume or density, from mobile sensors. As a
result, existing modeling methods that work well for fixed-
location sensors may not be directly applied to mobile data.

The unique characteristics of mobile data thus call for novel
modeling approaches. Unfortunately, existing research on
using mobile data (often called “probe data”) in transporta-
tion is limited by very low penetration of such data. As a re-
sult, mobile data have been used mainly as a supplement to
fixed location sensor data. Pure statistical analysis has been
the main method to deal with mobile data [14], focusing on

Figure 1: Comparison of mobile data and fixed-
location-sensor data

applications to estimate average traffic flow or travel times
[18]. Those previous approaches cannot fully capture and
utilize the unique features of mobile data shown in Figure 1.
In this paper, we focus on relatively large penetration of mo-
bile data (e.g., larger than 10%) since we believe this will be
the future trend. Under relatively high penetration, mobile
data will play a dominate or at least equally important role
(compared with fixed-location sensor data) for traffic data
collection and modeling. This has the potential to trans-
form current practice of urban traffic knowledge extraction.
Privacy violation is another issue to concern. As mobile sen-
sors can potentially reveal the complete traces of travelers
that could contain sensitive location related information, the
medical conditions, political affiliations or commercial secret
may be inferred. Today the privacy issues of mobile devices
are well realized by the public; see e.g., [22].

These two challenges call for an integrative framework to
simultaneously consider modeling data needs and privacy
preservation, i.e., to co-design privacy algorithms and mod-
eling techniques so that the needs for urban traffic knowl-
edge extraction and privacy protection can be both satisfied.
This paper summarizes the authors’ recent work in this area.
We present the privacy protection scheme first in the next
section. The new traffic modeling methods using privacy
preserving mobile data are then presented and illustrated
using case studies for fine-grained urban traffic knowledge
extraction. We conclude the paper by discussing several im-
portant future research directions.

2. PRIVACY PROTECTION SCHEME
Our research pursues a privacy-by-design approach [5] to
balance traffic modeling data needs and privacy protection
when dealing with mobile data. This approach seeks to mini-
mize the collection of personally identifiable information. To
this end, we anonymize information by omitting any iden-
tifiers (such as names, equipment serial numbers, etc.) and
further restrict the collection of location traces to limit re-
identification risks. One aspect of restricting collection is
to only record data in those locations where it is actually
required for providing the service. To achieve this, we have
introduced together with other colleagues Virtual Trip Lines
(VTLs) [13], which define point locations on roadways where
data should be collected, and VTL zones, which are areas
along roadways where data is needed. Figure 2 shows an ex-
ample VTL zone for an intersection monitoring application.
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Figure 2: VTL mobile data collection system
(source: [22])

It shows the VTL locations for the east-west street through
dashed bold lines. Not shown are the VTL locations for
north-south street, which would be part of a general so-
lution. These VTL locations can be stored on the mobile
sensing device. The device monitors its own location using
GPS, for example, and will only report its speed and location
trajectory to the location server between the upstream and
downstream VTLs that demarcate the VTL zones. Notice
that the exact VTL locations can be adjusted depending on
application requirements. In this example VTL1 is placed
farther away from the intersection than VTL2 in order to
capture the queuing process of vehicles approaching the in-
tersection. Since anonymous data can be often re-identified
by correlating it with other data sources, the application
server can apply further cloaking algorithms that filter the
data to reduce risk as described in [13] or [27].

The use of these different types of privacy filtered data has
been tested for both freeway modeling [11, 24] and urban
arterial modeling [2, 1]. Sun et al. [21] further showed that
the mobile data (such as travel times, short trajectories)
collected via such a system can be properly used for traffic
modeling applications such as real time estimation of vehic-
ular queue lengths at a traffic signal. In this paper, we will
illustrate this with the following two case studies that use
the travel times of vehicles equipped with mobile sensors
(called sample vehicles).

3. CASE STUDY I: DELAY PATTERN
Delay caused by traffic signals is the major source of de-
lay in urban environment. Intersection delay pattern here
refers to the experienced delay of a vehicle arriving at the
intersection at any time. As shown in Figure 3, what we
can actually measure in real world is the discrete delays or
travel times from individual vehicles (shown as the circles
on the piecewise linear curve in the bottom of the figure).
Delay pattern is thus a continuous approximation of such
discrete measurements. In fact, when people talk about in-
tersection delays at a certain time (say 8 am), they never
care if there is a vehicle actually arriving at the intersection
at that particular time; indeed, they refer to the delay pat-
tern of the intersection. To show how delay pattern can be
estimated using mobile data, we show in Figure 3 a signal-
ized intersection with two VTLs deployed upstream (VTL1)
and downstream (VTL2). Under certain assumptions, we
can use the bold solid triangles (or trapezoids) in the figure

Figure 3: Intersection delay pattern

to represent how queue forms and dissipates based on the
traffic shockwave theory [15, 17, 2]. The horizontal part of
a triangle represents the duration of red time. As shown
by the trajectories of vehicles (dashed lines), if a vehicle ap-
proaches the intersection in red time or if the queue length
is not zero (e.g., trajectory a in the figure), the vehicle will
join the end of the queue first and thus be delayed. The de-
lay encountered by the vehicle is the horizontal part of the
trajectory. Otherwise, if a vehicle arrives during green time
and there is no queue (e.g., trajectory b), the vehicle will
pass the intersection with no delay. By analyzing the geom-
etry of the triangles, we can construct the theoretical delay
pattern curve as shown in the bottom of Figure 3. The curve
is piecewise linear and contains critical points, i.e., disconti-
nuities and non-smoothness. Discontinuities indicate traffic
signal changes (such as the start of the red time) and non-
smoothness indicate traffic state changes (such as a queue is
fully discharged).

Mobile data however cannot be used to construct directly
the delay pattern; rather they provide samples of intersec-
tion delays, shown as circles along the delay curve in the
figure. These sample delays, under proper penetration, can
be used to identify the critical points of and further to esti-
mate the delay pattern curves. In [2], this is done via a least
square estimation algorithm to fit the sample travel times
to the piece wise linear curves after grouping the samples
into different cycles. Figure 4 shows the results of applying
the estimation algorithm to a field test in the Bay Area in
California [1]. In the figure, the asterisks along the piece-
wise lines (i.e., the estimated delay pattern) are the observed
travel times (delay plus a constant minimum traverse time
from VTL1 to VTL2) and the plus signs at the bottom are
the errors. It is clear that the delay pattern can match
well the observed samples. Knowing the pattern will help
identify traffic conditions, e.g., over-saturation (i.e., vehicles
cannot be fully discharged within a cycle) as indicated in
the figure, or to estimate real time queue lengths [1].

The above analysis underlines the most salient feature of
the new modeling method, i.e., a proper integration of traf-
fic principles and learning/optimization techniques. For the
delay pattern estimation here, the knowledge is based on the
traffic flow theory that describes the delay pattern as piece-
wise linear curves whose critical points (discontinuities and
non-smoothness) have clear physical meanings. On the other
hand, the learning/optimization techniques is least square
estimation that helps estimate the key parameters of such

113



Figure 4: Delay pattern estimation of a field test
(Source: [2])

patterns from mobile data and ultimately reconstruct the
patterns. These two components need to be integrated in a
holistic manner, which however may be different for different
applications, as shown in the next case study.

4. CASE STUDY II: SIGNAL TIMING
Mobile data, especially intersection travel times, can be used
to estimate the timing parameters of urban traffic signals
(such as the cycle length, number of phases, and cycle by
cycle red and green times), which are important for traffic
signal operations and signal/arterial performance measure-
ment. It has been for long assumed that such parameters
should be available input, e.g., from transportation man-
agement agencies such as departments of transportation, to
traffic models. In fact, collecting signal timing parameters
directly from the agencies is probably trivial for small scale
data collection (such as for a few signals). However, col-
lecting such information this way for large areas (such as a
region or nation-wide) can be very challenging and time con-
suming due to many possible technical and institutional hur-
dles. On the other hand, many traffic information providers
have started to collect increasingly large amount of mobile
data. Therefore an alternative way is to infer the signal
timing information directly from the data that have already
been collected such as travel times, probably with the help
of limited (and easily obtained) knowledge about traffic sig-
nals.

[9] developed a robust signal timing estimation method based
on intersection travel times. The method is again featured
by a combination of traffic flow theories and learning/ opti-
mization methods, which can estimate the exact cycle start/end
times. The method contains three major steps: cycle break-
ing, exact cycle boundary detection, and effective red (or
green) time estimation. Cycle breaking determines whether
a new cycle starts by applying the support vector machine
(SVM) to identify travel time samples that indicate the
starts of red times. The exact cycle boundary estimation
detects the exact cycle start/end times. It can be formu-
lated as a nonlinear program by assuming that the cycle
length is constant (the effective red and green times may

Figure 5: Cycle breaking (source: [7])

vary from cycle to cycle, which covers a large portion of ex-
isting traffic signals, e.g., in the US). The method can fur-
ther detect the number of missing cycles using sample delays
and the SVM results. The effective red (or green) time es-
timation calculates the duration of effective red (or green)
times. This is done via using delay patterns by investigating
when non-smoothness in the delay pattern happens. Due to
space limitation, we only present in this paper how the cycle
breaking is done via the use of SVM.

We first define, as shown in Figure 3, a cycle breaking vehi-
cle (CBV) as the first sample vehicle in a cycle. The other
vehicles in this cycle are defined as non-cycle breaking vehi-
cle (NCBV). Note that the CBV of a cycle is not necessarily
the first vehicle actually arriving at the signal in the cycle
if the penetration is not 100% (in this case, the first vehicle
may not be sampled). The CBVs usually have higher delays
as shown in Figure 3. In [2], this feature is used to detect
whether a new cycle starts by defining a threshold: if the
delay increase from one vehicle to the next vehicle exceeds
this threshold, a new cycle starts. The results however are
not reliable due to oscillation and noise in measurements,
and especially low penetration rate of mobile data. In [9],
the SVM model applies two features: the arrival time differ-
ence ti− ti−1 and the delay difference τi− τi−1 between two
consecutively sampled vehicles. Here ti is the ith sample ve-
hicle’s arrival time at VTL1 and τi is the intersection delay
of the ith sample vehicle. The second feature is exactly what
was used in [2]. Figure 5 depicts these two features for a field
test under 60% and 30% penetration rate of travel time data
[9]. In the figure, dots are for NCBVs and plus signs are for
CBVs. We can see that there is a clear margin of separation
between CBVs and NCBVs using these two features. Using
either feature or a simple combination of the two features
however is not effective. In Figure 5, the vertical dashed
bold line indicates the threshold in delay increase; the hor-
izontal dashed bold line indicates the threshold in arrival
times. The figure shows that even both measures are used
(e.g., a CBV needs to satisfy at least one of the two mea-
sures), there will be still large errors for mis-identification,
as those indicated by the circles.

SVM can combine the two features in a more intelligent
way. To show how the SVM model can be developed, let
the historical travel time data be denoted by (xi, yi), i =
1, . . . ,M , where xi = (ti − ti−1, di − di−1)

T is a data point
and yi = 1 is the corresponding label (yi = 1 for CBV
and yi = −1 for NCBV). SVM divides the data set into
two groups: one for yi = 1 and the other for yi = −1.
It can further produce two support planes (lines in the R2
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Figure 6: Cycle breaking results: Simulation and
NGSIM datasets (source: [7])

space) for such separation as depicted in Figure 5. Let w =
(w1, w2)

T ∈ R2 and b be a scalar. If w and b are properly
selected, we will have wxi−b ≥ 1 for yi = 1 and wxi−b ≤ −1
for yi = −1. Then the two support lines are wxi − b = 1
and wxi−b = −1. The distance between these two lines can
be shown as 2/||w|| with ||w|| denoting the norm of w. If
we aim to maximize the distance between these two support
planes, (w, b) can be determined by solving the following
SVM problem [9]:

minw,b 1/2||w||2 +G(

M∑

i=1

εi) (1)

subject to yi(wxi − b) ≥ 1− εi, i = 1, . . . ,M, (2)

εi ≥ 0, i = 1, . . . ,M. (3)

Here εi is the error term for cases where the classes can-
not be perfectly divided. G is the weight factor assigned
to the error terms in the overall objective function; a larger
G assigns a larger penalty to the error. Solving the above
SVM model is usually not computationally demanding since
it is a convex, quadratic program; see [4, 3]. After solving
the SVM model, the (w, b) pair, in particular, the two planes
(lines): wxi−b = 1 and wxi−b = −1, can be used to identify
whether a given data sample xj is a CBV or NCBV. Figure
6 shows the results of applying the SVM model to break
cycles using the datasets of simulation and NGSIM (next
generation simulation, widely used for traffic research) [9],
based on which to estimate the cycle boundaries and lengths.
Compared with the previous method in [2], the root mean
square error (RMSE) of the results is much improved: from
9.6 seconds to 1.6 seconds for the simulation data, and from
8.2 seconds to 3.0 seconds for the NGSIM data.

Figure 7 shows the signal timing estimation results by apply-
ing the three step method for the NGSIM dataset. There
are in total 9 cycles in the dataset and is no sample for
the second and third cycles. The figure shows that the two

Figure 7: Signal timing estimation results: NGSIM
dataset (source: [7])

missing cycles can be correctly detected by the three step
method. The estimated start times of red are plotted using
vertical solid lines and the estimated start times of green are
plotted using vertical dashed lines. The actual starts of red
and green times are also shown in the figure using dotted
lines. We can see that the estimated cycle boundaries and
red and green times match well with those from field obser-
vations, indicating that the method works reasonably well.
Same conclusion can also be obtained for the simulation data
which is omitted here.

The above analysis underlines again the unique feature of
the new modeling method that integrates traffic principles
(in this case, how delay changes within a cycle and across
cycles) with learning/optimization methods (in this case,
SVM and nonlinear programming). It also highlights the
importance of learning techniques in such a process: the
knowledge (i.e., the two features for cycle breaking) has to
be used intelligently since simple use of them may not work
well (as illustrated by the plot to the right in Figure 5).
On the other hand, traffic knowledge (such as the signal cy-
cle length is fixed and the vehicle delay after signal turns
red will “jump”) is also critical. After all, we are dealing
with a physical traffic system with control devices and ve-
hicles/drivers. Traffic knowledge usually represents some
important physical phenomena or characteristics of the sys-
tem and thus needs to be properly respected and integrated
into the learning/optimization models to produce meaning-
ful results.

5. DISCUSSIONS AND FUTURE RESEARCH
We presented in this paper our recent work on co-designing
privacy protection algorithms and traffic modeling methods
for fine-grained urban traffic knowledge extraction using lo-
cation traces from mobile sensoring. The privacy protec-
tion scheme is based on the VTL concept to regulate the
collection of mobile data. The traffic modeling method is
featured by a combination of traffic principles and learn-
ing/optimization techniques. Two case studies were also
presented to demonstrate the proposed methods.
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Figure 8: Privacy-aware modeling paradigm

The development of the VTL concept is based on a close
collaboration between location privacy experts and trans-
portation researchers, with the aim to properly balance the
needs of both traffic modeling (i.e., traffic knowledge ex-
traction) and privacy protection. It clearly indicates that
for many traffic/transportation applications, data needs for
modeling do not necessarily have to be compromised to en-
sure privacy protection. An application-aware design of pri-
vacy algorithms can retain features important for the ap-
plication, while still achieving privacy by removing features
that are less important. The key is the close collaboration
between the two research communities of privacy protection
and transportation to simultaneously consider privacy pro-
tection and application needs: being aware of the effects of
applying privacy schemes to data when developing model-
ing methods, and being aware of data needs when designing
privacy preserving mechanisms. As the future paradigm will
likely shift from traditional sensors (such as loops) to mobile
sensors as shown in Figure 8, such collaboration is critical to
transform the current modeling techniques with no or little
privacy consideration to a new paradigm for privacy-aware
modeling techniques to satisfy requirements of both data
needs for modeling and privacy protection.

The proper integration of transportation principles and data-
mining tools is important to develop new mobile-data-based
traffic modeling methods, especially when the penetration of
mobile data reaches certain “critical mass.” In this case, the
mobile data can present patterns that reveal traffic system
control or state changes (such as red time starts or queue
disappears, as we discussed in the delay pattern estimation
section). Knowledge about these patterns (many of which
are indeed well-known in the application domain) are crucial
since they can provide guidance to the learning/optimization
models to focus on the most relevant, important features.
Applying advanced learning/optimization techniques on the
other hand is also critical to obtain accurate, robust estima-
tion of the patterns, and further system control and states.

Fine-grained urban traffic knowledge extraction using mo-
bile sensoring is an emerging area and many challenges still
remain. Below we summarize the limitations of our current
research and highlight some challenges for future research.

(a) Our current focus in on urban intersections which are a
crucial component for urban traffic. The next step is
to expand it to model arterial corridors (consist of a
number of intersections) and networks. The important

issue for such expansion is to capture the interactions
among different intersections, which can be revealed
by vehicle platooning. The key challenge therefore is
to study how vehicle platoons form and disperse at
intersections using mobile data.

(b) The presented models in this paper are deterministic.
Since traffic is random in nature, we need to capture
such sotchasticity in the modeling process. This is par-
ticularly important when modeling urban corridors or
networks (such as to study the vehicle platooning pro-
cess). We recently developed Bayesian Network based
statistical learning methods to model arterial traffic
flow [10]. The method will be expanded for large scale
arterial applications.

(c) The VTL based privacy protection algorithm is suitable
for modeling urban intersections. Our research also
indicates that specific privacy techniques may need to
be developed for different urban applications such as
origin-destination demand estimation, urban conges-
tion pricing, among others. For this, a comprehensive
framework is needed. It should contain a suite of pri-
vacy techniques that can be used/tailored depending
on specific urban applications. The authors are work-
ing on this topic and results will be reported in subse-
quent papers.
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ABSTRACT
To enable smart transportation, a large volume of vehicular
GPS trajectory data has been collected in the metropolitan-
scale Shanghai Grid project. The collected raw GPS data,
however, suffers from various errors. Thus, it is inappropri-
ate to use the raw GPS dataset directly for many potential
smart transportation applications. Map matching, a pro-
cess to align the raw GPS data onto the corresponding road
network, is a commonly used technique to calibrate the raw
GPS data. In practice, however, there is no ground truth
data to validate the calibrated GPS data. It is necessary and
desirable to have ground truth data to evaluate the effective-
ness of various map matching algorithms, especially in com-
plex environments. In this paper, we propose truthFinder,
an interactive map matching system for ground truth data
exploration. It incorporates traditional map matching al-
gorithms and human intelligence in a unified manner. The
accuracy of truthFinder is guaranteed by the observation
that a vehicular trajectory can be correctly identified by
human-labeling with the help of a period of historical GPS
dataset. To the best of our knowledge, truthFinder is the
first interactive map matching system trying to explore the
ground truth from historical GPS trajectory data. To mea-
sure the cost of human interactions, we design a cost model
that classifies and quantifies user operations. Having the
guaranteed accuracy, truthFinder is evaluated in terms of
operation cost. The results show that truthFinder makes
the cost of map matching process up to two orders of mag-
nitude less than the pure human-labeling approach.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
System, Measurement
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1. INTRODUCTION
Smart transportation is expected to play an important

role to meet the growing demand of various transportation-
related services from citizens [16] and government officers
[2], especially in modern cities. A fundamental requirement
to smart transportation is to collect the dynamic vehicular
location data to form the basis to build an effective traffic
information system [4]. The collected large-scale vehicular
dataset is subject to further analysis, such as traffic estima-
tion [15], hot spot detection [9], driving pattern recognition
[8], traffic mining [5], and similar routes discovery [3], before
the goals of smart transportation can be achieved. Real-time
vehicular data collection is the first step toward smart trans-
portation. For example, in Shanghai Grid (SG) project [7],
most of the public vehicles are equipped with a GPS and a
GPRS wireless communication module. Each of these ve-
hicles periodically sends GPS reports to a data center. In
the current implementation of the SG project, a very large
volume (about 3-4 million records per day) of vehicular GPS
trajectory data has been collected with different techniques.

The collected raw GPS data unfortunately suffers from
two major errors. First, due to the limitation of the GPS
technology, the vehicle location coordinates are not neces-
sary precise mainly due to environmental factors. Second, a
vehicle’s location trajectory is reported in discrete samples
for cost concern of GPRS communication. Even worse, the
reporting or sampling interval may be adjusted by the driver
in the SG project. Thus, it is challenging to estimate a vehi-
cle’s location during the sampling interval. Consequently, it
is inappropriate to use the raw GPS dataset directly, which
may lead to inaccurate conclusions or decisions for the po-
tential smart transportation applications.

Due to the problems introduced above, raw GPS data cali-
bration or recovery is the next important step toward smart
transportation. An intuitive approach to correct the raw
GPS data is to align the data onto the corresponding road
network to find out a sequence of road segments that a ve-
hicle has traveled along. This process is usually referred to
as map matching [13] [10]. Typically, a good map matching
should possess the desirable property of high accuracy which
is evaluated by a complete validation. In practice, however,
there is no ground truth data to validate the calibrated GPS
data. Although map matching has been studied for many
years, there still exist several challenging problems due to
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the lack of ground truth data. First, to validate the accu-
racy of a map matching algorithm, a ground truth path is
required to compare with the output of the algorithm. Very
few existing map matching algorithms provide a meaningful
validation technique due to the aforementioned reason. Sec-
ond, it is necessary and desirable to have ground truth data
to tune and evaluate the effectiveness of various map match-
ing algorithms. Since most map matching algorithms are
heuristic, their accuracy is strongly related to the tuning and
selection of various design parameters. However, the param-
eters should be tuned with the ground truth data. Wrong
parameters will lead the algorithm inaccurate. Therefore,
finding a complete trajectory ground truth is critical to the
map matching research.

We observe that most of the ground truth path of the tra-
jectories can be correctly identified by human-labeling on
the historical raw GPS dataset. It is believed that human-
labeled data can be almost 100% accurate and it is widely
used to explore ground truth dataset to evaluate map match-
ing algorithms [10] [17]. In general, a human labeling process
involves both cognitive works (e.g., determining the road
segment for a particular GPS report) and manual works
(e.g., recording the sequence of road segment identifier).
Since this process involves too much human intelligence and
action, it is usually not feasible to apply pure human-labeling
to large GPS datasets.

To solve this problem, in this paper, we propose truthFinder,
an interactive map matching system for ground truth data
exploration. The goal of truthFinder is to minimize the hu-
man involvement. Specifically, we try to let the user interact
with the system as little as possible. Formally, the goal of
truthFinder is defined as follow: For a given trajectory T and
a road network G(V,E), we want to explore the ground truth
path P with a small cost C in terms of operations. For this
purpose, there are several challenges. First, it is difficult to
quantify the cost of human interaction. For this challenge,
we propose a cost model for truthFinder to measure the ef-
ficiency of the method. Second, using the visualization of
the trajectory and the digital map is not trivial. For ex-
ample, the trajectory may contain the same road segment
twice or more. We should avoid such overlapping in visual-
ization and allow the user to select anyone of them. With
this issue, we introduce several techniques (e.g., multi-layer
presentation for showing trajectories and paths, and multi-
color notation for the candidate roads) to make it convenient
to explore the ground truth. Third, the existing map match-
ing algorithms should be modified to be stable. As such, we
propose an interactive map matching system, that is, taking
the users interaction into account, the trajectory generated
at the next round should be more accurate than the current
one.

ThruthFinder incorporates traditional map matching al-
gorithms and human intelligence in a unified manner. The
accuracy of truthFinder is guaranteed by the observation
that a vehicular trajectory can be correctly identified by
human-labeling with the help of a period of historical GPS
dataset. To measure the cost of human interactions, we
design a cost model that classifies and quantifies user op-
erations. Having the guaranteed accuracy, truthFinder is
evaluated in terms of operation cost. The results show that
truthFinder makes the cost of map matching process up to
two orders of magnitude less than the pure human-labeling
approach. To sum up, our contributions are as follows:

• We design a cost model that classifies and quantifies
user interactions. Our model avoids absolute measure-
ments of human behaviors. Instead, we define several
operations with regard to our system and use the num-
ber of each operation in cost analysis.

• We propose the architecture and implementation is-
sues of truthFinder in detail. We are arguably the
first to offer an interactive map matching system. Our
design can be easily generalized for similar purposes.

• We provide a method to explore the ground truth path
data from raw GPS trajectory data while guarantying
the accuracy for different situations at the same time.
In this way, the issues of map matching algorithm val-
idation can be overcome by using truthFinder.

• Our system is evaluated in terms of operation cost.
The experimental results show that truthFinder sig-
nificantly outperforms traditional method of exploring
ground truth data from scratch.

The rest of this paper is organized as follows. Section 2 de-
scribes the prior related work in detail. Section 3 shows the
system architecture design. Section 4 puts forward the cost
model of our interactive map matching system for ground
truth exploration. Section 5 gives the evaluation of our work
based on our implemented prototype system. We conclude
our paper and present the future directions in Section 6.

2. RELATED WORK
The truthFinder system shares its design and consider-

ation with several recent efforts of data calibration work.
We categorize the related works into two groups as the map
matching algorithms and the methods of ground truth path
exploration.

2.1 Map Matching
Map matching has been studied in many litterateurs [13]

[10] [1] [11]. Different map matching algorithms have differ-
ent strategies varying from those using simple search tech-
niques to those using more advanced techniques. In [13], the
authors present an in-depth literature review of map match-
ing algorithms. Generally, the existing algorithms are clas-
sified into four classes: 1) geometric analysis, which makes
use of the geometric information of the spatial road network
data by considering only the shape of the links [6]; 2) topolog-
ical analysis, which makes use of the geometry of the links
as well as connectivity and contiguity of the links [14]; 3)
probabilistic map matching algorithms [12] and 4) advanced
map matching algorithms, which use more refined concepts
such as a Kalmam Filter or a fuzzy logic model or a Hidden
Markov Model [11].

2.2 Ground Truth Exploration
Generally, according to the dataset used in the evaluation

of the aforementioned map matching works, ground truth
path exploration methods can be classified into three classes:
Datasets collected by driving vehicles. The researchers

of [1] [11] drive around the city, and periodically record the
GPS positions together with the roads where they drive on.
At the end of the travel, they will get a sequence of the
raw GPS reports, along with the path they have passed.
Each of the reports will be assigned with a road segment
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to indicate where the vehicle is at the time it is reported.
After the assignment, the GPS data contains both the re-
ports information and the topological information. Then,
the GPS reports are used as the input of map matching,
while the paths are treated as the ground truth data. This
approach is widely used because the GPS reports and the
ground truth paths are well matched as the paths are con-
structed by the actual driving route. However, because this
approach is highly time-consuming, it is not likely to collect
a large such dataset in this way.

Human labeled datasets. This method has been used
in [10] [17]. The researchers start with a set of raw GPS tra-
jectories without any prior knowledge of the actual paths.
Then they find the most likely road segment for each of the
GPS records in the trajectory to represent the GPS record
is reported from. After assigning all of the records, a path
will be created. As the path is assessed by human intel-
ligence for each of the records, the accuracy is guaranteed
at a very high level (almost 100%). Therefore, the path is
considered as a ground truth path. As it is easy to collect
a large set of raw GPS trajectories and the corresponding
road network, this method is capable of generating a large
dataset of trajectories with ground truth paths. However,
simply generating the ground truth path based on the raw
GPS data is always expensive and inefficient.

Synthetic datasets. Some works[10] also generate ground
truth data synthetically. They pick up a path from the road
network, periodically select some points on the path, and
introduce some errors with normal distribution to generate
the synthetic data. Afterward, the paths generated are used
as the ground truth data. This is presumably the most in-
expensive way to generate a dataset containing both raw
GPS trajectories and their ground truth paths. However,
there exist differences between the synthetic and the real
world dataset, e.g., example, the driving pattern, the reports
sampling interval, the GPS position error distribution, and
etc. Thus it is always not suitable to use only the synthetic
dataset to evaluate the performance and accuracy of a map
matching algorithm.

3. DESIGN OF TRUTHFINDER
Motivated by the issues of map matching and ground

truth exploration, truthFinder is proposed to interactively
match the raw GPS trajectories onto a road network with
the help of both traditional map matching algorithm and
human intelligence to explore the ground truth data effi-
ciently. It should be noticed that the goal of truthFinder
is different from that of the traditional map matching al-
gorithms. For traditional map matching algorithm, they
are always used as the tool of calibrating a large volume
of data to the road network with a high accuracy and low
latency. However, because of several reasons (e.g., the com-
plexity road network, the outlier of the trajectory data), it
is impossible for the map matching algorithm to keep its
result consistently with high accuracy all the time in all of
the situations. So it can not be used as a tool of exploring
the ground truth data from the raw GPS data. While the
truthFinder is an interactive system which has human ef-
fort involved, so it is observed that the explored data can be
used as ground truth. However, as human label is involved
in truthFinder, it is not possible to explore a very large vol-
ume of GPS data, for example trajectory data collected in
two years. However, truthFinder can be used to explore as

much ground truth data as possible, for example, ground
truth of enough trajectories data which can cover whole of
the Shanghai, for example, data collected in two days. In
summary, map matching algorithm is used to calibrate a
large volume of GPS data, while truthFinder is used to ex-
plore a complete dataset for other aims, like map matching
algorithm validation and parameter tuning.

3.1 Design Issues
Generally, it is a good idea to explore the ground truth

data by interactively matching the GPS reports which in-
corporates traditional map matching algorithms and human
intelligence in a unified manner. This method not only keeps
the accuracy to be almost 100%, but also has a low cost for
ground truth exploration. However, to explore the ground
truth from the raw GPS data by human-labeling is very
challenging, especially in the environment where the road
network is complex. There are mainly four challenging is-
sues:

• To find the right position from mass of candidate roads
effectively by the users is a challenge. There are al-
ways many roads around each of the GPS positions,
especially in the environment where the road network
is very complex. It is difficult for human to find the
right road where the GPS record was reported from.

• To select the intermediate roads between two roads in
a complex road network is difficult. After the roads are
identified for two consequent GPS reports, it still costs
human much effort to recognize the path between the
two roads, especially for the situations where the two
positions are far away.

• To correct all of the reports onto the right roads in one
time is always impossible. For example, in the complex
road network, roads may overlap, which may leads the
user map the report onto a right position but wrong
road. Then an unreasonable path may be explored.

• To explore ground truth data from a long trajectory
(thousands of GPS reports are included) is very time
costly. For example, if we use the trivial method like
exploring ground truth data from scratch, the cost is
always linear to the record number, which is always
very large, like hundreds to thousands. It will cost the
users a lot of operations to add the road segments and
the mediate road segments between each adjacent pair
of the GPS reports.

3.2 System Overview
Motivated by the previous discussed design issues, we de-

sign truthFinder with several considerations. The architec-
ture of our proposed interactive system is shown in Fig. 1.
It composes of four major components: Recommendation
Preparation, Information Presentation, Candidates Assess-
ing and Tuning, and Ground Truth Data Exploring.

Generally, the work flow of truthFinder can be summa-
rized as follows: First, given a sequence of raw GPS reports,
the recommendation preparation component generates a se-
quence of road segments (potential ground truth path) using
a selected map matching algorithm, like STM [10], HMM [11],
etc. Second, the information presentation component visu-
alizes the path along with the original trajectory onto the
digital map. If the user accepts the accuracy of the path,
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Figure 1: Overview of truthFinder system architecture

then system will jump to the last step. Third, if the accu-
racy is failed to achieve a high accuracy, the system asks the
user to adjust the path by adding and removing a number
of road segments. Fourth, based on the adjustment, the se-
lected map matching algorithm takes the tuned path as the
input and generates a new path that is supposed to be more
accurate than the previous one. After a new recommended
path is generated, truthFinder goes on its process from the
step 2, and iteratively runs the step 2, 3 and 4 until an
accurate enough path is found. Finally, truthFinder saves
the path which is supposed to be accurate enough, and uses
this path as ground truth for the original inputted trajec-
tory. In the following sections, we present the details of our
truthFinder one component by one component.

3.3 Recommendation Preparation
Based on the observation that human-labeled data can

achieve a high accuracy, ground truth can be trivially ex-
plored by evaluating the possibility for each of the roads
near the report position one by one for each of the records
in the trajectory, and finding out the ground truth path by
adding all of the most likely road segments to form a ground
truth path. In this paper, we call this method EPScratch.

However, the cost of EPScratch is always linear to the
record number, which is always very large, like hundreds to
thousands. It will cost the users a lot of operations to add
the road segments, which means it will take the users a very
long time to explore the ground truth path from scratch.
So how to significantly reduce the number of human opera-
tions needed to operate on the ground truth exploration is
the key of the interactive map matching system. For this
reason, truthFinder uses recommendation preparation com-
ponent to generate a potential good path which is calculated
by the traditional map matching algorithms to reduce the
operations needed.

First, Recommendation Preparation component will gen-
erate a potential better path based on the original trajectory.
Given a GPS trajectory T : r1 → r2 → ...→ rn, truthFinder
runs a traditional map matching algorithm basing on the re-
lated road network G(V,E) to generate a recommendation
path P : e1 → e2 → ... → em. As this component is iter-
atively called by truthFinder, both the original trajectory
and the human tuned path can be the input of this compo-
nent. Besides, truthFinder also retrieves the possible candi-
date roads CandRoadSeti = {(Road1, score1), ..., (Roadj ,
scorej)} for each of the GPS records ri (1 ≤ i ≤ n) on the
trajectory to assist the user to select a better path. In the
candidate road sets, each element consists of a road ei and
a score value ei.score which represents the possibility. After

that, the recommendation preparation component will pack
the trajectory T , the recommendation path P , and the can-
didate roads sets CandRoadSeti (1 ≤ i ≤ n) together, and
then sends them to the information presentation component.

3.4 Information Presentation
This component is used to visualize the information packed

from the preparation component including: the trajectory
T , the candidate road sets CandRoadi (1 ≤ i ≤ n), and the
path P . However, as there are always many candidate roads
for each GPS position, especially in the environment where
the road network is very complex, how to visualize the infor-
mation from recommendation component is a big challenge.
The challenge of visualization mainly comes from the mass
of candidate roads, and the intermediate edges between two
GPS positions. To overcome these challenges truthFinder
uses the following techniques:

First, multi-layer is introduced in truthFinder. As we cal-
culate the most likely path, the recommended path, we show
them on the top layer. So that the user can assess the ac-
curacy of the path easily. Also as there always exist wrong
road segments in the recommended path, the top-level show-
ing of the path makes user easier to find which roads should
be removed from the path.

Second, multi-color notation is used for the candidate
roads showing. Finding the most accurate road from the
mass candidate road sets with a same color is challenged.
The truthFinder system proposes a probability based color
notation for the candidate road selection. The probability
is calculated by the distance of the observed position to the
road and the route between the consequent two candidate
roads. The roads with a color representing higher probabil-
ity will be more likely to be selected to add into the path.

Third, real time path showing is proposed. The user
should assess their selection of the candidate roads both of
the positions and the route between the two positions. And
a good method to show the path between two selected candi-
date roads is needed. The truthFinder system designs a real
time path showing technique. When a new candidate road is
selected, truthFinder automatically calculates the interme-
diate roads to next selected position, and shows them with
different colors. With our experience of using truthFinder,
this makes the user convenient to select the most likely path.

The information representation component makes the ground
truth data exploring from the historical GPS data much eas-
ier and more efficient with high confidence.

3.5 Assessing and Tuning
The existing map matching algorithms are always sensi-
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tive to the map context and thereby the accuracy is not
guaranteed for situations other than their experiment set-
tings. To improve the accuracy and make the accuracy sta-
ble, human effort is needed for assessing whether the result
is good enough to be exported as a ground truth data. When
there are some of the GPS positions which can find a better
candidate, the user should tune them and compose a better
ground truth path. After tuning the positions, a new rec-
ommendation path will be created, which will be iteratively
treated by the recommendation preparation component.

Generally, the user operations for tuning include: 1) delet-
ing an unreasonable edge from the recommended path, 2)
recognizing a better road segment and adding it into the
path, 3) adding the intermediate edges between two GPS
positions.

With the information preparation component, deleting
the unreasonable edges from the recommended path is ef-
ficient. For example, as both the trajectory of raw GPS
trajectory data and the recommended path are showed in
truthFinder, users can compare them by their shape, poten-
tial route path, and other factors. The differences between
the trajectory and the path can be easily found. Therefore,
deleting unsuitable roads can be done by comparing between
these candidate roads.

While for recognizing and adding operations, after a bet-
ter candidate road is recognized, the user should add it into
the recommended path, and consensually, adding the route
path between two candidate roads to the recommended path.
When these steps are finished, a better path would be found.
However, errors may still exist in the recommend path. Users
should iterate these steps until a ground truth data is found.

3.6 Ground Truth Data Exploring
After interactively visualized, assessed and tuned, a fi-

nal recommended path will be generated. As the path is
assessed by human effort, it is guaranteed to have a high
accuracy, and reasonable to be treated as a ground truth
data. Then the ground truth will be explored.

The truthFinder system explores the ground truth path
information together with the original GPS data. Both the
position and the road id where the position located on the
path will be exported. For example, we use truthFinder
to explore the ground truth path for the GPS trajectory
T : r1 → r2 → ... → rn, suppose after map matching with
truthFinder, a path P : e1 → e2 → ...→ em is found, where
each position ri (1 ≤ i ≤ n) in T is mapped onto an edge
eij at position rij , where eij ∈ e1, e2, ..., em. We not only
explore the original information included in trajectory T ,
but also explore the longitude and latitude of rij together
with the eij .id.

With this last phase, truthFinder generates a recommended
path with high accuracy. To the best of our knowledge, it is
the best method to explore the ground truth path data from
the original GPS data with human intelligence involved. As
the result is assessed with human intelligence, the explored
dataset can be used as ground truth data. As such, it is
widely used to generate ground truth dataset to evaluate
map matching algorithms [10][17].

4. COST MODEL FOR TRUTHFINDER
To define the cost model, we first give some preliminaries,

and then define a weighted cost model based on these pre-
liminaries for the cost in each of the iterations. After that,

Table 1: Main variables used in cost model.
Var Description

ri the ith position in the trajectory, 1 ≤ i ≤ n
Sj error positions set in the jth iteration
Nj number of error positions in set Sj

Et threshold of error positions in ground truth path
Am accuracy of the map matching algorithm
Ah human ability to correct error position
wd cost of deleting an edge from the path
wa cost of adding a road segment into the path

we will give the cost model for the total cost of truthFinder
in terms of operation per record.

4.1 Preliminaries
Viewing from the process of truthFinder, the phases in-

volved include preparing a recommended path, visualizing
the recommend data and interactively tuning them with hu-
man assessing, and finally exploring the ground truth. In
these phases, human effort is mainly involved in the phase
of tuning and assessing the path with several types of oper-
ations, like deleting an edge, adding a better road segment,
etc. As different operations may have different cost (for ex-
ample, deleting an edge from the recommended path always
costs less than the operation of recognizing a better candi-
date road and adding it into the path), the cost of human aid
is calculated from this phase in term of weighted operations.

To discuss our cost model conveniently, we give several
definitions of the variables used in the cost model. Table 1
summarizes the main variables. Adding a road into a path
needs to find and assess the suitable ones from a bundle of
candidate roads. While deleting a road from a path can be
done directly. Generally, wa is always much bigger than wd.

4.2 Cost Model
The cost model for truthFinder is composed by each of

the iterations involved in the assessing and tuning phase.
First, we give the cost of truthFinder in one of the iterations.
Let’s consider the cost of the jth iteration. As we notated
in Table 1, there are Nj error positions in the recommended
path, and the positions are rjk, where rjk ∈ Sj . For each
error position, user has to tune it to a better road by deleting
it from the recommended path, and adding a better position,
and the intermediate edges. So the cost for the error position
rjk in the jth iteration is

Cjk = Njkd ∗ wjkd + Njka ∗ wjka (1)

for each 1 ≤ k ≤ Nj . So the total cost for the jth iteration
goes to

Cj =

Nj∑

k=1

(Cjk) (2)

In this model for the jth iteration, the cost is directly
impacted by the number of operations and the correspond-
ing cost weight. As such, to minimize the cost of adding
and deleting operations, we should keep the weight of the
operation cost at a low level. Empirically, the value of delet-
ing a road from the ground truth candidate path is always
stable. So the way to reduce the cost would be minimiz-
ing the weight of adding a road segment as low as possible.
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Figure 2: Road network of Shanghai, China. Figure 3: CDF of cost.

Figure 4: Record numbers of the
trajectories.

Figure 5: Average sampling in-
tervals of the trajectories.

Figure 6: Lengths of the trajec-
tories.

The weight of adding a road segment into the path, wa,
is always affected by the map context. In a complex road
network, where roads are very dense, it always costs more
to find a better road to be added into the ground truth
path. So this operation of adding will cost more than that
of adding a road into the truth path in a situation where
only few roads are included in the spare region. As shown
by the cost model, reducing the value of wa makes the cost
of ground truth exploration less, it is necessary to reduce
the cost of adding a road into the ground truth path. For
this reason, truthFinder selects the top k candidate roads for
each report with the highest possibilities. This makes the
adding a road by selecting it from the candidate road set
at a low cost. However, one situation should be considered,
that if the road segment in the ground truth path is not in-
cluded in the selected top k candidate roads, then the user
has to find a road from the original map, and add it into the
path. This will make the cost very high as a penalty, which
means the weight of the adding operation wa very high.

As exploring a ground truth path from a given trajec-
tory is done by iteratively assessing and tuning the recom-
mended path, the total cost for truthFinder to explore the
path should be iteratively added. In every iteration, the cost
is calculated by Eq. (2), so the total cost for truthFinder
is to add up the cost in every iteration. As we supposed,
the accuracies of the algorithm and human are Am and Ah,
truthFinder has to iterative the assessing and tuning phase
I iterations, where

I ≤
log( Et

1−Am
)

log(1−Ah)
(3)

Then, in average, for each of the reports, the total cost of
exploring the ground truth data becomes the total cost of

each iteration divided by the number of reports, which is

C̄ =

I∑

j=1

Nj∑

k=1

(Njkd ∗ wjkd + Njka ∗ wjka)/n (4)

As the model shows, the average cost per report depends
on the weighted cost in each iteration of the ground truth
exploration process which we have discussed the previous
section, and the iteration numbers. Relatively, the itera-
tion number is decided by the accuracy of map matching
algorithms and the ability of the user to correct the wrong
selected roads. However, it is difficult to define a metric
and fairly evaluate the ability. But empirically, the user can
always reduce the iteration number at a very small value
(like two to three iterations) for most of the case we did in
the evaluation. Actually, it is an interesting and important
work, we will study it in future work.

5. EVALUATION
The objective of the experiments are to evaluate the cost

of truthFinder under our defined cost model, and find out
how the map matching algorithms impact the cost of truthFinder.
In this section, we present representative results for truthFinder.
We first state the description of the experimental settings.
After that, we give the results of our experiments including
(i) the cost comparing to EPScratch, and (ii)the impact of
map matching algorithms.

5.1 Experimental Settings
We present the experimental settings in this section, in-

cluding the dataset we used and the road network of the city
where we collected our dataset. The truthFinder system is
deployed on an IBM server which has 4G memory and a
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Figure 7: Cost of truthFinder us-
ing HMM.

Figure 8: Cost of truthFinder us-
ing STM.

Figure 9: Cost of EPScratch.

Figure 10: CDF of accuracy of
the map matching algorithms.

Figure 11: CDF of the false pos-
itive rate.

Figure 12: CDF of the false neg-
ative rate.

CPU of Intel Xeon with 8 processors (E5405 @ 2.00 GHz).
Road Network Since 2005, we have collected a large

volume of GPS reports from Shanghai Grid. As our trajec-
tory dataset was collected from Shanghai, we use the road
network of Shanghai as shown in Fig. 2 in our evaluation
experiments. There are 22180 vertexes and 65510 directed
roads in this network. So for the road network G(V,E) of
Shanghai, #V = 22180 and #E = 65510.

Trajectory Dataset To explore the ground truth with
truthFinder, we randomly selected a dataset with 40 trajec-
tories in our experiments for comparing truthFinder to the
method of EPScratch. The characteristics of the trajectories
in the dataset are presented in the figures. Fig. 4 shows the
record number for each trajectory in dataset. As it shows,
the number varies from 50 to 120. We calculate trajectory
length by adding the direct distance between every two ad-
jacent reports. The distance ranges are showed in Fig. 6
(about 10km to about 60km). The sampling intervals of the
reports in each trajectory are shown in Fig. 5.

5.2 Cost of truthFinder
In this section, we present the experiment result on the

dataset to compare operation cost of truthFinder and EP-
Scratch. We have done experiments on both the HMM [11]
and STM [10] map matching algorithms in truthFinder for
the recommendation path generating. We compare them in
term of operation numbers, where operations of adding road
and deleting road are separated.

As demonstrated by Fig. 7, truthFinder keeps the oper-
ation cost very low, which is about 0.2 operations for each
record using HMM algorithm. While for the situation where
truthFinder uses the STM algorithm, the cost is a little high,

which come to 0.5 for every record (Fig. 8). The reason is
that the accuracy of STM algorithm is a little lower than
HMM algorithm in our dataset and map context. When the
map matching algorithm has a high accuracy, truthFinder
will significantly reduce the cost of human operations for
matching the raw GPS trajectories to its ground truth path.
Meanwhile from Fig. 3, we find that, about 98% of the
ground truth path of the trajectories can be explored within
0.5 human operations for each record, and about 80% of
them can be done within 0.2 operations.

While the method of EPScratch costs much higher than
truthFinder, especially the adding roads operations. The
cost for finding the ground truth for most of the trajectories
are always very high, compared to our truthFinder based
method. It is almost two orders of magnitude of that of
truthFinder based on HMM map matching algorithm. The
reason is that, not only the roads where the records are
reported from should be added into the found-out ground
truth path, but also the intermediate roads should be added.
As discussed in Section 4.1, wa is much larger than wd.
The total weight cost of EPScratch will be very large. The
truthFinder system reduces the cost of map matching pro-
cess up to two orders of magnitude less than the EPScratch
approach. With this comparison, we are confirmed that,
truthFinder will reduce the total cost significantly and can
explore more trajectories than EPScratch.

5.3 Impact of Map Matching Algorithms
Next, we concern the impact of the traditional map match-

ing algorithms for truthFinder. We first present the accu-
racy of the map matching algorithms using our dataset and
the explored ground truth path. Then we present the impact
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of the map matching algorithms.
We have implemented two map matching algorithms, in-

cluding STM [10], and HMM [11]. We use each of the tra-
jectories in the dataset as the input of each map matching
algorithm, which will generate a path (a sequence of roads),
as its output. Then we calculate their accuracy. We mea-
sure the accuracy of the map matching algorithms with the
metric defined in Eq. (5), where Seti.ground is the set of
road IDs in ground truth path, and Seti.alg is the set of
road IDs in algorithm calculated path.

Ai =
#of(Seti.ground ∩ Seti.alg)

#of(Seti.ground ∪ Seti.alg)
(5)

Fig. 10 shows the accuracy of different map matching al-
gorithms in our road network with our dataset. From the
result, we can find that, in our experiment environment, the
accuracies of HMM algorithm, most of which are between
80% and 93%, are always higher than that of STM algo-
rithm, whose values changes frequently and always are lower
than 80%. Together with the results in the previous exper-
iments, we are confirmed that the higher accuracy the map
matching algorithm has, the less operations the truthFinder
costs.

As demonstrated by Eq. (4), the cost of truthFinder de-
pends on the number of adding and deleting a road oper-
ations, as well as the weight of these operations. The op-
eration of adding a road is always caused by the situation
that a correct road in the ground truth path not included in
the recommended path (false negative), while the operation
of deleting a road is caused by the reason that wrong roads
are included in the recommended path (false positive). So
we calculated the false negative (Fig. 12) and false positive
(Fig. 11) rate for both of these two map matching algo-
rithms. From the results, we can find that, for the false neg-
ative rates, HMM and STM algorithms share similar trends,
so relatively, as demonstrated in figures of the system cost,
the adding operations of truthFinder are also similar. How-
ever, the false positive rates of HMM are always less than 0.2
which is less than that of STM algorithm whose rate changes
frequently ranging from 0.15 to 1. Together with results of
cost, we can find that the higher the false positive rate is,
the more the deleting are needed. Similarly, the higher the
false negative rate is, the more the adding are needed.

6. CONCLUSION
In this paper, we propose truthFinder, a system of in-

teractive map matching the collected raw GPS trajectory
data. The truthFinder system characterizes itself with sev-
eral unique features. It employs human intelligence to aid
the map matching algorithms to explore ground truth data
from raw GPS data. To measure the cost, we define a cost
model and evaluate our prototype system with this model.
The result shows that truthFinder significantly reduces the
cost. The truthFinder system would be an efficient way to
solve the validation issue map matching problem.

7. ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers

for their comments and kindly suggestions. This work is
supported by the National Natural Science Foundation of
China under Grant No. 60736013, Grant No. 61120106005,
Grant No. 61025009 and Grant No. 60903040.

8. REFERENCES
[1] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On

map-matching vehicle tracking data. In Proceedings of
the VLDB’05, pages 853–864. VLDB, 2005.

[2] Z. Chen, H. Shen, and X. Zhou. Discovering popular
routes from trajectories. In Proceedings of the
ICDE’11, pages 900–911. IEEE, 2011.

[3] Z. Chen, H. Shen, X. Zhou, Y. Zheng, and X. Xie.
Searching trajectories by locations: An efficiency
study. In Proceedings of the SIGMOD’10, pages
255–266. ACM, 2010.

[4] P. Cudre-Mauroux, E. Wu, and S. Madden. Trajstore:
An adaptive storage system for very large trajectory
data sets. In Proceedings of the ICDE’10, pages
109–120. IEEE, 2010.

[5] H. Gonzalez, J. Han, X. Li, M. Myslinska, and etc.
Adaptive fastest path computation on a road network:
A traffic mining approach. In Proceedings of the
VLDB’07, pages 794–805. VLDB, 2007.

[6] J. Greenfeld. Matching gps observations to locations
on a digital map. In Proceedings of the 81th Annual
Meeting of the Transportation Research
Board (TRB’02), 2002.

[7] M. Li, M. Wu, Y. Li, J. Cao, L. Huang, Q. Deng,
X. Lin, C. Jiang, W. Tong, Y. Gui, et al.
Shanghaigrid: an information service grid.
Concurrency and Computation: Practice and
Experience, 18(1):111–135, 2006.

[8] Z. Li, M. Ji, J. Lee, and etc. Movemine: mining
moving object databases. In Proceedings of the
SIGMOD’10, pages 1203–1206. ACM, 2010.

[9] S. Liu, Y. Liu, L. Ni, J. Fan, and M. Li. Towards
mobility-based clustering. In Proceedings of the
SIGKDD’10, pages 919–928. ACM, 2010.

[10] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and
Y. Huang. Map-matching for low-sampling-rate gps
trajectories. In Proceedings of the GIS’09, pages
352–361. ACM, 2009.

[11] P. Newson and J. Krumm. Hidden markov map
matching through noise and sparseness. In Proceedings
of the GIS’09, pages 336–343. ACM, 2009.

[12] W. Ochieng, M. Quddus, and R. Noland.
Map-matching in complex urban road networks.
Revista Brasileira de Cartografia, 2(55), 2009.

[13] M. Quddus, W. Ochieng, and R. Noland. Current
map-matching algorithms for transport applications:
State-of-the art and future research directions.
Transportation Research Part C: Emerging
Technologies, 15(5):312–328, 2007.

[14] M. Quddus, W. Ochieng, L. Zhao, and etc. A general
map matching algorithm for transport telematics
applications. GPS solutions, 7(3):157–167, 2003.

[15] K. Tufte, J. Li, D. Maier, and etc. Travel time
estimation using niagarast and latte. In Proceedings of
the SIGMOD’07, pages 1091–1093. ACM, 2007.

[16] M. Xie, L. Lakshmanan, and P. Wood. Comprec-trip:
A composite recommendation system for travel
planning. In Proceedings of the ICDE’11, pages
1352–1355. IEEE, 2011.

[17] J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G. Sun. An
interactive-voting based map matching algorithm. In
Proceedings of the MDM’10, pages 43–52. IEEE, 2010.

125



Coordinated Clustering Algorithms to Support
Charging Infrastructure Design for Electric Vehicles

Marjan Momtazpour1, Patrick Butler1, M. Shahriar Hossain1,
Mohammad C. Bozchalui2, Naren Ramakrishnan1, Ratnesh Sharma2

1Department of Computer Science, Virginia Tech, VA, 24060, USA
2NEC Laboratories America, Inc., CA, 95014, USA

{marjan, pabutler, msh}@cs.vt.edu,
mohammad@sv.nec-labs.com, naren@cs.vt.edu, ratnesh@sv.nec-labs.com

ABSTRACT
The confluence of several developments has created an op-
portune moment for energy system modernization. In the
past decade, smart grids have attracted many research ac-
tivities in different domains. To realize the next generation
of smart grids, we must have a comprehensive understanding
of interdependent networks and processes. Next-generation
energy systems networks cannot be effectively designed, an-
alyzed, and controlled in isolation from the social, economic,
sensing, and control contexts in which they operate. In this
paper, we develop coordinated clustering techniques to work
with network models of urban environments to aid in place-
ment of charging stations for an electrical vehicle deploy-
ment scenario. We demonstrate the multiple factors that
can be simultaneously leveraged in our framework in order
to achieve practical urban deployment. Our ultimate goal
is to help realize sustainable energy system management in
urban electrical infrastructure by modeling and analyzing
networks of interactions between electric systems and urban
populations.

Categories and Subject Descriptors
H.2.8 [Database Management]: [Database Applications
- Data mining - Spatial databases and GIS]; I.5.3 [Pattern
Recognition]: [Clustering]; I.2.6 [Artificial Intelligence]:
[Learning]

General Terms
Experimentation, Algorithms, Design, Measurement

Keywords
Data mining, clustering, coordinated clustering, smart grids,
electric vehicles, synthetic populations.

1. INTRODUCTION
The impending decline of fossil fuels is rapidly usher-

ing an emphasis from traditional methods of energy pro-
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duction, distribution, and consumption to sustainable ap-
proaches [11]. The advent of electric vehicles (EVs) is one
such promising shift but to prepare for a world laden with
EVs we must revisit smart grid design and operation.

One of the key issues in ushering in EVs is the design and
placement of charging infrastructure to support their opera-
tion. Issues to be taken into account include [11]: (i) predic-
tion of EV charging needs based on their owners’ activities;
(ii) prediction of EV charging demands at different locations
in the city, and available charge of EV batteries; (iii) design
of distributed mechanisms that manage the movements of
EVs to different charging stations; and (iv) optimizing the
charging cycles of EVs to satisfy users’ requirements, while
maximizing vehicle-to-grid profits.

In this paper, we address the charging infrastructure de-
sign problem by adopting an urban computing approach.
Urban computing, [8], is an emerging area which aims to
foster human life in urban environments through the meth-
ods of computational science. It is focused on understanding
the concepts behind events and phenomena spanning urban
areas using available data sources, such as people movements
and traffic flows.

Organizing relevant data sources to solve compelling ur-
ban computing scenarios is itself an important research is-
sue. Here, we use network datasets organized from syn-
thetic population studies, originally designed for epidemio-
logical scenarios, to explore the EV charging station place-
ment problem. The dataset was organized for the SIAM
Data Mining 2006 Workshop on Pandemic Preparedness [3]
and models activities of an urban population in the city
of Portland, Oregon. The supplied dataset [1] tracks a set
of synthetic individuals in Portland and, for each of them,
provides a small number of demographic attributes (age, in-
come, work status, household structure) and daily activi-
ties representing a normative day (including places visited
and times). The city itself is modeled as a set of aggre-
gated activity locations, two per roadway link. A collec-
tion of interoperable simulations—modeling urban infras-
tructure, people activities, route plans, traffic, and popu-
lation dynamics—mimic the time-dependent interactions of
every individual in a regional area. This form of ‘individ-
ual modeling’ provides a bottom-up approach mirroring the
contact structure of individuals and is naturally suited for
formulating and studying the effect of intervention policies
and considering ‘what-if’ scenarios.

In more detail, we characterize this dataset with a view
toward understanding the behavior of EV owners and to
determine which locations are most appropriate to install
charging stations. We develop a coordinated clustering for-
mulation to identify a set of locations that can be considered

126



(a) Discovering location functionalities and characterizing electricity loads.
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(b) Coordinated clustering of people, locations, and charging stations.

Figure 1: Overview of our methodology.

as the best candidates for charging stations.

2. RELATED WORK
We survey related work in two categories: mining GPS

datasets and smart grid analytics. GPS datasets have emerged
as a popular source for modeling and mining in urban com-
puting contexts. They have been used to extract information
about roads, traffic, buildings, and people behaviors [20],
[21], [9]. The range of applications is quite varied as well,
from anomaly detection [9] to taxi recommender systems
[21] that aim to maximize taxi-driver profits and minimize
passengers’ waiting times. The notion of location-aware rec-
ommender systems is a key topic enabled by the increasing
availability of GPS data, e.g., recommending points of inter-
est to tourists [22]. We survey these works in greater detail
next.

In [20] Yuan et al. proposed a framework to discover re-
gions of different functionalities based on people movements.
They adapt algorithms from the topic modeling literature,
by mapping a region as a document and a function as a topic
so that human movements become ‘words’ in this model.
The focus of [21] and [19] is different: here, GPS data is
used to mine the fastest driving routes for taxi drivers. In
[21], Yuan et al. mined smart driving direction from GPS
trajectory of taxis, and in [19] they consider driver behavior
using other metrics such as driving strategies and weather
conditions.

Clusters of moving objects in a noisy stadium environ-

ment are detected using the DBSCAN algorithm [5] in [12].
This task supports monitoring a stadium for groups of indi-
viduals that exhibit concerted behavior. In [14], the authors
estimate distributions of travel-time from GPS data for use
in routing and route-recommendation.

Our work here is different from the above works in that
we use a synthetic population dataset and routes are based
on people’s travel habits that are mapped using geograph-
ical coordinates and road infrastructures. We are also not
per se interested in mining the routes but to use the route
information to better support charging infrastructure place-
ment.

Smart grid analytics has emerged as a promising approach
to usher in the promise of smart grid benefits. Researchers
have begun to explore the problems concomitant with EV
penetration in urban areas, especially unacceptable increases
in electricity consumption [11]. A promising way to ap-
proach this problem is to understand the interactions be-
tween grid infrastructure and urban populations. While
smart grids and EVs have been studied previously from tech-
nical and AI point of views, there is a limited number of re-
search on smart grids from an urban computing perspective.

In this space, agent-based systems have been proposed to
simulate city behavior in terms of agents with a view to-
ward designing decentralized systems and maximizing grid
profits as well as individuals’ profit [11]. In [2] information
from smart meters is used for forecasting energy consump-
tion patterns in a university campus micro-grid, whose re-
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sults can be used for future energy planning. In our work,
we directly study the problem of charging station placement
using coordinated clustering algorithms.

3. METHODOLOGY
Our overall methodology is given in Figure 1. We de-

scribe each of the steps in our approach next. At a basic
level, we integrate two basic types of data to formulate our
data mining scenario. The first data, as described earlier, is
a synthetic population of people and activities representing
the city of Portland and the second data set is electricity
consumption profile of each location. Notice that the pro-
posed methodology is a generic approach and can be applied
to real-world data and the fact that we use synthetic data
here is only due to our lack of access to real-world data to
test our proposed methodology.

The synthetic dataset contains 243,423 locations of which
1,779 are selected as belonging to the downtown area and
of further interest for our purposes. Each location is repre-
sented by geographical [x,y] coordinate adopting the univer-
sal transverse mercator coordinate system (UTM) [1]. There
are a total of 1,615,860 people in the entire city. Information
about them is organized into households, and for each house-
hold we have the details of number of people in the house-
hold, and the ages, genders, and incomes of each household
member. Each person has a unique ID.

We have some information about each person including
age, gender, income, and his/her house ID. The typical
movement patterns of people in a typical day (27 hour pe-
riod) are also available. A total of 8,922,359 movements are
provided. In addition to starting and ending locations for
people’s movements, this dataset also provides the purpose of
the movement, categorized into nine types: {Home, Work,
Shop, Visit, Social/Recreational, Serve Passenger, School,
College, and Other}. A given person moves from one lo-
cation to another location at a specific time for a specific
purpose (from the nine mentioned above) and stays in that
location for a specified period of time. These movement
types can thus be utilized for further detailed studies. We
also have the ability to map the locations using Google Maps
and calculate distances of traveling between locations.

To this dataset, we augment information about electricity
consumption of each location and simulate the effects of EVs
on its electricity demand profile. Since actual electricity
consumption data for each location is not available until all
the consumers have smart meters installed and in operation
for some time, we approximate electricity load profile using
the existing data (organized by NEC Labs, America).

It is clear that the electricity load of each location greatly
depends on the functionality of that location and hence our
first approach is to utilize an information bottleneck type ap-
proach [17] to characterize locations. Our aim is to cluster
locations based on geographical proximity but such that the
resulting clusters are highly informative of location function.
This is thus our first application of a coordinated clustering
formulation, and falls in the scope of clustering with side
information. Next, we integrate the electricity load infor-
mation to characterize usage patterns across clusters with a
view toward helping identifying locations to place charging
infrastructure.

Our next step is to more accurately characterize usage
patterns of likely EV owners. A specific set of clusters from
the previous pipeline is used and characterized using high-
income attributes as the likely owners of EVs. We then
bring in additional factors of locations that influence EV
charger placement, e.g., residentiality ratio, load on the lo-

cation, charging needs, and typical duration of stay in the
location. Some of these factors (such as distance traveled)
are in turn determined by mapping the home-to-work and
work-to-home trajectories of EV owners and their stop loca-
tions. We use a coordinated clustering formulation to simul-
taneously cluster three datasets in a relational setting. Our
coordinated clustering framework builds upon our previous
work [7] which generalizes relational clustering between two
non-homogeneous datasets. This problem is a bit non-trivial
since one of the relations is a many-to-many relation and an-
other is a one-to-one relation. The final set of coordinated
clusters are then used as interpretation and as a guide to
charger placement.

After locating the homes of EV owners, we can determine
their trajectories and their stop locations. Then, based on
this data, we can estimate their travel distances. This helps
us to estimate charging requirements of EVs, during a day.
With the help of the distribution of electricity load in the
city and charging needs of EVs, we determine proper loca-
tions for installing charging stations in city with respect to
specific parameters.

4. ALGORITHMS
As described above, our methodology comprises the fol-

lowing four major steps to determine candidate locations for
charging stations: (i) discovering locations’ functionalities
using an information bottleneck method; (ii) electricity load
estimation and integrating with results of (i); (iii) studying
the behavior of EV owners and calculating specific param-
eters relevant to their usage patterns; and (iv) candidate
selection for charging stations using coordinated clustering
techniques. Each of these steps are detailed next.

4.1 Discovering Location Functionalities
We use information bottleneck methods to characterize

locations with a view toward defining the specific purpose
of the location. The idea of information bottleneck methods
is to cluster data points in a space (here, geography) such
that the resulting clusters are highly informative of another
random variable (here, function). We focus on 1779 loca-
tions in the downtown Portland area whose geographies are
defined by (x,y) coordinates and whose functions are given
by a 9-length profile vector P = [p1, p2, ..., p9], where pi is
the number of travels incident on that location for the ith

purpose (recall the different purposes introduced in the pre-
vious section).

Figure 2 (a) describes the results of a clustering based on
euclidean metrics between locations whose results are ag-
gregated in Figure 2 (b) into a revised clustering that also
preserves information about activities of people at these lo-
cations. The population distribution of these clusters over
time is shown in Figure 2 (c) which reveals characteristic
changes of crowds around peak hours and lunch times. One
final analysis that will be useful is to evaluate each of the
discovered clusters with respect to what we term as the res-
identiality ratio. The residentiality ratio for a location is
the percentage of people who use that location as a home
w.r.t. all people who visit that location (in downtown Port-
land, many locations have combined home-work profiles, and
hence the calculation of residentiality ratio becomes rele-
vant). Figure 2 (d) reveals one cluster with relatively high
residentiality ratio among three others.

4.2 Electricity Load Estimation
In order to uncover patterns in electricity load distribu-

tions, we now characterize each of the discovered clusters us-
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Figure 3: (a) Electricity usage in residential areas. (b) Electricity usage in small office areas. (c) Electricity
usage in large office areas. (d) Electricity usage in college areas.

ing typical profiles gathered from public data sources such as
the California End User Survey (CEUS) and other sources of
usage information. Figure 3 presents daily electricity con-
sumption profile across large offices, small offices, residential
buildings, and colleges for one year. By clustering this data
across the year, we can discern important patterns associ-
ated with different types of consumption during the year.
For instance, in the college setting, we can discern three
types of consumption patterns: holiday breaks (including
summer), weekdays, and weekends.

Our next step is to compute the electricity load leveraging
the above patterns but w.r.t. our network model of the ur-
ban environment. Recall that our network model is based on
population dynamics but typical electricity load sources are
based on square footage calculations. We map these factors
using well-accepted measures, i.e., by considering the aver-
age square footage occupied by one person in a residential
area as 600sft [4], small office as 200sft [18], large office as
200sft [18], college as 50sft [15], retail area as 50sft [15], and
other classes as 200. Further, the minimum population for
an office to be considered as a large office is set to 300.

Based on some exploratory data analysis, we selected a
weekday in the past year (specifically, 18th March, 2011)
and used the electricity load data of this day to map to the
network model. Consider that in a specific hour, N people
go to location l in which ni of them come for the purpose
of pi while

∑9
i=1 ni = N . Then the electricity load for that

location is computed as

El =

9∑

i=1

niApiEpi
1000

, (1)

where A is the average square footage per person and Ep
is electricity consumption of building type p. Observe that
a single location can serve multiple purposes and the above
equation marginalizes across all uses. For example, if there
are 360 people in one location, and 10 of them are in the
building for the purpose of home and 350 are for the purpose
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Figure 4: Electricity loads for four characterized lo-
cation clusters.

of office, the total electricity consumption of building would
be calculated as (10 × 600 × Ephome/1000) + (350 × 200 ×
Epoffice/1000) where 600 and 200 are average square footage
per person for the different categories, as mentioned earlier.
The above methodology enables us to characterize electricity
loads in terms of the four location clusters characterized in
the previous step (see Figure 4).

4.3 Characterizing EV users
Currently only a small percentage of people use EVs, and

this figure is correlated with high income. Based on [10]
and [13], only 6 percent of people in the US have income
more than 170,000 USD. In our synthetic dataset, 329,218
people make an income greater than 60,000 USD. To explore
a hypothetical scenario, we posed the question:

What if 6.31% of 329,218 people from Portland
bought EVs? What charging infrastructure is
necessary to support this scenario?

Based on our modeling of these people’s movements and
patterns, we aim to identify the best locations for charging
stations.
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Figure 5 (a) gives the distribution of EV users in our
potential scenario. We can notice several clusters around
high-income neighborhoods. With the aid of Google Maps,
we can estimate the amount of time an EV owner drives and
how far he/she travels on a regular week day. Figure 5 (b)
gives the distribution of distances traveled by these users.

Assuming EV owners charge their cars at their respective
homes, our goal is now to identify candidate charging lo-
cations during other times. Let us assume that the EV of
a person P consumes ECP KWh energy per 100 Km. Also,
assume that the battery of this vehicle can save ESP KWh.
Then the estimated total distance that P can travel with his
vehicle before he needs to charge its battery is

∆P =
100ESP
ECP

, (2)

As an example, for the Chevrolet Volt [6], with ESP = 16
KWh and ECP = 22.4 KWh per 100 Km, the EV can travel
71.43 Km before it needs to be recharged.

If the total traveling distance of P in a day is DP then
the number of times that P needs to charge his vehicle is
NP and is determined as follows:

NP =

⌊
DP
∆P

⌋
, (3)

As an example, if we assume that an EV’s battery can save
16 KWh energy [6], an electric car can go for 71.43 Km
before it needs to be charged [16].

Due to the long duration of charging process, we have a
constraint to install charging stations only in destinations
that people visit. Assume that VL is the set of EV owners
who visited location L during the day. Then |VL| is the total
number of EV owners who have visited location L. However,
there is a greater chance for a location to be a charging
station if people with higher charge needs visit that location.
Hence, the charge needs of location L is determined based
on equation 4.

WL =
∑

P∈VL

NP , (4)

Figure 5 (c) depicts the histogram of how many times an EV
needs to be charged. Also, Figure 5 (d) depicts the charge
needs of downtown locations.

On the other hand, each person visit a location for a spe-
cific period of time which here we call it duration of stay.
In order to put a charging station in one location, we force
people to stay for a specific period of time because charging
an electric car will take couple of hours. Hence, in locations
where people stay longer such as working locations have po-
tential to be charging stations compared to those locations
that people stay in them for example half an hour. We use
average duration of stay of people in each location as a fea-
ture for that location.

It should be noted that the right choice of EV charging
stations depends on regular electricity load of each area, the
amount of time that each person spends on this location,
and number of times that EV owners need to charge their
vehicles. Hence, based on EV owners traveling route dur-
ing peak and off-peak hours, we can come up with a set of
candidate regions for charging stations.

4.4 Charging Station Placement using Coor-
dinated Clustering

Since charging EVs is not an instantaneous process, it is
helpful to place charging stations at those locations where

people visit for an extended period of time. The average
duration of stay of people in each location is an important
feature in this regard. The right choice of EV charging sta-
tions thus depends on the regular electricity load of the area,
the amount of time that people spend in the location, and
the number of times that EV owners need to charge their ve-
hicles. Hence, based on EV owners’ traveling routes during
peak and off-peak hours, we can arrive at a set of candidate
regions for charging stations.

Let X be the income dataset and Y be the locations
datasets. X = {xs}, s = 1, . . . , nx is the set of vectors
in dataset X , where each vector is of dimension lx, i.e.,
xs ∈ Rlx . Currently, our income dataset contains only
one dimension. Similarly, locations dataset Y = {yt}, t =
1, . . . , ny,yt ∈ Rly . Locations are denoted by two dimen-
sions (latitude and longitude) in our current database. The
many-to-many relationships between X and Y are repre-
sented by a nx × ny binary matrix B, where B(s, t) = 1 if
xs is related to yt, else B(s, t) = 0. Let C(x) and C(y) be
the cluster indices, i.e., indicator random variables, corre-
sponding to the income dataset X and location dataset Y
and let kx and ky be the corresponding number of clusters.
Thus, C(x) takes values in {1, . . . , kx} and C(y) takes values
in {1, . . . , ky}.

Let mi,X be the prototype vector for cluster i in income
dataset X (similarly mj,Y ). These are the variables we wish

to estimate/optimize for. Let v
(xs)
i (likewise v

(yt)
j ) be the

cluster membership indicator variables, i.e., the probability
that income data sample xs is assigned to cluster i in the

income dataset X (resp). Thus,
∑rx

i=1 v
(xs)
i =

∑ry

j=1 v
(yt)
j =

1. The traditional k-means hard assignment is given by:

v
(xs)
i =

{
1 if ||xs −mi,X || ≤ ||xs −mi′,X ||, i′ = 1 . . . kx,
0 otherwise.

(Likewise for v
(yt)
j .) Ideally, we would like a continuous

function that tracks these hard assignments to a high degree
of accuracy. Such a continuous function for the the cluster
membership can be defined as follows.

v
(xs)
i =

exp(− ρ
D
||xs −mi,X ||2)

∑kx
i′=1 exp(− ρ

D
||xs −mi′,X ||2)

(5)

where ρ is a user-settable parameter and D is the pointset
diameter which depends on the data.

An analogous equation holds for v
(yt)
j .

We prepare a kx×ky contingency table to capture the re-
lationships between entries in clusters across income dataset
X and locations dataset Y. To construct this contingency
table, we simply iterate over every combination of data enti-
ties from X and Y, determine whether they have a relation-
ship, and suitably increment the appropriate entry in the
contingency table:

wij =

nx∑

s=1

ny∑

t=1

B(s, t)v
(xs)
i v

(yt)
j . (6)

We also define

wi. =

ky∑

j=1

wij , w.j =

kx∑

i=1

wij ,

where wi. and w.j are the row-wise (income cluster-wise)
and column-wise (locations cluster-wise) counts of the cells
of the contingency table respectively.

We also define the row-wise random variables αi, i = 1, . . . , kx
and column-wise random variables βj , j = 1, . . . , ky with
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Figure 5: (a) EV household locations. (b) Distribution of distances people travel in their EVs. (c) Charging
needs for EVs. (d) Number of charging needs (more than zero) per location.

Figure 6: Coordinated clustering schema.

probability distributions as follows

p(αi = j) = p(C(y) = j|C(x) = i) =
wij
wi.

. (7)

p(βj = i) = p(C(x) = i|C(y) = j) =
wij
w.j

. (8)

The row-wise distributions represent the conditional distri-
butions of the clusters in dataset in X given the clusters in
Y; the column-wise distributions are also interpreted analo-
gously.

After we construct the contingency table, we must evalu-
ate it to see if it reflects a coordinated clustering. In coordi-
nated clustering, we expect that the contingency table will
be nonuniform. We can expect that the contingency table
will be an identity matrix when kx = ky. To keep the formu-
lation and the implementation generic for different number
of clusters in two dataset, we need to optimize the variables
(cluster prototypes) in such a way that the contingency table
is far from its uniform case. For this purpose, we compare
the income cluster (row-wise) and locations cluster (column-
wise) distributions from the contingency table entries to the
uniform distribution.

We use KL-divergences to define our unified objective
function:

F =
1

kx

kx∑

i=1

DKL

(
αi||U

(
1

ky

))
+

1

ky

ky∑

j=1

DKL

(
βj ||U

(
1

kx

))
,

(9)

where DKL is the KL-divergence between two distributions
and U indicates the uniform distribution over a row or a
column.

Note that the row-wise distributions take values over the
columns 1, . . . , ky and the column-wise distributions take
values over the rows 1, . . . , kx. Hence the reference distribu-
tion for row-wise variables is over the columns, and vice

versa. Also, observe that the row-wise and column-wise
KL-divergences are averaged to form F . This is to miti-
gate the effect of lopsided contingency tables (kx � ky or
ky � kx) wherein it is possible to optimize F by focusing
on the “longer” dimension without really ensuring that the
other dimension’s projections are close to uniform.

Maximizing F leads to rows (income clusters) and columns
(locations clusters) in the contingency table that are far from
the uniform distribution as required by the coordinated clus-
ters. It is equivalent to minimizing −F .

The coordinated clustering formulation presented thus far
can have some degenerate solutions where large number of
data points in both datasets are assigned to the same cluster
leading to a huge overlap of relationships. To mitigate this,
we add two more terms with the objective function.

FR = −F +DKL

(
p (α) ||U

(
1

kx

))
+DKL

(
p (β) ||U

(
1

ky

))
.

(10)

It should be noted that function FR is expected to be
minimized. This is the reason why −F is used in the formula
for FR.

Finally, we describe how to integrate three datasets: in-
come, location, and station properties. Let X , Y, and Z be
these three datasets, respectively. There are two sets of re-
lationships, existing between X , Y, and Y, Z. The objective
function for these three datasets and two sets of relationships
is defined as follows.

FXYZ = FR (X ,Y) + FR (Y,Z) . (11)

Here FR (X ,Y) refers to the objective function described in
Eq. 10 with the income dataset X , and locations dataset Y.
FR (Y,Z) refers to the same objective function but input
datasets are locations Y, and station property Z. In all
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Figure 7: Results of coordinated clustering (3 clusters) when viewed through the attributes of each domain.
(a) Clusters based on income. (b) Clusters based on geographical location. (c) Clusters based on EV charging
station attributes.
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Figure 8: Profiles of clusters obtained from coordinated clustering w.r.t. each of the three domains. (a)
Income attributes. (b) Location attributes. (c) EV charging station attributions.
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Figure 9: Detailed inspection of clusters for their suitability for locating EV charging stations. (a) Distribution
of electricity loads. (b) Distribution of charging needs. (c) Distribution of duration of stay. An ideal cluster
should have (low, high, high) values respectively, suggesting that cluster 2 is best suited.

our experiments, we minimize FXYZ to apply coordinated
clustering between income, locations, and station property
datasets.

5. RESULTS
Figure 6 describes the coordinated clustering scenario in-

volving: yearly income, a location’s geographical coordi-
nates, and the location’s features.

We begin with some preliminary observations about our
data. Figure 10 depicts the distribution of people based on
their income, indicating that a significant number of people
have high income, leading to a large number of EV users. We
experimented with coordinated clustering settings involving

many settings. Figure 7 depicts three clusters of locations
based on each of the attribute sets in our schema. Note
that because the clusters are mapped onto (x,y) geographical
locations, locality is apparent only in Figure 7 (b).

Profiles of these clusters are described in detail in Fig-
ure 8. Of particular interest to us is the view from the
perspective of EV attributes, i.e., Figure 8 (c). Details
of these clusters are explored in greater detail in Table. 1.
Ideal locations for charging stations for EVs must have a
relatively low current electricity load (to accommodate the
installation of charging infrastructure), high charging needs
(population profiles), and high staying duration. As can be
seen from Table. 1 cluster 2 fits these requirements. Greater
insights into the three clusters from the viewpoint of these
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Table 1: Characteristics of Clusters in Third Table
(Location’s Features)

Cluster Elec. Load Charging Need Stay Duration
1 High Low Low
2 Low High High
3 Low Low Low

three attributes is shown in Figure 9 supporting the choice
of locations in cluster 2 as the right candidates for locating
charging stations.

6. DISCUSSION
Electrical vehicles are only going to become more popular

in the near future. We have demonstrated a systematic data
mining methodology that can be used to identify locations
for placing charging infrastructure as EV needs grow. The
results presented here can be generalized to a temporal sce-
nario where we accommodate a growing EV population and
to design charging infrastructure to accommodate additional
scenarios of smart grid usage and design.

The methodology presented in this paper only incorpo-
rates demand data from the electricity infrastructure and fu-
ture work would incorporate information from the electricity
supply side too. Information such loading level of electric-
ity feeders and remaining excess capacity of feeders for EV
charging stations can be integrated in presented method-
ology to improve the placement of EV charging stations.
Moreover, this methodology can be used to identify loca-
tions of interest for deployment of stationary energy storages
to more efficiently utilize existing electricity infrastructure
rather than building new expensive transmission capacity to
meet the demand of EV charging stations.
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ABSTRACT
For people travelling using public transport, overcrowding is
one of the major causes of discomfort. However, most Ad-
vanced Traveller Information Systems (ATIS) do not take
crowdedness into account, suggesting routes either based on
number of interchanges or overall travel time, regardless of
how comfortable (in terms of crowdedness) the trip might
be. Identifying times when public transport is overcrowded
could help travellers change their travel patterns, by either
travelling slightly earlier or later, or by travelling from/to
a different but geographically close station. In this paper,
we illustrate how historical automated fare collection sys-
tems data can be mined in order to reveal station crowd-
ing patterns. In particular, we study one such dataset of
travel history on the London underground (known colloqui-
ally as the “Tube”). Our spatio-temporal analysis demon-
strates that crowdedness is a highly regular phenomenon
during the working week, with large spikes occurring in short
time intervals. We then illustrate how crowding levels can be
accurately predicted, even with simple techniques based on
historic averages. These results demonstrate that informa-
tion regarding crowding levels can be incorporated within
ATIS, so as to provide travellers with more personalised
travel plans.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms, Experimentation

Keywords
Mobility, Public Transport, Predictions

1. INTRODUCTION
With over 75% of the world’s population expected to be

living in cities by 2050, supporting citizens mobility within
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the urban environment is a priority for municipalities world-
wide. In order to better manage mobility, public multi-
modal transit systems, coupled with integrated fare man-
agement, are being deployed in large cities, including Lon-
don, UK. However, these transit systems are not able to
absorb increasing loads and, especially at peak commuting
hours when the system has to cope with a temporary surge
in demand, overcrowding creates incredibly high levels of
discomfort1. As a result, car ownership continues to grow
worldwide, despite financial disincentives like costly conges-
tion charges.

How can we overcome the problem of overcrowding in ur-
ban public transport systems? Transport operators often
attempt to discourage peak-time travel by means of fare dif-
ferentiation. For example, Transport for London (TfL) uses
two price bands for morning-peak and post-morning-peak
travel (before and after 9:30AM respectively), with the for-
mer being up to 50% more expensive than the latter. How-
ever, this has had no observable effect on travellers’ journeys
[9], with the tube reaching its peak load at around 8:15AM
every weekday. This suggests that peoples’ behaviour can-
not be changed with imposed fare policies that do not take
into consideration external constraints (e.g., having to be
at work by 9:00AM in the morning). Instead we propose a
different method for encouraging travellers to diversify their
habits, by providing information about the likely crowding
levels.

We analyse underground station usage in London, starting
from Automated Fare Collection (AFC) systems data. AFC
systems forgo traditional fare media, such as paper tick-
ets or magnetic strip cards, in favour of alternatives such
as RFID-based smart cards (e.g., London’s Oyster Card,
Seattle’s Orca Card) or near-field communication on mo-
bile phones (e.g., the Tokyo Metro System). These new
payment systems create a digital record every time a trip is
made, recording, for example, origin, destination, and travel
time of every journey made. By analysing this data we dis-
cover that during the working week, crowdedness is a highly
regular phenomenon, most probably as a direct result of
the home-work commutes that follow rather fixed schedules.
Even more interestingly, we show that spikes of crowded-
ness are concentrated in very short time periods, leaving
the transport network under-utilised before and after such
spikes. These findings suggest that, if made aware of such
crowdedness patterns, travellers could opt to depart slightly
earlier or later, thus avoiding congestion peaks while still

1http://www.guardian.co.uk/money/2011/dec/30/
worst-train-reading-london-paddington

134



making it to work/home on time. We then build a number
of crowdedness predictors and compare their accuracy while
varying crowdedness thresholds, the size of the prediction
window, and amount of data used for training such predic-
tors. In all cases, we find accuracy is very high, even when
using very simple techniques.

The remainder of this paper is structured as follows: Sec-
tion 2 offers background information about the London Un-
derground system and the AFC dataset we have used. In
Section 3 we present the results of a spatio-temporal analysis
of such data, illustrating the high regularity and short-lived
spikes with which crowdedness manifests itself at different
stations. Based on this finding, we move from analysis to
prediction, and in Section 4 we demonstrate how station
crowding levels can be accurately predicted from historical
data, even with simple techniques based on historic aggre-
gates. Section 5 positions this work with respect to similar
ongoing efforts by the research community. Finally, in Sec-
tion 6 we present our future work, where we plan to conduct
choice experiments with a large population sample, to as-
sess whether travellers’ behaviour can be nudged simply by
offering them accurate information about the crowdedness
levels of the transport network.

2. THE OYSTER CARD DATA
The London Underground network is made up of 11 lines

totalling 402 kilometres of track, serving near 270 stations.
The transport network is separated into 9 fare zones, with
Zone 1 encompassing central London and higher numbers
representing regions further away from the centre of London,
up to Zone 9, which contains a handful of outlier stations.
The zoning system forms part of the fee structure for all
rail travel in London, as well as approximating geographi-
cal distance from the centre of London. It is estimated that
approximately 1,107 million passengers are carried by the
tube each year. TfL introduced the Oyster Card in 2003
which now accounts for over 80% of all trips made within
London’s public transport system (as opposed to traditional
paper tickets). Detailed information about each trip is cap-
tured when an Oyster card is used to enter or exit the tube
network, producing an extensive source of data. For this
study, we used a dataset containing all trips made with an
Oyster card in the 31 days of March 2010. Each trip in our
dataset is recorded as a tuple in the form:

〈u, (o, d), to, td〉
Each tuple contains the unique (anonymous) user id (u),
the trip (with origin o and destination d stations), the time
stamp (to minute precision) to when u entered the origin
station and the time td when u exited from the destination
station. Over 70 million trips were recorded in March 2010.
After cleaning the raw dataset (e.g., eliminating journeys
with an end time that was before the start time and trips
where the origin was the same as the destination), approxi-
mately 5 million trips (≈ 8%) were removed, leaving us with
over 64 million trips in total.

In order to analyse crowdedness at stations, we trans-
formed this data from a per-user basis to a per-station ba-
sis as follow: each tuple 〈u, (o, d), to, td〉 was split in two,
one recording station and time of origin 〈o, to〉 (touch-ins),
and one recording station and time of exit from destination
〈d, td〉 (touch-outs). For each of the 270 stations, raw num-
bers were aggregated on 2-minute intervals, meaning that,

Figure 1: System-wide Weekday View

Figure 2: System-wide Weekend View

for each day, 720 observations (i.e., the number of touch-ins
or touch-outs in the 2-minute interval) were recorded.

3. CROWDEDNESS ANALYSIS
Having pre-processed the data as described above, we next

analyse the aggregate, system-wide usage patterns across all
stations, to give a broad perspective of the usage of the sys-
tem. We then demonstrate the variation in activity patterns
exhibited by different by different stations by focusing on a
select few. Based on these insights, we then move onto a
spatio-temporal analyses of the system, where we use ag-
glomerative hierarchical clustering (a form of unsupervised
learning) to classify different patterns which emerge at dif-
ferent stations.

3.1 System-wide Temporal Analysis
To begin with, we look at system-wide aggregate data,

only distinguishing between weekdays (Figure 1) and week-
ends (Figure 2). As expected, the weekday aggregated sys-
tem behaviour is dominated by the two-pronged commuter
pattern, with peaks in the morning at around 8:15AM, and
in the afternoon at around 5:30PM, with approximately 35
touch-ins or touch-outs for every 2-minute interval. There
are two interesting observations to make about the evening
commute period. Firstly, the curve is not as steep as it was
for the morning commute. This might be explained by the
fact that, in the morning, people have to arrive at work by a
certain time, whereas they are not under such an obligation
on the return journey in the evening. Secondly, the touch-
in curve during the evening peak time displays three smaller
prongs, with peaks at roughly every 30 minutes, staring from
about 5:10PM. This can also be motivated by people’s work
behaviour: as the standard working day is from 9:00AM to
5:00PM, some people leave work just after 5:00PM, while
others leave later, but organise their schedules around spe-
cific time intervals, such as 30 minutes. Note also the large
standard deviation (shaded area in the plot), which indi-
cates that the data hides additional information or patterns
which we explore next.

The weekend aggregate behaviour, illustrated in Figure
2, is not only much less regular with very high standard
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deviation, suggesting that crowding levels will not be as easy
to predict, but also much less intense (y axis), which suggests
that overcrowding is generally not a problem at weekends.
For these reasons we thus disregard weekend data, and focus
on weekdays only.

3.2 Spatio-Temporal Analysis
The system-wide analysis suggests that the weekday ac-

tivity is very regular and therefore predictable. However,
wide standard deviations suggest that a closer inspection
may reveal hidden patterns in the data. For example, we
would expect to see a difference between stations in resi-
dential areas versus stations in areas that mainly contain
office buildings, since the flow of traffic will be in opposite
directions during commuting periods. Furthermore, specific
patterns should be observed in stations close to sporting
locations, or stations close to cultural and entertainment lo-
cations, such as theatres. To investigate this we manually
pick three stations representative of the different station us-
ages mentioned: a station in a residential area, a station in
a busy financial area, and a transport hub station, linking
to National Rail.

Residential station – Finchley Central. Finchley
Central serves a residential area and we expect this to be
reflected in the commute pattern. Weekday activity is illus-
trated in Figure 3. The morning commute is dominated by
touch-ins – people leaving the station and going to work in
another area of the city. The maximum number of touch-ins
is 60, at around 8:15AM. An important observation is the
fact that the standard deviations for this period are rela-
tively low, suggesting regular behaviour. During the evening
commute, the situation is reversed, with touch-outs domi-
nating the station usage pattern. As observed in the system-
wide analysis, the evening commute is much less steeper
than the morning commute. The standard deviations are
also much wider, suggesting that the travel patterns in the
evening are less regular.

Business station – Canary Wharf. Canary Wharf
serves one of the two main financial centers of London, with
over 93,000 people work in the area2, which is mainly served
by the Canary Wharf tube station. We expect the travel
patterns to be the reverse of those encountered in stations
serving residential areas. The day view for weekdays is il-
lustrated in Figure 4. The morning activity consists almost
entirely of touch-outs, with people arriving in the area. It
increases steadily until it peaks at around 9:00AM, with 500
people leaving the station every 2 minutes. The standard
deviation for the morning commute is quite high, reaching
almost 100 touch-ins at the peak of the morning commute.
As expected, the evening commute exhibits the opposite be-
haviour, with almost no touch-outs and an extremely regu-
lar (indicated by the very small standard deviation) three-
pronged spike of touch-ins. The three prongs are spaced
approximately 30 minutes apart.

Transport hub station – Waterloo. As our third and
final case study, we consider Waterloo, a national railway
terminus and busy tube interchange in central London. This
is the busiest tube station in the entire TfL network, achiev-
ing more than 80 million touch-ins and touch-outs every
year. Unlike the previously discussed station profiles, the
weekday view, illustrated in Figure 5, shows much smaller

2http://www.canarywharf.co.uk/aboutus/The-Estate/
General-Information/, retrieved 20 March 2012

Figure 3: Finchley Central Weekday View

Figure 4: Canary Wharf Weekday View

Figure 5: Waterloo Weekday View

differences between touch-ins and touch-outs. Indeed, the
peaks for the touch-ins and touch-outs are quite similar in
magnitude and only slightly out of phase.

The empirical analysis above supports the supposition
that the dominant commute pattern hides individual station
usage patterns. We thus proceeded with a more systematic
approach, where we used an agglomerative hierarchical clus-
tering technique to automatically group stations based on
emerging usage patterns [18]. More precisely, to measure
similarity between station usage patterns, we used a tech-
nique called dynamic time warping [19], a well-known algo-
rithm used for computing differences between time series.
The main strength of the algorithm is that it is extremely
efficient as a time-series similarity measure which minimizes
the effects of shifting and distortion in time by allowing elas-
tic transformation of time series in order to detect similar
shapes with different phases. In our analysis, we used an ap-
proximation to Dynamic Time Warping called FastDTW3,
that has linear time and space complexity, proved both the-
oretically and empirically [17]. The same study also proves
that it shows a large improvement in accuracy over two other
existing approximate DTW algorithms, Sakoe-Chuba Bands
and Data Abstraction.

Using this similarity metric we constructed a hierarchy of
clusters using an agglomerative approach. The algorithm
works by starting with as many clusters as stations, then it-
eratively merging the two most similar clusters until a speci-
fied halting condition is met. The similarity between clusters

3A Java implementation is provided under an open-source
MIT licence at http://code.google.com/p/fastdtw/
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C1 C2 C3 C4 C5 C6
Num. of
stations

1 23 8 27 3 198

Intra-
cluster
distance

0.000 0.198 0.008 0.003 0.134 0.011

Table 1: Clusters Information

C1 C2 C3 C4 C5 C6
C1 0.0 2.316 1.167 1.992 1.205 2.115
C2 0.0 1.745 1.296 1.756 1.206
C3 0.0 1.495 1.395 1.531
C4 0.0 1.546 1.132
C5 0.0 0.550
C6 0.0

Table 2: Inter-Cluster Distances

is defined as the average linkage:

DAB =
1

nAnB

∑

a∈A

∑

b∈B

FastDTW (a, b)

where clusters A and B have nA and nB members (stations)
respectively.

The input to the clustering algorithm consists of a vector
for each station, containing the difference between touch-
ins and touch-outs at each 2-minute time interval. Thus,
we characterise each station as either a sink (touch-outs >
touch-ins, i.e., more people arrive to this station than leave
from this station) or a source (touch-outs < touch-ins). As
the size of stations varies significantly, in order to compare
congestion levels, we also normalised the data, by divid-
ing the difference between touch-outs and touch-ins by the
largest of maximum number of touch-ins and touch-outs.
The agglomerative clustering algorithm was then terminated
when 6 clusters were produced; this number was found by
visual inspection to provide the most informative array of
station activity patterns.

A summary of the six resulting clusters is given in Table 1.
The majority of the stations were included in cluster 6, while
clusters 2 and 4 have between 20 and 30 stations. Clusters
3 and 5 are very small (8 and 3 stations, respectively), while
cluster 1 only has 1 station (Wood Lane). The intra-cluster
distances are very small, suggesting good cluster compact-
ness. Table 2 shows the inter-cluster distance. Compared
to the intra-cluster distances the inter-cluster distances are
large, suggesting a good cluster separation.

The average day view for each of the six clusters is dis-
played in Figure 6. Sink-like behaviour will result in positive
values, while source-like behaviour will display negative val-
ues. Cluster 1 is the most visually distinct of the six clusters,
with high values and a morning peak which occurs signifi-
cantly later than the dominating commute pattern. It acts
as a powerful sink during the morning, with a peak at around
10:00AM. This behaviour is slowly attenuated until around
5:00PM, when the station becomes a source, although rela-
tively small absolute values suggest that the average number
of touch-outs is only slightly larger than the touch-ins. Clus-
ter 2 exhibits opposite behaviour, acting as a source during

the morning commute and as a sink during the evening one.
Its peaks occur between 7:30AM and 8:00AM, and between
6:30PM and 7:00PM, respectively. Clusters 4 and 6 are very
similar to cluster 2, and differ only in the amplitude of the
absolute values and in the time when they reach the morning
peak (between 8:00AM and 8:30AM). Clusters 3 and 5 are
different from all other clusters in the sense that they change
their behaviour during the morning commute and again dur-
ing the evening one. Both start out as sources, until around
8:30AM, when they become sinks before stabilising at a neu-
tral behaviour around mid-day. During the evening, they
both return to source behaviour, although cluster 5 turns
into a sink between 6:30PM and 9:30PM.

4. CROWDEDNESS PREDICTION
In the previous section we found that tube stations in Lon-

don are dominated by the commute usage pattern (during
weekdays), but with a significant number of stations exhibit-
ing more distinct usage patterns. In all cases, we note that
the usage patterns are highly regular during weekdays, so we
expect to be able to predict usage levels and, consequently,
overcrowding. In this section, we formulate the crowdedness
prediction problem as a classification problem (Section 4.1),
before reporting the results of an extensive evaluation that
compares accuracy as obtained with different classification
techniques (Section 4.2).

4.1 Methodology
The Dataset. Recall that we are working with weekdays

only. In our dataset, we have 23 days of data (once we ex-
clude weekends), which were divided into two sets: a training
set (first 18 days), used to calibrate the parameters of the
predictors, and a testing set (last 5 days), used to evaluate
the performance of the predictors. While in the analysis
section we worked with 2-minute intervals, for prediction we
decided to work with 10-minute intervals. This is because
an important follow-up of this study is to see whether in-
formation on congestion could nudge people to adapt their
travel patterns, perhaps by leaving earlier or later. Using
too fine-grained intervals (such as 2 minutes) would be too
short for people to be able to appreciate the difference and
adapt. On the other hand, too coarse-grained intervals (such
as 30 minutes) would be impractical and have too much of
an impact on peoples’ schedules, resulting in people choos-
ing not to adapt. We decided on using 10-minute intervals
because they seem the most natural choice to nudge people
into changing the time at which they travel. The training
and testing data files for each station contain 144 observa-
tions per day.

The λ Threshold. To predict whether a station is crowded
or not at a given point in time, we first need to define what it
means for a station to be crowded. In the absence of official
station capacities and congestion thresholds([14]) we define
a proxy measure of crowding level and experiment with vary-
ing congestion thresholds. We use as a measure of crowding
level the proportion of touch-ins (or touch-outs) at the sta-
tion relative to the maximum number observed in the data.
Thus, the maximum crowdedness of 1 indicates the station
is at its peak level of crowdedness, and conversely, 0 indi-
cates no touch-ins (or touch-outs) within the measurement
interval. Identifying an appropriate congestion threshold,
λ, is itself an interesting research question pertaining to in-
dividual travellers’ preferences. Indeed, crowding tolerance
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Figure 6: Average Day Views for the Six Clusters

varies greatly among individuals, and even for the same in-
dividual in different circumstances (imagine having to get
to work in time for a meeting versus planning a trip to go
for a walk in Hyde Park). Therefore, we decided to run and
evaluate the predictors with different λ values. As we have
until now, we will treat touch-ins and touch-outs separately
(i.e., crowdedness entering vs leaving a station). The total
number of overcrowded intervals for different values of λ is
reported in Table 3. Based on these results, we decided to
use 3 different values for λ: 0.5, 0.6 and 0.8. As we shall
see, as the value of λ increases, and hence the classification
problem becomes stricter, the accuracy of the results of our
predictors will gradually decline.

λ Overcrowded (in) overcrowded (out)
0.4 20.92 25.76
0.5 15.05 17.67
0.6 10.78 12.50
0.7 7.51 8.63
0.8 4.96 5.43

Table 3: The effect of λ on the number of over-
crowded intervals

Metrics. We measure results of our classification prob-
lem in terms of true positives, true negatives, false positives
and false negatives. If both the predicted crowding level
and the observed crowding level are greater than or equal
to our crowding threshold, λ, the result is a true positive
tp. If the predicted crowding level is greater than or equal
to λ but the real level is not, the result is a false positive
fp. Classifications for negative results (true negative tn and
false negative fn) are determined in a similar way. The
most undesirable result would be for us to incorrectly pre-
dict that an interval is not overcrowded. This would mean
that travellers relying on our predictions to avoid congestion
would be faced with an overcrowded station. In other words,
our predictors should be evaluated primarily with how accu-
rately they avoid false negatives. For this reason, we report
results in this paper in terms of sensitivity, that is:

Sensitivity =
tp

tp + fn

Sensitivity (also known as true positive rate or recall) is
the proportion of correctly identified positive results from
all positive results. For our specific problem, it indicates

how often we are right that a station is overcrowded. For
a more complete evaluation across other metrics, includ-
ing precision (tp/(tp + fp)), accuracy ((tp + tn)/(tp + fp +
tn + fn)), specificity (tn/(tn + fp)) and F-measure (2 ·
(Precision·Sensitivity)/(Precision+Sensitivity)), the in-
terested reader may refer to [1].

Techniques. We ran three different prediction algorithms,
each taking input t, the current time interval, and PW , the
prediction window, which varies from 10 (i.e., predict crowd-
ing level in the next 10 minute interval) to 120 minutes (i.e.,
predict crowding level for a 10 minute interval that starts
110 minutes from t). Using the following notation:• Train[t] – the average crowding level at time interval

t in the training set,

• Test[t] – the observed crowding level at time interval
t in the test set,

• Train[t1 − t2] – the average of the crowding levels in
the training set during the time intervals from t1 to t2,
inclusive,

we can formally define our three predictors as follows:
Historic Value - this predictor reports, for all time inter-

vals and for all values of the prediction window, the corre-
sponding value at the interval t + PW in the training set.
Such a baseline predictor is expected to perform well if and
only if crowdedness is extremely regular (e.g., crowdedness
on a Friday at 9:00AM-9:10AM is the same as the aver-
age of the recorded crowdedness levels on all weekday slots
9:00AM-9:10AM in the training set).

HistoricV alue(t, PW ) = Train[t + PW ]

Historic Mean - this predictor also takes advantage of the
history available in the training set. However, for a given
time interval t and prediction window PW , it reports the av-
erage of all values in the training set between t and t+PW .
This predictor is expected to perform well if crowdedness
levels are regular (reliance on historic averages) but tempo-
rally shifted within a time window (e.g., crowdedness on a
Friday at 9:00AM-9:10AM is the average of the recorded
crowdedness levels on all weekday slots from 8:40AM to
9:10AM in the training set).

HistoricMean(t, PW ) = Train[t − (t + PW )]

Historic Trend - this technique attempts to improve the
Historic Mean predictor by taking into consideration crowd-
edness level as currently recorded. This means that it can
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Figure 7: Sensitivity for λ = 0.5 (touch-ins)

Figure 8: Sensitivity for λ = 0.5 (touch-outs)

take into consideration anomalies, such as outliers, in the
training set that could influence the result. To achieve this,
the Historic Trend implementation replaces the value at the
current interval in the training set with the corresponding
value in the testing set.

HistoricT rend(t, PW ) = Train[t − (t + PW )]

−Train[t] + Test[t]

We also experimented with two other predictors, one based
on linear regression with ordinary least squares to estimate
parameters, and one based on Kalman Filters. Neither tech-
niques offered improvements over the three techniques above,
so we leave them out of this paper in the interest of space.
A full report of the findings is available at [1].

4.2 Results
Fixing λ = 0.5. We begin our evaluation by present-

ing the results obtained by the three predictors with a con-
gestion threshold of λ = 0.5. Results in Figures 7 and 8
are aggregated and averaged over all stations in the sys-
tem, separately for touch-ins and touch-outs. As shown, all
predictors perform well when considering short prediction
windows. As the prediction window increases from 30 min-
utes up to 2 hours away, the performance of Historic Mean
and Historic Trend worsens, while leaving the performance
of Historic Value unscathed; this confirms our hypothesis
that crowdedness is highly regular and highly spiked too.

Impact of Varying λ. As previously discussed, the rea-
sons for choosing a particular value for the crowdedness
threshold, λ could be explored by an entire user study in
its own right, focusing on what crowdedness means for dif-
ferent people or even for the same individual in different

Figure 9: Effect of λ on Sensitivity of Historic Value
(touch-ins)

Figure 10: Effect of λ on Sensitivity of Historic Mean
(touch-ins)

Figure 11: Effect of λ on Sensitivity of Historic
Trend (touch-ins)

circumstances. We intend to do so in our future work. In
this paper, we limit ourselves to studying the impact of the
crowdedness threshold on the performance of the prediction
techniques. In the interest of space, we show results for
touch-ins only (results for touch-outs are only slightly worse
and can be found in [1]).

Figures 9, 10 and 11 illustrate the effect of the conges-
tion threshold values on the performance of the Historic
Value, Historic Mean and Historic Trend predictors respec-
tively. As the crowdedness threshold increases, performance
decreases (though only marginally so for Historic Value).
This result should partly be interpreted in light of the data
we have: recall from Table 3 that, as λ increases, the num-
ber of crowded time intervals (true positives) significantly
decreases. As such, mis-classifying even a single interval re-
sults in a quick performance decrease (as measured by the
sensitivity metric).

Impact of Training Data. As all our predictors rely
on average historic data, an interesting question to answer
is how much history is required in order to reach high sensi-
tivity. In other words, what would be the effect of changing
the ratio of the training and testing sets. We again evalu-
ate the performance of our three predictors, that is, Historic
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Figure 12: Effect of History Data on Sensitivity for
Historic Value (touch-ins)

Figure 13: Effect of History Data on Sensitivity for
Historic Mean (touch-ins)

Figure 14: Effect of History Data on Sensitivity for
Historic Trend (touch-ins)

Value, Historic Mean and Historic Trend, and results are
shown in Figures 12, 13, and 14 respectively. Rather than
using 18 days of training and 5 days of testing, we now test
two splits: 12 days training - 11 days testing (12 − 11), and
5 days training - 18 days of testing (5 − 18). Once again, in
the interest of space, we show results for touch-ins only.

No noticeable difference can be see for Historic Value, with
consistently good sensitivity shown throughout. In the case
of the Historic Mean predictor, the higher the amount of
training data, the better the results, but once again the
differences are not very pronounced (no more than 5% im-
provement). Finally, the Historic Trend predictor also shows
better performance with more historical data, but the dif-
ference between the 3 splits is very small (about 1-2% on
average).

Having only one month worth of data, one has to be cau-
tious with the conclusions being made in terms of prediction
accuracy. However, the above analysis would suggest that
even short periods of training data (e.g., 2 weeks) are suf-
ficient for the above predictors to learn station usage pat-
terns, as these tend to be very regular. We can thus ac-
curately predict crowdedness at stations, and consequently
build more sophisticated journey planner tools that take this

factor into account. It is worth noting that, in this work, we
are interested in measuring and predicting crowdedness due
to seasonal movements, and not exceptional situations due
to, for example, unforeseen faults in the system (in other
words, such anomalies are smoothed out by our predictors).
Anomaly detection would be very useful to offer real-time
information during journey execution, so that travellers can
adapt on the go. This is however a complementary area of
work which we do not investigate in this paper.

5. RELATED WORK
The increasingly wide availability of AFC data has lead to

an explosion of research primarily focused on how such data
can be used to evaluate and study the performance of the
transportation system itself. For example, through demand
modelling [3], service reliability measurements [2], average
travel time estimation [2], and station transfer analysis [7].
A complimentary line of work has been looking at what the
AFC data reveals, not about the transportation system, but
about individual traveller behaviour instead: for example,
by offering personalised travel time estimations [11], or by
recommending what ticket type to purchase [10].

In this paper we start to combine the two: that is, we use
AFC data to measure and estimate crowdedness levels of
various stations in the transport network (system focus), but
with the aim to feed this information back to the traveller, in
terms of personalised classifications (station [not] crowded)
based on individual tolerances to crowdedness (the λ value).
In so doing, this paper adds to the growing body of work on
smart cities and urban informatics [4], which is the study of
human behaviours and urban infrastructures made possible
by the increasingly digitised and networked city. For exam-
ple, Gonzalez et al., 2008 [6] and Ratti et al., 2008 [15] use
mobile phone-based location data to study human mobility
patterns; Kostakos et al., 2006 [8] and Sadabadi et al., 2010
[16] rely on distributed Bluetooth receivers to track and pre-
dict travel speeds based on the Bluetooth MAC identifiers of
passing devices. Most of the cited work, however, continues
to focus on aggregate analysis only, rather than attempting
to uncover opportunities for personalisation services.

One limitation of our work is that we study ‘station’ crowd-
edness only, while it would be useful for travellers to have
also information about ‘train’ crowdedness. Oyster card
data prevents us from building trajectory or sub-route-based
models (e.g., [12], [5], [20]) since the actual route that a user
undertakes between any origin and destination is unknown
to us; in many cases, there are a wide variety of candidate
routes. Implementing heuristics to derive route choices (for
example, minimising the number of interchanges or minimis-
ing the hop-count on the tube graph) does not resolve cases
where two routes seem equal on the applied heuristic (e.g.,
they both have one interchange) or when the heuristic de-
rives results where travel time may increase (e.g., in cases
where changing line would have reduced travel time). An
area of future work will be to incorporate additional sen-
sory information, such as images captured by CCTV cam-
eras installed at station platforms, so to accurately quantify
and subsequently predict train crowdedness. So far, CCTV
cameras have only been used to detect (and not predict)
‘platform’ congestions [13]; this is useful for staff members
to decide, for example, when to temporarily close stations
in entry/exit to alleviate overcrowding.
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6. CONCLUSION AND FUTURE WORK
In this paper, we have analysed anonymised AFC data

collected for the tube network in London, UK, and have
shown that crowding levels at stations is highly regular,
and can thus be accurately predicted using simple predic-
tors based on historic data averages. Not only did we show
that crowdedness is a highly regular (and predictable) phe-
nomenon during the working week, we also highlighted that
big spikes concentrates in rather short time periods. The
most important question for us now is what would people
do with the information uncovered by this study? Would
they change their behaviour, either by adjusting their travel
times (by a small interval) to avoid the congestion peak, or
by travelling to a different, yet close (geographically or on
the same line) tube station? A user study is now required
in order to determine what impact, if any, congestion infor-
mation has on travel patterns. As part of this study, we also
need to determine what the congestion threshold λ means
for different people and in different situations, so that jour-
ney planner tools can leverage this information in computing
personalised routes.
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ABSTRACT
Rapid tranit systems are the most important public trans-
portation service modes in many large cities around the
world. Hence, its service reliability is of high importance for
government and transit agencies. Despite taking all the nec-
essary precautions, disruptions cannot be entirely prevented
but what transit agencies can do is to prepare to respond
to failure in a timely and effective manner. To this end, in-
formation about daily travel demand patterns are crucial to
develop efficient failure response strategies. To the extent
of urban computing, smart card data offers us the opportu-
nity to investigate and understand the demand pattern of
passengers and service level from transit operators.

In this present study, we present a methodology to ana-
lyze smart card data collected in Singapore, to describe dy-
namic demand characteristics of one case mass rapid transit
(MRT) service. The smart card reader registers passengers
when they enter and leave an MRT station. Between tapping
in and out of MRT stations, passengers are either walking
to and fro the platform as they alight and board on the
trains or they are traveling in the train. To reveal the effec-
tive position of the passengers, a regression model based on
the observations from the fastest passengers for each origin
destination pair has been developed. By applying this mod-
el to all other observations, the model allows us to divide
passengers in the MRT system into two groups, passengers
on the trains and passengers waiting in the stations. The
estimation model provides the spatio-temporal density of
passengers. From the density plots, trains’ trajectories can
be identified and passengers can be assigned to single trains
according to the estimated location.
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not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
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permission and/or a fee.
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Thus, with this model, the location of a certain train and
the number of onboard passengers can be estimated, which
can further enable transit agencies to improve their response
to service disruptions. Since the respective final destination
can also be derived from the data set, one can develop effec-
tive failure response scenarios such as the planning of con-
tingency buses that bring passengers directly to their final
destinations and thus relieves the bridging buses that are
typically made available in such situations.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining, Sptial database and GIS

General Terms
Experimentation

1. INTRODUCTION
Rapid transit systems are increasingly becoming the most

important mode of public transportation in many large cities
around the world owing to its faster velocity, higher reliabil-
ity, and larger capacity, as compared with other transport
modes. Understanding the demand characteristics of such
systems is central to the public transport agencies and op-
erators, so as to manage and improve their services. During
a typical weekday, the demand of the bus and rapid transit
systems have distinct spatio-temporal characteristics, which
have been captured using smart card data, as shown in [7]
and [8] respectively. Park et al. [8] studied the demand
characteristics of different public transport modes, in par-
ticular the rapid transit system, based on the smart card
data records in Seoul, South Korea.

The implementation of an automated fare collection sys-
tem allows public transport agencies to collect large quan-
tities of data, recording passengers activities with detailed
time and space information. It has been recognized that
there are large potential benefits of using this data to im-
prove public transport planning and operation [9]. As a
result, an increasing number of researchers have been using
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such data to analyze public transport systems character-
istics and passenger behaviors. Bagchi and White [3] have
demonstrated the feasibility of obtaining turnover rates, trip
rates and the proportion of linked trips from smart card da-
ta, which can be further used to adjust such services. For
some entry-only smart card systems, trip destination infor-
mation is not recorded but needs to be imputed. Different
methodologies haven been proposed to estimate the origin-
destination pairs and alighting time [7, 4]. Jang [5] has s-
tudied the travel time and transfer activities in Seoul, South
Korea using smart card data, which provides a comprehen-
sive travel time map and basic understanding of transit ser-
vices. By analyzing smart card data collected in Outaouis,
Canada, Agard et al. [1] have identified different trip habits
based on the predefined user types and variabilities of trips
against time. Utsunomiya et al. [12] pointed out that de-
mand pattern varies with day in week, therefore, different
operation schedules should be provided for each day. Some
researchers also focus on data processing methods and aim
to get more meaningful information from smart card data.
In [2], different types of analyses are conducted to support
further planning purposes. Potential usage and challenges
have also been highlighted.

Lee et al. [6] used smart card data from Singapore which
contains detailed boarding/alighting activities to conduct an
analysis on bus service reliability, including trajectories, oc-
cupancy of buses and in particular the headway distribution
along the route since bus bunching occurs at times. Based
on this approach, different operating strategies can be ap-
plied and tested in a simulation environment with passenger
demand as inputs.

To data, information dedicated to identify passenger lo-
cations within a MRT system based on smart card data
remains scant. Identifying trajectories and occupancies of
trains is significant to transit agencies in order to improve
the service level by designing timetable, adjusting velocity
and increasing/decreasing dwell time at stations, however,
these information is difficult to obtain from the operators’
point of view. This is different from data generated from
bus systems, as rapid transit data records do not feature
any time information regarding when passengers board or
alight from a train, which leads to difficulties in describing
the trajectories and occupancies of trains. Fortunately, s-
mart card data provides us the opportunity to extract this
information. In this present study, smart card data is used
to extract the spatio-temporal demand variation of the M-
RT(Mass Rapid Transit) system.

In the light of smart card records of passengers’ tapping in
and tapping out of the system, a model has been proposed
to detect different travel time elements. This model can
be regressed based on the assumption that the observations
with the least duration between each origin and destina-
tion pair record over a given day travel through the system
has no waiting time. The regressed parameters can then be
employed to indicate the most probable location of every
passenger, which further results in a realistic description of
passengers’ spatio-temporal density and trains’ trajectories.

The present paper is organized as follows. Firstly, infor-
mation regarding the featured smart card data and the MRT
service which would be used as a case study, are introduced
in the following section. In Section 3, a travel time regres-
sion model is proposed and estimated with data records from
the passengers with minimum travel time. Section 4 presents

the methodology to extract the spatio-temporal density of
passengers and trajectories of trains based on the proposed
travel time model. Finally, conclusions and an outlook on
further research and applications are discussed in the con-
cluding section.

2. RELATED WORK
Spatio-temporal distribution of traffic demand provides

potential benefits to both transit operators and passengers.
To investigate the spatio-temporal demand of urban road
network, a number of efforts have been made with different
kinds of urban dataset regarding urban road network. For
example, taxies play an important role in urban road net-
works as probe vehicles, in particular, GPS-equipped taxies
can generate large quantity of trajectory data. In most cas-
es, urban taxi drivers are quite familiar with the road net-
work they drive on everyday, especially the spatio-temporal
distribution of traffic demand for each time slot, in other
words, what they have is human sensed real-time traffic in-
formation, therefore, they have more intuitive intelligence
and experience in finding fastest route for given origin, des-
tination at certain time. Given this assumption, Yuan et al.
[13] has designed a two-stage routing algorithm which leads
to a smart driving system based on historical GPS trajecto-
ry data. With the help of this system, a fastest route can be
generated given the departure time, origin and destination
of passengers.

The fastest route generating problem is further studied
with GPS trajectory data from urban taxies in [14]. Com-
pared with [13], a Cloud-based computing system is devel-
oped to generate real-time fastest driving route in this paper.
Regarding to estimating real time traffic information on ur-
ban road network, the methodology for estimating the travel
time and spatio-temporal traffic density on road surfaces was
introduced by using GPS trajectory data [13, 14].

The research conducted by Zheng et al. [15] is also based
on GPS trajectories data from urban taxis, whereas it fo-
cused on the aspect of urban computing and application. In
this study, the flaws in the existing urban planning of Bei-
jing was detected with the mentioned dataset, the result of
which provided comprehensive view on urban planning prob-
lems. This will help the city planners in decision making in
conceive future plans to a larger extent.

In this paper, we focus on investigating the passenger-
s’ spatio-temporal density of subway system. To meet this
objective, this study is conducted with the help of smart
card data which record urban transit activities. Further-
more, the density data also provides us the opportunity to
extract trains’ trajectories, which are quite important in un-
derstanding the service level.

3. DATA PREPARATION
The smart card data used in this study was collected by

a fare collection system, kindly provided by the Singapore
Land Transport Authority (LTA). The smart card is Sin-
gapore’s single largest contactless stored value smart card
system and is mainly used for payments on public buses
and Mass Rapid Transit (MRT) trains since April 2002. For
this study, only records with both boarding and alighting
stops being on the East West MRT line are selected since
it is the most busiest rapid transit service in Singapore, as
shown in Figure 1.
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Figure 1: MRT and LRT system map in Singapore [10]

3.1 Smart Card Data
The smart card system was first introduced in Singapore

with the aim of providing a convenient, automated fare col-
lection public transportation system. Compared with other
smart card data sources stated in [7] and [11], the most
significant advantage of the smart card dataset is that it
contains precise timing and location information for both
boarding and alighting. Hence, transfer information can al-
so be derived. This serves as a basis to generate information
on load profile, spatio-temporal variation, and the waiting
time of passengers.

In the smart card based fare collection system, the fare
charge is calculated based on travel distance, trip mode and
different passenger types, so any other information describ-
ing these three characteristics can be obtained from the data
set.

This present study is conducted based on smart card record-
s of one entire week in April, 2011 provided by the Land
Transport Authority (LTA) of Singapore. To test the pre-
sented methodology of identifying spatio-temporal density
and train trajectories, a one day sample is used.

3.2 Case Study - EW MRT Services
In this study, the East-West (EW) MRT service, which is

known as the green line, is chosen to investigate the demand
characteristics and test the proposed strategies in order to
identify passengers’ spatio-temporal density and trains’ tra-
jectories. This service has 29 stations moving in both di-
rections. Figure 1 shows the general map of MRT and LRT
(Light Rapid Transit) systems in Singapore. The case study
examined is service that is on the green line, but the two
stations on the extension line leading to Changi Airport are
not included [10].

For this study, records of the time taken for passengers to
tap in and tap out are used, along with boarding and alight-
ing stations, and passenger types. Other information such as
the locations of stations along the routes and characteristic-
s of stations are obtained from supplementary information
provided by LTA.

4. DEMAND PATTERN
In this section, travel demand patterns based on the data

extracted from smart card data are described. With the help
of the smart card data, it is possible to estimate how many
passengers are in the MRT system at a given time t, for each
station. To this end, records with tapping in time, known
as tin < t and tapping out time tout ≥ t are identified as
passengers in the MRT system.

Figure 2 shows the number of passengers at each station
during the course of the day, for train services in both di-
rections, on a Monday in April 2011. It is observed that the
demand for each direction has its own characteristics and
both have significant morning and evening peaks.
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Figure 2: Demand characteristics on EW line

Figure 2a and Figure 2b show a distinct morning peak
at 8:30 am for both directions. Likewise, the evening peak
can be observed at 6:30 pm. The different shapes of the
two graphs indicate significant commuting in both directions
with the morning commute direction from EW1 to EW29
being somewhat more distinctive.

It can be seen as well that in the morning peak, most
of the demand originates from the first and last few stops
along the line, while in the evening peak, most of the demand
departs from the middle section of the line/service. In fact,
this pattern maps effectively with land usage in Singapore.
The predominant residential locations are located along the
outskirts of Singapore and the work locations are centralized
at the middle part of the city. During a typical weekday,
most of the trips generated in the morning and evening peaks
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are commuters who travel to their work locations and back
home respectively.

Such demand characteristics provide a basic understand-
ing of an MRT service and the travel demand patterns of
commuters over a typical weekday. The characteristics can
be helpful to fine tune demand responsive train schedules or
to define a more reliable strategy regarding the operation of
MRT services.

5. TRAVEL TIME AND LOCATION OF
PASSENGERS

5.1 Travel Time
Unlike the bus system, the MRT boarding and alighting

times of individual passengers cannot be extracted directly.
The tapping in and tapping out of their smart card takes
place at the ticket gantry of the MRT station which is typ-
ically located on another floor of the station, typically one
level below the entrance of station. Therefore, we cannot
assign passengers to single trains directly. To make this in-
formation available to transit operators, a model describing
passenger’s movement between tapping in and tapping out
would be required. In this study, such a model is proposed.

Figure 3: Activity chain of a typical subway trip

Figure 3 shows the typical activities for an MRT train
ride. The trip begins with passenger tapping in at the ticket
gantry. The passenger then makes his/her way to the plat-
form, boards a train to travel on his/her journey, alights, and
ends the journey by tapping out at another ticket gantry at
his/her final destination. The waiting time can be calculated
as the interval between passenger’s arrival at the platform
and upon boarding the train. In the smart card dataset, the
exact time of tapping in and tapping out are recorded. The
interval between these two activities is the total time which
a passenger spends in the MRT system. However, as stated,
the boarding time and alighting time can not be obtained
directly because of the uncertainty in the length of waiting
time. This however needs to be imputed.

From all the passengers having the same origin and des-
tination pair, the passenger with the minimum travel time
can be located. In this study, the travel velocity of trains
is assumed to be constant, therefore, the passenger with the
minimum travel time also has the minimum waiting time.
Due to the large quantity of data used in this study, the
waiting time of these fastest passengers are assumed to be
zero, which means that the passengers can board a train
immediately upon arriving at the platform.

The time interval between boarding and alighting is as-
sumed to comprise two parts. First, the total running time
between every two adjacent stations, and secondly the total
dwell time at internal stations. From this, a general travel
time model can be formulated as follows:

T − Tw = t0 + (|Sd − So| − 1) × Dw +
L(o,d)

v
(1)

where Tw is the waiting time while t0 comprises two parts,
the time spent tapping into the station to the time when a
passenger arrives at the platform, and the time spent alight-
ing from the train to tapping out of the station. So and Sd

are the index of the stations, thus |Sd −So1|− 1 is the num-
ber of stations a passenger has passed, excluding the origin
and destination stations. Dw is the average dwell time at
each station, which is assumed to be a constant value for
all stations without considering the boarding and alighting
demand. L(o,d) = |D (d) − D (o) | is the distance from the
origin station to the destination station and v is the velocity
of the trains. Thus, in this proposed model, only Tw, Dw
and v are unknown.

Based on the minimum travel times for each origin-destination
pair, this travel time model can be estimated with the fastest
passengers who generally have Tw = 0. In this regression
analysis, the minimum travel time records with an origin
same as destination are removed so that the size of the re-
gression data for both directions is N2 − N = 841. The
results of this is a travel time model are shown in Figure 4
and Table 1.

Table 1: Regression result of travel time model

Parameters Value t stat p value

t0(s) 109.75 48.5787 0.0000
Dw(s) 65.76 61.4119 0.0000
v(m/s) 21.63 61.8186 0.0000

R2 0.9981

The regression results indicate that dwell time at stations
is about 65s and that the travel velocity of trains is about
22m/s, which are in accordance with effective values. Fig-
ure 4 shows the observed travel time for the fastest passen-
gers from smart card dataset and the predicted travel time
based on the proposed model.

5.2 Determining Location
Given the variability of the platform waiting time and

availability of records of both the tapping in and tapping
out of the smart card, it would be wise to use the latter for
determining the passengers’ location. Based on the previous
travel time model, a passenger’s location L at certain time t
for two directions can be described by following Equation 2,

Ta−t =

{
D(d)−L

v
+ (|Sd − Sn| − 1) × Dw + t0

2
if D (d) ≥ L

L−D(d)
v

+ (|Sd − Sn| − 1) × Dw + t0
2

if D (d) < L

(2)
where Ta is the time when a passenger taps out of the sta-
tion, and n, Sn are the number of stations which the passen-
ger has journeyed through and the location of that station
respectively. In Equation (2), t0 is likewise divided equally
into two parts, so only t0

2
is considered for determining the
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Figure 4: Predicted versus observed travel time for the
fastest passengers

passenger’s location based on the tapping out smart card
record.

The temporary location of any passengers boarding at s-
tation k traveling in direction 1 (fulfilling D (d) > D (o)) can
then be described by Equation 3.

L (k) =

(
t − Ta + (|Sd − k| − 1) × Dw +

t0
2

)
× v + D (d)

(3)
To distinguish between passengers waiting on a platform

an travelling on a train, Equation (4) is proposed. For all
the possible stations in o, · · · , k, · · · , d, if the first station k∗

can be found which satisfies Equation (4), the permanent
estimated location of the passenger is L (k∗), where P (k∗)
is the location of station k∗.

L (k∗) − P (k∗) ≥ 0 (4)

For the opposite direction, the same method can be ap-
plied assuming that the passenger has just passed station k,
then the temporary estimated location of this passenger is

L (k) =

(
Ta − t − (|Sd − k| − 1) × Dw − t0

2

)
× v + D (d)

(5)
Then, for all the possible stations in o, · · · , k, · · · , d, if the

first station k∗ can be found which satisfies Equ (6), the
estimated location of the passenger is L (k∗), where P (k∗)
is the location of station k∗.

P (k∗) − L (k∗) ≥ 0 (6)

5.3 Waiting Passengers
Based on the location model in Section 5.2, if for all the

possible stations o, · · · , k, · · · , d, no station k∗ satisfies E-
quation 4, it must be assumed that the passenger is in the
MRT system but not on a train which, according to the
travel time model, means that the passengers is either on
the way to the platform or waiting there.

In other words, based on location estimation procedure
the demand in the subway system can be contiously cate-
gorized into two groups: passengers who are on board the
trains and passengers who are waiting for their trains.

Figure 5 shows the number of waiting passengers and on
board the trains for both directions.
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Figure 5: Demand of waiting and onboard passengers on
EW line

Compared with Figure 2, Figure 5 provides time-volume
relationship for both trains and platforms. This serves as
a basis for the spatio-temporal density model presented in
the next section. Furthermore, for any point in time and
any station, the number of passengers located at the respec-
tive station can be derived, which is crucial in the event of
train breakdowns or evacuations, in order to determine an
effective response strategy.

6. SPATIO-TEMPORAL DENSITY AND
TRAJECTORIES

Section 5 describes the data processing to determine pas-
sengers’s locations based on the proposed travel time model.
In this section, the results of applying the described method
using the smart card data records of a Monday in April
2011. The travel time model has been regressed with the
travel time of the fastest passengers with the same data set.
These two models make it possible to extract the spatio-
temporal density of passengers onboard a train. Further-
more, the trajectories of trains can also be identified based
on the spatio-temporal density figure.

Based on the location estimation model, for all the pas-
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sengers onboard as shown in Figure 5, their locations at
any time t can be determined. As a next step, the spatio-
temporal density relationship can be constructed using the
estimated number of passengers within a certain length in-
terval. Figure 6 shows the spatio-temporal density of pas-
sengers, from 7am to 9am in the morning and 12pm to 2pm
in the afternoon respectively for one direction, in intervals o
f 100meters and 30seconds. The colors indicate the passen-
ger density who are onboard a train at a certain time and
location. Intuitively, the location estimating model will work
better for passengers with less travel time for each origin-
destination pair, because there would be more variations for
longer travel times for certain origin-destination pair, such
as the cumulative difference in dwell time and velocity.
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Figure 6: Spatio-temporal density of passengers on EW
line(pax/100m)

Despite some decentralization in the density figure due to
non-observed variability, distinct spatio-temporal relation-
ships can be detected as well. This applies especially to
graph (a) which plots the density distribution for midday.
However, for peak hours, as depicted in graph (b), the as-
signment to single trains does not appear to be so straight-
forward. Here, additional information such as effective train
operations on a given day or at least the trains schedule
would help to consolidate decentralized density observation
to individual train trajectory. After such a procedure, pas-

senger loadings could be determined for every train along
the entire Ease-West line. Such information is ideally suited
to serve as a basis for developing failure response strategies.
Since origin and destination pairs for every observation are
known, one could use such data in the event of service dis-
ruption for the route planning of contingency buses which
would act as a substitute for the disrupted train service.
Currently, such buses typically run along the interrupted
track section, and serve as bridge services. However, de-
pending on the demand patterns and spatial distribution of
the final destination, other strategies such as direct buses to
highly frequented destinations might provide better service
for affected passengers. Because of the very limited time for
replacement service planning after an incident, failure re-
sponse plans need to be prepared in advance and be readily
available in the event of an incident. Compared to a system
based on real-time information, the retrospective nature of
this study is therefore advantageous. However, given the
changing demand patterns over a day, a series of differen-
t service dispatch plans would need to be prepared to suit
the prevailing demand conditions at a given point in time
optimally.

7. CONCLUSION
In this article, the demand characteristics of the case s-

tudy of one MRT service was investigated using smart card
data collected in Singapore, with the objective of identifying
effective commuter loadings for every train service.

A travel time model has been proposed by reconstructing
a typical MRT trip into segments. The model was regressed
using the data collected from the fastest passengers for each
origin-destination pair. Based on the regression results, a
location estimation model was developed to distinguish be-
tween passengers travelling on trains and waiting on plat-
forms.

The location estimation model was then applied to all M-
RT train passengers. Based on the resulting spatio-temporal
density plot, it appears feasible to group observations to-
gether to individual train trajectories. Such information
in turn, has great potential to improve current disruption
response plans. Optimizing demand responsive failure re-
sponse plans based on origin destination demand data, how-
ever, is a complex and extensive problem, especially since a
multitude of such plans would need to be prepared given
the demand fluctuations over a day. Further research would
therefore need to focus on developing heuristics that allow
one to generate failure response efficiently.

The proposed model can be improved by accounting for
station specific access and egress times t0 given the different
layouts of MRT stations. In terms of applying this to real
world scenarios, the scope of the analysis needs to be ex-
tended from a single line to the whole MRT network which
would require consideration of transfers. We will conduct a
further study in the future.
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ABSTRACT
People often have the demand to decide where to wait for a
taxi in order to save their time. In this paper, to address this
problem, we employ the non-homogeneous Poisson process
(NHPP) to model the behavior of vacant taxis. According to
the statistics of the parking time of vacant taxis on the roads
and the number of the vacant taxis leaving the roads in his-
tory, we can estimate the waiting time at different times on
road segments. We also propose an approach to make recom-
mendations for potential passengers on where to wait for a
taxi based on our estimated waiting time. Then we evaluate
our approach through the experiments on simulated passen-
gers and actual trajectories of 12,000 taxis in Beijing. The
results show that our estimation is relatively accurate and
could be regarded as a reliable upper bound of the waiting
time in probability. And our recommendation is a trade-
off between the waiting time and walking distance, which
would bring practical assistance to potential passengers. In
addition, we develop a mobile application TaxiWaiter on
Android OS to help the users wait for taxis based on our
approach and historical data.

Categories and Subject Descriptors
H.2.8 [Database Management]: data mining, spatial data-
bases and GIS

General Terms
Modeling, Statistics, Experimentation

Keywords
Vacant taxi, waiting time, poisson distribution

1. INTRODUCTION
Taxis play an important role in the transportation of cities.
For example, Beijing has more than 60,000 taxis to provide
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services for about 2,000,000 passengers every day. Howev-
er, there are still many people often annoyed with waiting
for taxis. It is not only because of the imbalance between
supply and demand, but also due to the lack of the vacan-
t taxis information provided to passengers. For example,
if a person does not know that there is another road near-
by with more vacant taxis passing by, he/she would spend
much more time on waiting for a taxi in current location.
Experienced passengers could choose a better road to wait
for taxis based on historical experiences. But more people
have little knowledge about like how long they would take
to wait for taxis here or where is better to wait for taxis,
especially in some strange places for them, which may affect
the their travels and schedules very much.

In this paper, we propose a method to estimate the waiting
time for a vacant taxi at a given time and place, and then
provide an approach to make recommendations for potential
passengers on where to wait for a taxi. To make this estima-
tion, we establish a model to describe the behavior of vacant
taxis. Our model is based on the following observations:

• The higher proportion of time with vacant taxis parking
beside the road, the more chances you can take a taxi
immediately here. This situation usually occurs during
the idle time around some popular places.

• The more vacant taxis leaving a road, the more chances
you can take a taxi quickly. The waiting time is affected
not only by the number of vacant taxis entering a road,
but also by how many people want to take taxis here at
that time. Because we do not have the data to directly
show the demand for taxis, we think the number of vacant
taxis leaving a road approximately reveals the remaining
chance for a passenger to take a taxi here after the demand
on the road is all met.

Motivated by the two observations above, we adopt the non-
homo-geneous Poisson process (NHPP) [11] to model the
events of vacant taxis’ leaving and derive the probability
distribution of the waiting time. Then we could perform es-
timations and recommendations based on the distribution.
We also do some experiments to demonstrate that our ap-
proach is practicable and then develop a mobile application
to help people wait for taxis.

Our study is built upon the GPS trajectories of taxis in Bei-
jing, China. This data is collected from more than 12,000
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taxis, which account for about one-fifth of total ones in the
city. We select the data between Oct. 2010 and Jan. 2011
to study. Each GPS record contains the identifier of a taxi,
current position, timestamp, service status, and some oth-
er information. The data sampling interval of each taxi is
about 60 seconds.

The major contributions of our work include:

• We employ the NHPP to model the behavior of vacant
taxis, which could approximate the real situation well and
have a simple form to derive the probability distribution
of waiting time.

• We estimate the waiting time for vacant taxis at different
time on road segments, analyze the confidence of our esti-
mation, and design a recommender system for the people
who want to take taxis.

• We conduct a lot of experiments to evaluate our approach
on simulated passengers and actual trajectories of taxis.
The results show that our estimation is relatively accurate
and our recommendation would be helpful to potential
passengers.

• We put our approach into practice by developing a mobile
application which could help the user find an appropriate
place to wait for a taxi.

The rest of this paper is organized as follows. In Section
2, we give an overview of the related work. Section 3 in-
troduces our model used to estimate the waiting time for a
vacant taxi. Section 4 describes the data processing of our
work. In Section 5, we analyze the results of our estimat-
ed waiting time. Then, we discuss the recommendation for
passengers in Section 6. Section 7 shows the experiments
and evaluations on our approach. Section 8 introduces an
application we developed to help people wait for taxis. Fi-
nally, we make a conclusion and propose some future work
in Section 9.

2. RELATED WORK
2.1 Recommendations about Taxicabs
Recent years have witnessed the explosive research interest
on taxi trajectories [1, 6, 7, 14, 18]. Moreover, many works
have also been done to investigate the recommendations for
taxi passengers or drivers [2, 5, 9, 13, 17].

Phithakkitnukoon et al. [9] study the prediction of vacan-
t taxis number to provide the information for tourists or
taxi service providers. They employ the method based on
the näıve Bayesian classifier and obtain the prior probability
distribution from the historical data. However their method
divides the region of the city into one-kilometer square grid-
s which are too rough to provide practical information for
passengers. In addition, their data is only from the traces
of 150 taxis in Lisbon, which might not be enough to re-
veal laws of vacant taxis for the reason of weak statistical
significance.

Ge et al. [2] develop a recommender system for taxi drivers
which has the ability in recommending a sequence of pick-up
points or parking positions so as to maximize a taxi driver’s
profit. They estimate the probability of pick-up events for

each candidate point, and then propose an algorithm to dis-
cover a route with minimal potential travel distance before
having customer. Li et al. [5] study the strategies for taxi
drivers as well. They use L1-Norm SVM to discover the most
discriminative features to distinguish the performance of the
taxis, and then extract some driving patterns to improve the
performance of the taxis. However, all these studies do not
concern about the recommendation for passengers.

Yuan et al. [17] propose an approach to make recommenda-
tions for both taxi drivers and passengers. They establish
a probabilistic model to describe the probability to pick-up
passengers, the duration before the next trip, and the dis-
tance of the next trip for a vacant taxi. Then they provide
some different strategies for taxi drivers, each of which is
based on the optimization of one aspect (probability of pick-
up, cruising time, or profit). They further extend their work
in [16]. Although their methods could also provide recom-
mendations for passengers, their research mainly focuses on
drivers. Comparing with them, our research stands on the
view of passengers and pays more attentions to estimating
the waiting time for vacant taxis.

Yang et al. [13] study the equilibrium of taxi market from
the standpoint of economics. They use a bilateral searching
and meeting function to characterize the search frictions be-
tween vacant taxis and unserved customers. They build a
model to describe the relationship between the supply and
demand for taxis, and analyze some influencing factors on
customer waiting time. But in our study, because of lack-
ing of explicit data for the demand of taxis, we actually
estimate the gap between supply and demand through the
number of vacant taxis. Moreover, the object of their study
is an aggregate taxi market, but our target is to estimate the
waiting time for a vacant taxi at a given time and position
in a microscopic view.

2.2 Map Matching
Map matching is a main step of data preprocessing in our
work. It refers to the process of mapping the GPS points to
the road segments to recover a complete path of a trajecto-
ry. Quddus makes a survey of map matching algorithms in
[10], including geometric, topological, probabilistic, and oth-
er advanced algorithms. He also discusses the performances
and limitations of them. Lou et al. [8] propose a new algo-
rithm for low-sampling-rate GPS data, which considers the
temporal and spatial constraints on the trajectories, then
constructs a weighted candidate graph to choose the most
appropriate path. Yuan et al. further improve Lou’s method
in [15] later.

2.3 Non-homogeneous Poisson Process
Poisson process is a stochastic process that is often used to
study the occurrence of events. It assumes the arriving rate
of events λ is always stable, and has the Poisson distribu-
tion of counting and exponential distribution of inter-event
time. Non-homogeneous Poisson process [11] is a Poisson
process with a time-dependent arriving rate function λ(t).
This model is more flexible and appropriate to depict the
human-related activities because these activities often vary
over time and have periodicity. [3] studies the NHPP having
cyclic behavior, and [4] introduces a method to estimate the
λ(t) in NHPP using a piecewise linear function.
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3. MODEL
Here we propose a model to describe the waiting time for
a vacant taxi, and derive the probability distribution of it.
Then we estimate the waiting time using the expectation of
the distribution. Finally, we analyze the confidence level of
our estimation.

3.1 Motivation
The time to wait for a taxi reflects the availability of taxis on
a road. Waiting for a taxi on a road could be divided into the
two situations: 1) there are some vacant taxis just stopping
beside the road, then you could take the taxi immediately;
2) there are no vacant taxis at hand, you should wait for the
coming of next vacant taxi.

We could denote the probability of the first situation as
pimm, and the waiting time in the second situation as tnext.
Then the random variable of actual waiting time twait could
be represented as:

twait = (1 − pimm) · tnext

Then, we will discuss how to estimate pimm and tnext.

3.2 Estimation of Waiting Time
Let’s consider pimm at first. We could approximate it by the
proportion of time when there are some vacant taxis parking
beside the road. We define the parking time of vacant taxis,
i.e. tpark, as the duration with at least one vacant taxi
parking on the road to wait for passengers. Therefore, p̂imm

for a road r during a timeslot T could be represented as:

p̂r,T
imm =

tr,T
park

∆T

Here ∆T denotes the span of timeslot T . By identifying of
some appropriate stops of taxis, we can calculate p̂imm for
each road during each timeslot.

For tnext, intuitively, the number of vacant taxis leaving a
road during a timeslot influences how long you probably
spend on waiting for a taxi here. Because vacant taxis de-
parting a road often means that they do not find any pas-
sengers on the road and then you have a great chance to
take it if you are there. We denote the number of vacant
taxis which have left a road as Nvacant, and define the leav-
ing frequency of vacant taxis, i.e. λ, for a road segment r
during a timeslot T as:

λr,T =
Nr,T

vacant

∆T

Human-related activities vary over time, so do taxis. There-
fore, we employ the NHPP to model the events of vacant
taxis leaving roads. The rate parameter of NHPP is a time-
dependent function λ(t), and we further assume the rate
function has a cycle of 24 hours. For simplicity, we adopt
the piecewise linear function as the rate function of NHPP
and regard each hour as a timeslot. This model assumes λ
for a road is stable during a timeslot and the same timeslot
in different days.

To validate our assumptions, we have done the KS-Tests
for Poisson distribution on the data of each same timeslot
in different days. To avoid the effect of the sparseness, we

select the roads with enough data. We conduct the tests
on the top 10,000 and top 30,000 roads for comparison1.
Figure 1 shows the proportion of successful KS-Tests at 95%
confidence level. We could see that the proportion for top
10,000 roads is larger than that for top 30,000 roads, and
the proportion in the wee hours is rather small. These are
because the data in the wee hours and unpopular roads are
sparse and more fluctuant. Considering that our approach is
mainly related to most of the passengers on popular roads in
active time, so our hypotheses basically hold for most cases.
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Figure 1: Proportion of successful KS-tests for the
hypothesis of Poisson distribution

Under the Poisson hypothesis within a timeslot, we could
derive the probability distribution of the waiting time for
the next vacant taxi during the timeslot2. According to the
Poisson process, the probability of the next event occurring
within t is [12]:

P{tnext ≤ t} = 1 − P{tnext > t}
= 1 − P{N(t) = 0}
= 1 − e−λ·t

Here N(t) represents the count of the events occurring with-

in t, and P{N(t) = k} = e−λ·t · (λ·t)k

k!
. Then the probability

density function of tnext is:

p(t) = λ · e−λ·t

Thus, we can deduce the expectation of tnext:

E[tnext] =

∫ ∞

0

t · λ · e−λ·t · dt

=
1

λ

Notice λ in our model denotes the leaving frequency of va-
cant taxis. Therefore with this conclusion, you could realize
why the more vacant taxis leaving means the shorter waiting
time for taxis. And we could regard the expectation as the
estimation of tnext.

1We select the top roads by the number of pick-up events
on it.
2For simplicity, we omit the superscript of parameters in the
following derivation. It must be noted that the value of the
parameter is different for various roads and timeslots.

151



Then we also need to estimate the λ. Here we employ the
maximum likelihood estimation (MLE). If we observe the
number of the vacant taxis leaving from a road at the same
timeslot T for k days, we denote the count of the ith day is
Ni, then the likelihood function is:

L(λ) =
k∏

i=1

(λ · ∆T )Ni

Ni!
e−λ·∆T

Setting d ln(L(λ))
dλ

= 0 and solving λ, we obtain the MLE:

λ̂ =

∑k
i=1 Ni

k · ∆T
=

N̄

∆T

This conclusion means that we could estimate λ just by
counting the leaving of vacant taxis in history.

As a consequence, we could estimate the actual waiting time
for vacant taxis as:

t̂wait = (1 − p̂imm) · t̂next

= (1 − p̂imm) · 1

λ̂

3.3 Confidence of Estimation
Now we will analyze the confidence level of our estimation.
Let’s consider the lower-sided confidence interval of tnext.
We denote 1 − α quantile of the distribution of tnext as
tnext1−α , then we could get:

∫ tnext1−α

0

t · λe−λt · dt = 1 − α

The quantile could be solved as:

tnext1−α =
ln(α−1)

λ

This result shows that, we have 1 − α confidence level of
which the waiting time would be no longer than ln(α−1)
times of the t̂next we estimated. If we set the upper bound
of confidence interval equals to t̂next, namely:

ln(α−1)

λ
=

1

λ

We can get α = 1
e
, which means the probability of the wait-

ing time less than our estimation should be 1 − 1
e
, which is

about 63.21%. These conclusions imply that our estimation
could be regarded as a reliable upper bound the possible
waiting time in probability.

4. DATA PROCESSING
Our data processing starts with map matching. We have to
map the trajectories of taxis to the roads and calculate the
entering and leaving time of taxis to the roads. We employ
the map matching algorithm proposed by Lou et al. [8].
In addition, we filter some trajectories which seem unusual,
such as keeping vacant status too long (5 hours), or staying
on the same road too long (2 hours).

Then, according to the model we have established, the pro-
cessing is divided into two parts. The first part is the cal-
culation of parking time of vacant taxis. The key step is
to identify the stopping taxis that are waiting for passen-
gers. We should eliminate the situations of waiting traffic

lights or other purpose stops. We regard the taxi staying
on a road with moderate duration (between 5 minutes and
2 hours) and rather low speed (less than 3.6km/h) as valid.
Because too short time of stopping may be caused by traffic
lights and too long time of stopping means no desire to take
passengers or some unexpected situations.

The second part is to calculate the estimation of leaving
frequency of vacant taxis λ for each road during each hour.
Because the MLE of λ is N̄

∆T
, our task is just to count the

number of vacant taxis leaving each road in each timeslot
of one hour. And we also filter some outliers before making
the average.

We process the trajectories happened during about three
month, and calculate the averages t̄r,T

park and N̄r,T
vacant, then

the estimated waiting time could be represented as:

t̂r,T
wait = (1 −

t̄r,T
park

∆T
) · ∆T

N̄r,T
vacant

=
∆T − t̄r,T

park

N̄r,T
vacant

Here ∆T is the span of a timeslot, i.e. one hour.

However, our estimation of waiting time could not be applied
to all roads, because there are some roads forbidding taxis
to pick-up passengers. For these roads, there may be many
taxis leaving from but few passengers getting on. Due to
lack of the data indicating which road forbids the pick-up
of passengers, we develop a method to detect these roads
through analyzing the trajectories. We define the pick-up
rate, denoted as θr for each road segment r:

θr =
number of pick-up on the road segment r

number of vacant taxis entering the road segment r

If there is a road with enough samples (more than 100 vacant
taxis entering) and very low pick-up rate (less than 0.03),
we will regard it as invalid to wait for taxis. For these roads,
we do not make estimations of waiting time.

It is also worthy to be noted that our data is from the taxis
which account for 1/5 of the total ones in Beijing. If we
assume these 1/5 taxis are randomly distributed in the city,
the waiting time would approximately be shortened to 1/5
of our estimation. We also could measure the actual scale
factor by in-the-field study. But regardless of what the ac-
curate factor is, the relative order of the waiting time we
estimated will be basically kept under the random distribu-
tion assumption.

5. ANALYSIS OF THE RESULTS
We apply our approach to the data between Oct. 2010 and
Dec. 2010, and then calculate the estimated waiting time for
each road and timeslot. Because the data of some roads is
very sparse, we only take the top 30,000 road segments with
most frequent pick-up events into account3. And we also
make the estimation of weekday and weekend separately.

Figure 2 gives an overview of the waiting time for vacant

3There is only fewer than 1 pick-up event per day in average
on each of the remaining road segments.
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Figure 2: The map of taxi waiting
time in Beijing.
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Figure 3: Proportion of roads with
estimated waiting time less than 1
minute and 5 minutes.
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Figure 4: The percent error of the
estimation of tpark.

taxis at 5 p.m. in a region of Beijing. The light green color
denotes the estimated waiting time of less than 1 minute, the
dark green color denotes the waiting time between 1 minutes
and 5 minutes, and the gray color denotes the waiting time
of larger than 5 minutes4. As shown in the map, the waiting
time may be very different in some roads close to each other,
so such information would help people find the appropriate
position to wait for a taxi without walking too much.

Then let’s analyze the varying of the waiting time in one
day. Figure 3 shows the proportions of roads with estimated
waiting time less than 1 minute and 5 minutes. From the
figure we can see the proportion changes obviously with the
time, which indicates the waiting time for taxis varies greatly
during a day. The proportion of the roads with short waiting
time is really low in the wee hours, because there are only
a few taxis providing services. And the proportion reaches
the top at noon, which implies that it would be easiest to
take a taxi at that time. This is because that the demand
of travel is relatively low but most taxis are in the service at
noon. We also find that there are some differences between
the weekday and weekend. The proportion of roads with
short waiting time on weekend is not as high as on weekday
in the daytime, the reason of which might be that there are
more commercial and entertainment activities during that
time on weekend.

6. RECOMMENDATION
With the knowledge we mined from the taxi trajectories, we
could provide meaningful information to the people needing
to take a taxi. With awareness of the possible waiting time
on each road, people could make their schedule better, and
avoid wasting time to wait for a taxi on a road with very
long possible waiting time.

Furthermore, we also could provide a direct recommenda-
tion on where to take a taxi for the person who wants to
take a taxi at somewhere and sometime. Considering the
speed of pedestrian is slow, we limit the candidate roads to
be recommended within a small distance. We denote the

4This waiting time has already been multiplied by the scale
factor 1/5, the same below.

candidate roads set as:

Rcand = {r : distance(P, r) < dmax}
Here P is the position of the person now, r is a candidate
road, and dmax is the maximal distance people want to walk.
Then in the timeslot T , for each road r ∈ Rcand, we estimate
the total time duration before taking a taxi as:

t̂r,T
total = t̂walk + t̂r,T

wait

=
distance(P, r)

v̂
+ t̂r,T

wait

Here v̂ is the common speed of the pedestrian. Then we
choose the road r in candidates with minimal t̂r,T

total as rec-
ommendation:

rbest = arg min
r∈Rcand

t̂r,T
total

In addition, through adjusting the parameters such as dmax

and v̂, we could even control the preference for short waiting
time or short walking distance in recommendation.

7. EXPERIMENTS AND EVALUATION
We have conducted comprehensive experiments to evaluate
our model. Here we regard the data from Oct. 2010 to
Dec. 2010 as the training, and choose three week between
Jan. 5th 2011 and Jan. 25th 2011 for testing. We conduct
our experiments on the top 30,000 road segments with most
frequent pick-up events .

7.1 Validation of Statistics
We first validate two important statistical quantities in our
model: parking time of vacant taxis tpark and leaving fre-
quency of vacant taxis λ. Here we use percent error to eval-
uate the relative accuracy of our estimation. The percent
error is defined as:

percent error =
|real value − estimate value|

real value
× 100%

Figure 4 shows the average percent error of tpark. The total
average percent error is 4.52%. The reason of the small
average error is that there are a large number of roads rarely
having vacant taxis parking on. This result demonstrates
the situations of vacant taxis parking beside the road have
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Figure 5: The percent error of the
estimation of λ.
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Figure 6: The percent error of the
waiting time by simulation.
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Figure 7: The proportion of test-
s with simulated waiting time less
than the estimation.

little impact on our estimation, but we still keep it to remain
the completeness of our model.

Figure 5 shows the average percent error of λ. The total
average percent error is 56.12%. We could see the errors
are rather larger in the wee hours due to the sparsity and
fluctuation of data during that time. But for most time of
a day, the percent errors are around 50%. And the weekday
has smaller errors, which implies the higher regularity of
human-related activities during weekdays.

7.2 Simulation
We also evaluate the estimated waiting time by simulation.
For each road, we generate a passenger with a random times-
tamp, and then calculate how long the passenger should
spend on waiting for the next vacant taxi just standing on
this road according to the actual testing taxi trajectories.
We repeat the simulation 100 times for each timeslot, and
compare the average simulated waiting time to our estimat-
ed waiting time.

Figure 6 shows the average percent error of the waiting time
on all roads at different time in simulation. The total av-
erage percent error is 29.37%. This result shows that the
estimated waiting time for vacant taxis is relatively accu-
rate and the error of our estimation is acceptable in general.
Because the variance of the exponential distribution is rel-
atively large when the λ is small, we could not avoid the
errors on the roads with rare vacant taxis passing by.

Figure 7 shows the proportion of tests whose simulated wait-
ing time is less than the estimation. The proportion in all
tests is 62.73%. This is very close to the theoretical value
63.21% we have derived from our model (the straight line in
the figure), which reflects that our model agrees well with
reality from another side. The result also confirms that our
estimation could be regarded as a reliable upper bound of
the waiting time in probability.

We further evaluate our recommendation about where to
wait for a taxi. We randomly generate passengers in a range
of the city (no need to be on a road), as well as a timestam-
p. Then we choose the recommended road according the

approach we proposed in section 65. We compare our rec-
ommendation with three strategies: 1) Best strategy always
chooses the road with the best ttotal according to the actual
testing data. This is a virtual strategy because it is based
on posterior knowledge of taxi trajectories. It always leads
to the best total waiting time, and we regard it as a baseline
for comparison of time. 2) Nearest strategy always chooses
the nearest road nearby, and then stops on it to wait for
a vacant taxi. It is a common strategy in reality because
people often are reluctant to walk too long. It always leads
to the shortest distance to walk, and we also regard it as a
baseline to compare walking distance. 3) Random strategy
just randomly selects a road within the range. It is a possi-
ble strategy for the passenger who has no knowledge about
the surroundings.

Figure 8 shows the difference of total waiting time compared
with the best strategy. Our recommendation is obvious bet-
ter than the nearest strategy and random strategy in terms of
time. And our recommendation is relatively close to the best
strategy, the total average difference is about 10 minutes.
Figure 9 shows the difference of walking distance compared
with the nearest strategy. Our recommendation is similar to
the best strategy in terms of distance, and not much different
from the nearest strategy. The total average difference be-
tween our recommendation and the nearest strategy is about
100 meters. These results show that, the recommendation
made by our approach is a trade off between the waiting
time and walking distance, which make the two aspects are
all not much different from the best situations.

8. APPLICATION
Based on our approach and actual historical data, we devel-
op a mobile application TaxiWaiter on Android OS, which
could visualize the waiting time for vacant taxis on roads and
also could provide a suggestion on where to wait for a taxi.
Figure 10 demonstrates the user interface of the application.
The roads are painted with different colors demonstrating
the different waiting time on them, which could make the
users intuitively understand the availability of taxis on these
roads at some time. If the user clicks the recommend but-

5Here we set dmax to 1 km, and v̂ to 3.6 km/h in the simu-
lation.
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Figure 8: Difference of total wait-
ing time compared with the best
strategy.
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Figure 9: Difference of walking dis-
tance compared with the nearest s-
trategy.

Figure 10: The mobile application
TaxiWaiter we developed to pro-
vide taxi waiting information.

ton, the application could provide the recommended road
for the user according to his/her current position (the blue
point) and time. The red road in the figure is our recommen-
dation, and the application also shows the possible waiting
time and the distance to the recommended road. The user
also could adjust the timeslot, walking speed and some other
parameters in the application.

With TaxiWaiter, the user obtains more information about
vacant taxis at different times on road segments and al-
so could get a direct recommendation. These would help
he/she make a better decision on where to wait for a taxi.

9. CONCLUSION AND FUTURE WORK
With the model of NHPP to describe the appearance of re-
maining vacant taxis, we could estimate the waiting time for
the next vacant taxis on a road, and then make a recommen-
dation on where to wait for a taxi for potential passengers.
The model we established has a concise form and would lead
to some meaningful conclusions in theory. The parameters
in our model could be estimated from the statistics of his-
torical data directly, which makes our approach practicable.

Through extensive experiments, we could validate that our
estimations of taxi waiting time have relatively acceptable
errors. The average percent error of the taxi waiting time
is about 30%. The result of simulations also shows recom-
mendations made by us would be helpful to the passengers.
When the passengers following our recommendations, the
total waiting time is just 10 minutes more than the best s-
trategy in average, and the walking distance is only about
100 meters farther than the nearest strategy. This indicates
that our recommendations balance the time and distance,
and the two aspects are both close to the best situations.

However, there are still some limitations of our study, which
would be the focuses of our future work:

• The rate function of piecewise linearity in NHPP is too
simple for practical situations. We will try to use a con-
tinuous function to estimate the leaving frequency of va-
cant taxis λ which could change smoothly at any moment.

This would make our model more flexible.

• The method we used to estimate the parameters such as
λr,T and pr,T

imm is just to make averaging on the historical
data, and regard them as constants during different days.
However, these parameters would also be changing slowly
as time goes by. We consider weighing them differently
based on period from that time to now, and then our
method could adapt to the changes in the overall trend.

• The estimation and recommendation are not accurate e-
nough. We will attempt to use or combine some other
methods such as machine learning to improve the results,
and we also plan to do some comparisons with different
methods.

• We have not yet conducted in-the-field experiments to
validate our approach. This type of experiments may be
hard to do comprehensively. However, with the applica-
tion TaxiWaiter we developed, we could receive feedbacks
from users, which would give us a chance to validate and
refine our approach.
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ABSTRACT 
Outlier detection in large-scale taxi trip records has imposed 
significant technical challenges due to huge data volumes and 
complex semantics. In this paper, we report our preliminary 
work on detecting outliers from 166 millions taxi trips in the 
New York City (NYC) in 2009 through efficient spatial analysis 
and network analysis using a NAVTEQ street network with half 
a million edges. As a byproduct of large-scale shortest path 
computation in outlier detection, betweenness centralities of 
street network edges are computed and mapped. The techniques 
can be used to help better understand the connection strengths 
among different parts of NYC using the large-scale taxi trip 
records.  

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database applications -Spatial 
databases and GIS 

Keywords 
Outlier Detection, Shortest Path, High-Performance, Taxi Trip 

1. INTRODUCTION 
Probe vehicle data, such as taxi trip records with GPS 

recorded pickup-up and drop-off locations/times and other 
related trip data, are valuable in understanding urban traffic and 
travel patterns. However, such data are often prone to various 
human, device and information system induced errors. Detecting 
outliers and subsequently cleaning up the data is a prerequisite 
for reliable analysis. Existing outlier detection and data clean 
approaches often use simple rules such as trip locations should 
be within city boundaries and geometric distances should be 
within certain thresholds [1]. When intermediate GPS readings 
are available, it is possible to examine the GPS traces and 
understand the identified outliers. However, in many cases, due 
to privacy concerns or data volume concerns or some other 
policy/management related reasons, the complete GPS traces are 
not available. Compared with using geometrical distances, 
shortest path distances can be more accurate and reliable in 
detecting outliers. However, shortest path computation in large 
street networks using traditional algorithms can incur 
unacceptable runtimes and make the computation impractical.  

In this study, by integrating an open source package 

called MoNav [2] that implements an efficient Contraction 
Hierarchy (CH) based shortest path computation algorithm [3] 
and a spatial join algorithm to snap pickup and drop-off 
locations, we are able to compute the shortest paths of the 166 
million taxi trip records in NYC in 2009 in less than two hours 
on a commodity desktop computer. The computed shortest paths 
not only facilitate outlier detection in a smarter way, but also 
allow generate edge betweenness centrality maps to understand 
the connection strengths among different areas of NYC from the 
taxi trip records. To the best of our knowledge, the approach has 
not been exploited previously in urban computing research. We 
believe the new approach can be used to understand the 
interactions between people and places deeper.   

The rest of this paper is arranged as the following. 
Section 2 briefly introduces related works on outlier detections 
of taxi trip records, efficient shortest computation on road 
networks and betweenness centrality computation and 
applications. Section 3 presents the proposed method, including 
technique details on snapping taxi pickup and drop-off locations 
to street network and deriving betweenness centrality maps. 
Section 4 provides experiment results and performance 
evaluations. Finally Section 5 is the conclusions and future work 
directions.  

2. BACKGROUND AND RELATED 
WORKS 

The incompleteness, uncertainties and errors 
associated with taxi trip records have been well recognized in 
urban computing case studies. A commonly used practice to 
detect outliers and clean up data is to discard trips that are either 
too long or too short. For example, the research reported in [1] 
discarded trips with distances that are greater than 30 km (from 
one side of the city to the other) or shorter than 200 meters 
(which are considered unrealistic). A more general approach is 
to compute the distribution of a measurement (location, distance, 
duration et al) and then consider those that fall within the 
unusual ranges as outliers [4]. More domain-specific outlier 
detection approaches include marking taxi pickup and drop-off 
locations that are outside certain administrative regions or within 
regions of certain land use types (e.g. river/lake) as outliers 
through geospatial analysis such as point-in-polygon testing or 
nearest neighbor computing.  

There are quite a few pioneering works in outlier 
detections from GPS traces. Some of them snap GPS trajectories 
to street networks and integrate street network topology into 
outlier detections [5] while others discretize GPS traces into grid 
cells and then use grid cells as the basic units for outlier 
detection [6, 7]. Unfortunately, these techniques can not be 
applied to our application as complete GPS traces are not 
available in our dataset and we are limited to use the two ends 
(Origin/Destination) of GPS trajectories.  

In the context of processing GPS data, quite a few 
techniques have been developed to tackle uncertainty issues 
related to low GPS sampling rates by using road network 
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geometry and topology [8, 9]. These techniques can be used to 
detect outliers as well by considering the non-matched GPS 
locations as outliers. In our study, in addition to applying the 
threshold-based, distribution-based and spatial analysis based 
outlier detection techniques, we propose to compute shortest 
paths and compare the recorded distances with computed 
shortest distances as a way to detect outliers. This approach can 
be considered as a network analysis based outlier detection 
technique. As detailed in the experimental section, in addition to 
be able to detect device-induced outliers, the approach is able to 
detect human induced outliers.   

Shortest path computation is fundamental in both 
computer science research and virtually all application areas. A 
variety of shortest path algorithms, including the classic 
Dijkstra's algorithm and the A* algorithms, are available [10]. 
Several recent shortest path algorithms that are designed 
specifically for road networks have achieved signficant higher 
efficiencies than the generic ones. Among them, the Contraction 
Hierarchies (CH) algorithm developed by the Algorithm 
Engineering group at the KIT of Germany [3] has gained 
considerable popularities in practical applications. Two open 
source packages based on the CH algorithm, namely MoNav [3] 
and OSRM [11], are currently available. We found that the CH 
implementation in MoNav is easy to understand and easy to 
integrate in our application. As such, we have extracted the CH 
implementation module (termed as MoNav-CH hereafter) and 
used it in our study. As shown in the experiment section, we are 
able to compute over 25 million unique shortest paths in about 
5,952 seconds using a single CPU core. The performance is 
more than three orders better than a commercial GIS software 
that we have tested. We also would like to note that a recent 
Graphics Processing Unit (GPU) based implementation of the 
CH algorithm called GPHAST [12] has achieved a throughput 
of less than 2 milliseconds in computing a single-source shortest 
path tree in an European road network with more than 18 
million nodes and 42 million edges. The performance is about 
three orders faster than the Dijkstra's algorithm (without 
including path output overheads). We expect to gain higher 
performance in shortest path computation after incorporating the 
GPHAST algorithm. This has been planned for our U2SOD-DB 
system [13] to provide a comprehensive and integrated data 
management and data mining platform for large-scale Origin-
Destination (OD) data in ubiquitous urban sensing applications, 
including OD-based taxi trip records.  

Node or edge based betweenness centrality has been 
widely used to study the relative importance of nodes and edges 
in a network [14]. The betweenness centrality of a node or an 
edge can be simply defined as the number of shortest paths that 
pass through the node or edge. As a by-product of computing 
shortest paths of all taxi trips, the betweenness centrality for all 
nodes and edges in a road network can be easily computed 
through simple aggregations on the edges or the nodes. Different 
from social network applications of betweenness centrality, in 
this study, we spatially map the numbers of computed shortest 
paths on all edges for deeper understanding of the connection 
strengths among different parts of the NYC in a visual manner. 
While our primary focus on this study has been on computing 
efficiency and data management sides, we note that betweenness 
centrality has been recently applied to study traffic flows [15, 
16]. Compared with plotting aggregated pickup and drop-off 
locations separately [1] or examining an OD matrix [17], our 
approach provides details at the street segment level and relates 

origin and destination locations simultaneous. The standard map 
interfaces allows zooming, panning and querying the 
distributions of the betweenness centrality dynamically which 
are familiar to many users who use Internet mapping services 
(such as Google Map) on a daily basis.   

3 METHOD AND DISCUSSIONS 
Given a taxi trip dataset (T) with the following 

attributes: pickup location, pickup time, drop-off location, drop-
off time and recorded distance, and, a street network (S) with N 
nodes and M edges, our method for outlier detection has three 
steps. The first step snaps both the pickup and drop-off locations 
to their nearest street segments. If a taxi trip has either a pickup 
location or drop-off location that can not be snapped to a street 
segment with a reasonable distance threshold (D0), it is 
considered as a type I outlier. The node in the snapped segment 
that is closer to the pickup/drop-off locations is then assigned to 
the trip record as a pickup or drop-off node. The second step 
computes the unique combinations of the pickup and drop-off 
nodes of all trips. As demonstrated in the experiment section, 
computing shortest path of unique node combinations instead of 
individual taxi trips has reduced shortest path computation 
workload to nearly 1/7. The third step actually computes the 
shortest paths using the MoNav-CH module for each unique 
pickup-up and drop-off node pair. While the shortest paths are 
being computed, the node and edge centralities are updated for 
each of the nodes and edges along the computed shortest path. 
The computed shortest path distances are then compared with 
the recorded distances. If the computed distances are greater 
than a threshold D1 and are W times longer than the recorded 
distances, then the records are marked as type II outliers.  

We next briefly discuss some of the implementation 
details on snapping pickup and drop-off locations. It is obvious 
that the criteria on snapping point locations to street network 
segments can be viewed as a combination of window query and 
a nearest neighbor query which are supported in many 
Geographical Information Systems (GIS) and Spatial Databases 
(SDB). However, our experiments have shown that existing GIS 
and SDB software tools are not designed to handle location data 
at the scales of hundreds of million points and above. The 
performance is unacceptable using either ESRI ArcGIS or open 
source PostgreSQL. While we are aware of proper partitions and 
configurations can potentially improve performance but we are 
not sure whether the achievable performance can meet the level 
that is required by our application. As such, we leverage the 
P2N-D spatial join module in our U2SOD-DB system for this 
purpose. While we refer to [13] for more details on this, we 
would like to note that by adopting a column-oriented, in-
memory system with massively data parallel GPU hardware 
accelerations, the performance of the first step of the proposed 
method has been significantly improved.  

We also note that using shortest path as a proxy of 
actual trip paths is approximate in nature, especially when 
computing shortest paths purely based on distances. As many 
previous studies have shown that, experienced taxi drivers 
usually take quite a few factors into consideration in choosing 
travel paths and it is not surprising that some researchers suggest 
use experiences of taxi drivers for online navigation purposes 
[18, 19]. Nevertheless, we believe that when the recorded trip 
distances deviate significantly from the computed shortest 
distances by setting D1 and W properly, it can be an effective 
filtering mechanism to identify true outliers. In addition, the 
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computed betweenness centrality measurements are aggregated 
values where the inaccuracies and uncertainties have a good 
chance to be canceled by each other and can be used as a 
visualization tool to understand the overall travel and traffic 
patterns in metropolitan areas such as NYC.  

4 EXPERIMETNS AND RESULTS 

4.1 Data and Experimental Setting 
We use approximately 166 million taxi trips in NYC 

in 2009 in this study. While there are more than 20 attributes 
from the original database dump, we use only the five attributes 
as listed in previous section and we refer to [13] for more details 
regarding to the data management aspects of both taxi trip data 
and infrastructure data in U2SOD-DB. For illustration purposes, 
we have plotted a distribution map of aggregated numbers of 
taxi pickup locations using a spatial resolution of 16 feet (~5 
meters) and a grid dimension of 8192*8192. As shown in the 
right part of Fig. 1, clearly, the majority of taxi pickup locations 
are in the midtown and downtown Manhattan area. When the 
taxi pickup locations in the area are aggregated at 0.5 feet 
resolution, the effect of road network becomes apparent as 
shown in the left part of Fig. 1. The similar trends have been 
observed for the drop-off locations.  

The street network in the NYC area provided by 
NAVTEQ through its University Program not only includes the 
five boroughs in NYC but also includes three neighboring 
counties, i.e., Westchester, Nassau and Suffolk. The expanded 

spatial coverage allows examine taxi trips with either pickup 
locations or drop-off locations outside the NYC boundary. 
Significant preprocessing work has been carried to bridge 
between the map data format used by NAVTEQ and the graph 
data format used by MoNav. While we could have extracted 
both nodes and edges in the streets shapefile according to 
NAVSTREETS data format documentation, we have decided to 
incorporate intermediate nodes that are separately stored in 
zlevels for the purpose of snapping taxi locations to street 
segments more accurately. The resulting network has 434,521 
nodes and 501,756 nodes. As the network is very sparse, the 
CH-based algorithm is especially suitable as many natural 
shortcuts exist.  

 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Aggregated Pickup Locations in NYC in 2009 

with Details in Manhattan 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Histograms of Distributions of Trip Distance, Time, Speed and Fare 
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4.2 Distributions of Trip Distances, Time, 
Speed and Fare 

In addition to the spatially aggregated pickup and 
drop-off counts at different grid scales, we have also computed 
the histograms of travel distances, travel times, travel speeds and 
travel fares from the 2009 trip records and they are shown in 
Fig. 2. Note that the first bins in the histograms represent invalid 
values and the last bin represents excessive values that are larger 
than the pre-defined thresholds and their counts can be larger 
than the neighboring bin counts. From the figure we can see that 
there are quite some short trips (travel distance <1.0 miles 
and/or travel time <5 minutes) in NYC which may warrants 
further studies. While the distributions of both travel distances 
and travel times are heavily tailed, the speed distribution exhibit 
a nice normal distribution centered at 10 MPH (Miles per Hour) 
which may reflect heavy traffic congestion in NYC. The 
start/end overheads of short trips may also contribute to the low 
average speed. Despite waiting times are counted towards fares, 
the distribution of fares closely resembles the distribution of trip 
distances which may suggest that trip distance is still the 
dominate factor of fares. It might be interesting to separate 
midtown and downtown Manhattan area with the rest of the 
NYC and look into the differences of their travel speed 
distributions. The same idea can be applied to the time 
dimension to compare the differences of distributions during 
peak/off-peak time slots, weekdays/weekends, normal/special 
events days and their combinations.  

4.3 Results on taxi trip outlier detection 

Using the method discussed in Section 3, we have set 
D0=200 feet, D1=3 miles and W=2 for our experiments in outlier 
detections. Among the 166 million taxi trip records, 
approximately 2.5 millions (1.5%) whose pickup or drop-off 
locations can not be snapped to a street segment of the 
NAVTEQ street map dataset and are identified as Type I 
outliers. While the majority of these outliers could be induced 
by GPS device errors, some of them may be associated with 
incompleteness of street networks, e.g., picking up and dropping 
off at private land parcels, and thus requires further 
investigations. Fig. 3 plots all the street segments symbolized by 
the numbers of computed shortest paths that pass through them 
(c.f. Section 2 and Section 4.4) overlaid with the map of the 
NYC Community District data [20]. We can clearly see that 
quite some taxi trips cross the boundary of NYC while the 
majority of the trips are in the midtown and downtown 
Manhattan area (also see Fig. 1 and Fig. 5).  

Among the 166,384,464 taxi trips whose pickup and 
drop-off locations are successfully snapped to NAVTEQ street 
network segments, about 18,000 are identified as type II outliers. 
For illustration purposes, the top 9 outliers in January 2009 are 
listed in Fig. 4 ordered by the decreasing ratio of calculated 
distance (calc_dist) over recorded distance (record_dist). The 
computed shortest paths clearly suggest that the recorded 
distances are incorrect. An explanation is that the metering 
devices, which may be separate from GPS devices, were reset 
during the trips for various reasons. As the number of Type II 
outliers is fairly small, our outlier detection technique has made 
it possible to examine these trip records individually in a GIS (as 
exemplified in Fig 4). We have tried to decrease D1 to identify 
more outliers. However, for short trips, it is likely that taxi 

drivers may not follow shortest paths for various reasons and 
thus the proposed approach may increase the chances of false 
positives on outlier detection. We are trying to incorporate 
complete GPS traces and learn the differences between real trip 
paths and computed shortest paths. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Mapping of Computed Shortest Paths Overlaid 

with NYC Community Districts Map 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 Examples of Detected Type II Outliers  

4.4 Results on Betweenness Centrality 
The 166 million taxi trips have resulted in 

approximately 25 million unique combinations of NAVTEQ 
street network nodes and it took 5,952 seconds to compute the 
shortest paths, including aggregating the hourly and overall 
centrality measurements for both nodes and edges. The result is 
encouraging in the sense that MoNav-CH has achieved a 
throughput of roughly 0.2 second per 1000 pair shortest path 
computation on a reasonably large street network with more 
than half a million edges using a single CPU core. While 
computing overhead has been considered as a major hurdle for 
urban computing in understanding human mobility [21], our 
results have demonstrated the feasibility of large-scale 
computation through efficient algorithm engineering.  

The aggregated edge centrality map in NYC area 
using the 2009 data is shown in Fig. 5. We can see that there are 
strong connections between the midtown and downtown 
Manhattan area with the two major airports (LGA at top-right 
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and JFK at bottom-right) in NYC. The bridges, tunnels and 
highways are extensively used for the connections. We can also 
see that while the connections among different parts of 
Manhattan are even stronger, a few street segments, such as 
Broadway and the 5th/6th/7th avenues, have much higher 
centralities (and hence are more important) according to the taxi 
trips as shown in the left part of Fig. 5.  

 
 
 
 
 
 
 
 
 
 

Fig. 5 Mapping Betweenness Centralities (All hours) 

To further compare the dynamics of the street segment 
centralities across times, we have generated hourly centrality 
maps for the majority of the NYC area. The bi-hourly maps in 
the midtown and downtown Manhattan area are show in Fig. 6 
where the widths of the street segments are symbolized using 
three levels of shortest path counts as indicated by the legend 
located at the bottom of the figure. From Fig. 6 we can see that 
many of the street segments in the area have more than 10^5 
trips in 2009 (i.e., ~250 trips per day in an hour) for all hours. 
There are very few changes across hours from 08H to 22H 
except a slight recession at 16H (mid-afternoon). However, we 
do see the connection strengths decrease significantly during 
00H-08H compared to the rest of the day. The connection 
strengths reach a minimum point around 04H where only 
Broadway and a few other streets still maintain the highest level 
of connection strength. While NYC has a well-known nickname, 
i.e., “The City That Never Sleeps” [22], the taxi trip records 
reveal that it does take a long nap in the early morning and a 
short nap in the afternoon.  

CONCLUSION AND FUTURE WORKS 
Large-scale taxi trip records are error-prone due to a 

combination of device, human and information system induced 
errors. In the cases that accesses to complete taxi trip trajectories 
are limited due to either policy, privacy or technical constraints, 
outlier detections based on pickup/drop-off locations and times 
and trip distance/duration information are especially 
challenging. In this study, by leveraging the U2SOD-DB system 
that we have developed to facilitate efficiently managing large-
scale OD data and the MoNav open source package for efficient 
shortest path computation, we are able to detect outliers that can 
not be snapped to street segments and/or have significant 
differences between computed shortest distances and recorded 
trip distances. The derived edge betweenness centralities can be 
used to understand connection strengths among different parts of 
metropolitan areas such as NYC.  

For future work, first, we plan to develop a more 
comprehensive framework for outlier detections and data 

cleaning by incorporating pickup and drop-off times, trip 
duration and fare information. Second, we would like to 
generate dynamics of betweenness maps at different traffic 
conditions, e.g., peak/non-peak, morning/afternoon and 
weekdays/weekends. Finally, it is desirable to further improve 
the efficiencies of shortest path computation by exploiting 
parallel computing on distributed systems, multi-core machines 
and GPU devices.  
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ABSTRACT 
Volumes of urban sensing data captured by consumer electronic 
devices are growing exponentially and current disk-resident 
database systems are becoming increasingly incapable of 
handling such large-scale data efficiently. In this paper, we 
report our design and implementation of U2SOD-DB, a column-
oriented, Graphics Processing Unit (GPU)-accelerated, in-
memory data management system targeted at large-scale 
ubiquitous urban sensing origin-destination data. Experiment 
results show that U2SOD-DB is capable of handling hundreds of 
millions of taxi-trip records with GPS recorded pickup and drop-
off locations and times efficiently. Spatial and temporal 
aggregations on 150 million pickup locations and times in 
middle-town and downtown Manhattan areas in the New York 
City (NYC) can be completed in a fraction of a second.  This is 
10-30X faster than a serial CPU implementation due to GPU 
accelerations. Spatially joining the 150 million taxi pickup 
locations with 43 thousand polygons in identifying trip purposes 
has reduced the runtime from 30.5 hours to around 1,000 
seconds and achieved a two orders (100X) speedup using a 
hybrid CPU-GPU approach.   

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database applications – Data 
mining, Spatial databases and GIS 

General Terms 
Management, Design 

Keywords 
Urban Sensing, Origin-Destination, High-Performance, GPGPU, 
Spatial Aggregation, Temporal Aggregation, Spatial Join 

1. INTRODUCTION 
With the increasing availability of imaging, locating 

and other types of sensing technologies on portable wireless 
devices, huge amounts of pervasive urban sensing data are being 
captured at ever growing rates. For example, the approximately 

13,000 taxicabs in the New York City (NYC) equipped with 
GPS devices generate more than half a million taxi trip records 
per day. Cell phone call logs represent a category of data at an 
even larger scale [1, 2]. Also as visitors travel around the world 
more frequently, location-dependent social networks such as 
FourSquares [3], and, location-enhanced social media such as 
text posted to wiki sites [4], images and videos posted to 
Flickers and YouTube [5], can also potentially generate large-
amounts of spatial-temporal data. All the three types of data 
have a few features in common: (1) they are produced and 
collected by end users using commodity sensing devices and are 
rich in data volumes in urban areas; and (2) they are a special 
type of spatial-temporal data with an origin location and a 
destination location in geo-referenced space domain and a 
starting time and an ending time in the time domain. However, 
the intermediate locations between origins and destinations are 
either unavailable, inaccessible or unimportant. Compared with 
traditional geographical data collected by government agencies 
for urban planning and city administration purposes, these data 
can be more effective to help people understand the real 
dynamic of urban areas with respect to spatial/temporal 
resolutions and representativeness. We term such data as 
Ubiquitous Urban Sensing Origin-Destination data, or U2SOD 
data, for notation convenience. Despite the close relationships 
between U2SOD data and the Spatial Databases (SDB) [14] and 
Moving Object Databases (MOD) [6, 7], our experiences have 
shown that traditional disk-resident and tuple/row oriented 
spatial databases and moving object databases are ineffective in 
processing large-scale U2SOD data for practical applications.  

Towards this end, we have designed a new data 
management system, termed U2SOD-DB, to address the 
technical challenges that we have encountered when processing 
about 300 million taxi trip records during an approximate two 
years period in NYC. U2SOD-DB is an in-memory database 
system and adopts a time-segmented column-oriented data 
layout strategy. A set of high-performance spatial and temporal 
indexing and query processing techniques has been developed to 
efficiently aggregate and join U2SOD data and their auxiliary 
geographical data (e.g., urban infrastructure) to understand 
urban dynamics. Parallel accelerations using General Purpose 
computing on Graphics Processing Units (GPGPU) technologies 
[8] are incorporated where appropriate. The rest of the paper is 
arranged as the follows. Section 2 introduces background and 
related work. Section 3 presents the system architecture and 
implementation details of the key components. Section 4 reports 
the performance evaluations. Finally, Section 5 concludes the 
paper and outlines the future work.  
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2. BACKGROUND, MOTIVATIONS AND 
RELATED WORK 

The increasingly available location data generated by 
consumer wireless portable devices, such as GPS, GPS 
enhanced cameras and GPS/WiFi/Cellular enhanced mobile 
phones, have significantly changed the ways of collecting, 
analyzing, disseminating and utilizing urban sensing data. 
Traditionally city government agencies are responsible for 
collecting various types of geographical data for city 
management purposes, such as urban planning and traffic 
control.  The data collection is usually done through sampling, 
typically at coarse-resolutions, and questionnaire-based 
investigations which often incur long turn-around periods. In 
contrast, as consumer mobile devices become ubiquitous, 
similar data obtained from GPS-traces and mobile phone call 
logs, has much finer resolutions.  With the help of privacy and 
security related technologies, the aggregated records from such 
ubiquitous urban sensing data can be enormously helpful in 
understanding and addressing a variety of urban related issues. 
Research groups from both academia (e.g., MIT Sensible City 
Lab) and industries (e.g., IBM Smart Plant Initiative and 
Microsoft Research Asia) have developed quite a few techniques 
to utilize such data and understand the interactions among 
people and their location/mobility at both the city level (e.g., 
Beijing [9], Boston [10] and Rome [1]), social group level (e.g., 
friends [11] and taxi-passenger pairs [12]) and the individuals 
level [13]. However, most of the existing studies focus on the 
data mining aspects of such ubiquitous urban sensing data 
through case studies while largely leaving the data management 
aspects untouched. Lacking proper data management techniques 
can result in signficant technical hurdles to make full use of such 
data for societal impacts.  

Although Geographical Information Systems (GIS) 
and Spatial Databases (SDB) [14] are the commonly used tools 
to handle geo-referenced spatial data, we argue that existing GIS 
and SDB technologies and available tools are inefficient and/or 
insufficient in managing large-scale, location dependent and 
time-varying ubiquitous urban sensing data. First, when looking 
back through the history, GIS and SDB technologies are mostly 
driven by the needs of managing cadastral types of geographical 
data more than five decades ago which are quite different from 
the ubiquitous urban sensing data we have today. Second, 
although GPS trajectories can be naturally modeled as moving 
object data and existing moving object databases technologies 
for indexing and query processing  (e.g., [6, 7, 26]) can be 
exploited, many other types of ubiquitous urban sensing data can 
not be efficiently managed by existing databases. Third, existing 
commercial and open source GIS and SDB are slow in adopting 
hardware acceleration techniques. Existing disk-resident GIS 
and SDB software tools are mostly designed for online 
transactions rather than analytics and they can be orders faster if 
they are tailored for read-only data [15, 16]. Additional 
signficant speedup is possible if modern hardware acceleration 
techniques are exploited, e.g., flash memory for off-chip data 
access, CPU caches and GPU shared memory for on-chip data 
access, and, multi-core CPUs and many-core GPUs for parallel 
computing [17]. Our own experiences in processing 300 
millions taxi trip records in NYC have shown that the 
performance of existing GIS and SDB software tools is 
unacceptable when processing urban sensing data at this scale – 
a simple spatial join may take dozens of days even on a current 

high-end server. This may also explain why most of existing 
studies that utilize ubiquitous urban sensing data do not adopt a 
database approach which is arguably more convenient from a 
user perspective.  

Our research on developing U2SOD-DB is motivated 
by the following two aspects. First, we observe that Origin-
Destination (OD) data is much simpler than the data types that 
are modeled by both classic GIS, SDB and MOD systems. An 
OD record basically has a pair of spatially and temporally 
referenced points besides additional associated attributes. An 
OD record can be modeled as a fixed sized relational tuple 
although the spatial and temporal components need to be 
handled specially for efficiency purposes. In contrast, both 
classic SDB and MOD have variable sized records to handle 
polygon/polyline/trajectories. Many bounding box based 
indexing techniques that are effective for 
polygons/polylines/trajectories become ineffective for OD data 
as the data volumes of bounding boxes can be as large as the 
data volumes of the OD data itself. Second, recent research 
works on in-memory based columnar store of relational data 
have shown that various in-database data compression and 
relational operations on multicore processors using parallel 
threads can achieve significant speedups [18, 19]. As many 
spatial and temporal operations on urban sensing data are both 
computational and I/O intensive, it is desirable to exploit the 
parallel processing powers of commodity hardware, including 
both multi-core CPUs and many-core GPUs.  

 It is easy to observe that GPS-recorded OD data is a 
subset of GPS trajectory data with only the first and the last GPS 
reading in a trip. Obviously adequately sampled GPS traces 
provide more spatiotemporal information than an OD pair. A 
GPS trajectory can actually be considered as the concatenation 
of consecutive OD pairs. However, we argue that OD data may 
have richer semantics than GPS traces as the origins and 
destinations of trips are explicitly marked to delineate the 
starting position/time and the ending position/time. Additional 
trip-specific attributes might have been attached to OD pairs 
when they are collected. In contrast, GPS traces are often needed 
to be segmented or clustered to identify trips based on various 
heuristics [20] or processed manually using a travel survey 
approach [21]. Furthermore, the data volumes of OD pairs are 
usually much smaller than those of GPS traces which make the 
OD data more suitable for large-scale studies. Although the ideal 
situation is to integrate the trip data with GPS traces in many 
applications, we argue that techniques that are designed for 
management and analysis of OD data can NOT be subsumed by 
those that are designed for GPS data. For cell phone call log data 
and location dependent social network data where the exact 
geometric traces are either not available or not important, 
techniques that are designed for OD data can be more suitable 
for such applications. 

To the best of our knowledge, the work reported in 
this paper is the first in designing and implementing a high-
performance data management system for large-scale ubiquitous 
urban sensing data. While it is difficult to develop a full-fledged 
system to handle all types of U2SOD data, we have taken an 
incremental approach to developing modules for such purpose. 
Our current research and development are driven by the 
practical needs of processing large-scale taxi-trip records in 
NYC. We expect the accumulated modules will eventually lead 
to an integrated database system to lower the barrier of 
managing and data mining of large-scale U2SOD data, so that 
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domain users can focus on urban research issues rather than 
computing techniques. This is arguably a significant 
contribution from the Urban Computing research community. 

3 SYSTEM ARCHITECTURE AND 
IMPLEMENTATION DETAILS 

Our design of U2SOD-DB has three layers. The 
bottom tier is closely related to physical data layout and we have 
adopted a time-segmented, column-oriented data layout 
approach. The raw data are first transformed into binary 
representations and attributes are clustered into groups based on 
application semantics. The data corresponding to the attribute 
groups at a certain time granularity are stored as a single 
database file with the relevant metadata registered with the 
database system. We assume one or more database files can be 
streamed into CPU main memory as a whole to maximize disk 
I/O utilization. Multicore CPU processors can access the data 
files in parallel once they are loaded into the CPU main 
memory. They can also be transferred to GPU global memories 
should the system determine that GPU parallel processing is 
more advantageous. The middle tier is designed for efficient 
data accesses and aggregations, including compression, 
aggregation and indexing. While we skip the implementation 
details of most of the modules in this layer due to space limit, 
we would like to note that a few in-memory based indexing 
techniques for both categorical (e.g., trip mode and trip 
purpose), 1D numeric (e.g., time/distance/fare/tip) and 2D 
numeric data (mostly x and y coordinates of pickup/drop-off 
locations) are being explored. The third tier handles efficient 
joins between OD data and urban infrastructure data, such as 
road networks and administrative regions. The overall 
architecture is shown in Fig. 1. We next provide implementation 
details of several key components in the design. 
3.1 TIME-SEGMENTED COLUMN-
ORIENTED DATA LAYOUT  

As shown in Fig. 2, we group the attributes that are 
associated with trip records into several groups and data of the 
attributes in the same group are stored in a single database file 
by following the column-oriented layout design principle - 
attributes in the same group are likely to be used together and 
thus it is beneficial to load them into main memory as a whole to 
reduce I/O overheads [16]. Given a fixed amount of main 
memory, as the attribute field lengths of individual groups are 
much smaller than the length of all attributes, more records that 
are related to analysis can be loaded into main memory for fast 
data accesses. In general, the column-oriented data layout design 
improves traditional tuple based physical storage in relational 
databases by avoiding reading unneeded attribute values into 
main memory buffers and subsequently increasing the number 
of tuples that can be read into the buffers in a single I/O request. 
We note that while traditional relational databases use page as 
the basic unit for I/Os (e.g., 8 kilobytes), modern hard drives 
often have large hardware caches (e.g., 32 megabytes).  As such, 
reading large chunks of tuples can be advantageous for read-
only data to fully utilize hardware capacity and improve overall 
disk I/O performance which is arguably the most severe 
bottleneck in processing large-scale data. We also note that 
combining several attribute groups into one and extracting 
attributes from multiple groups to form materialized views can 
be beneficial for certain tasks. For example, in Fig. 2, attribute 
group 5 (start_x, start_y, end_x and end_y) can be considered as 
a materialized view of the attribute group 2 (start_lon,start_lat, 

end_lon and end_lat) by applying a local map projection to the 
lat/lon pairs. Since the projected data are frequently used in 
calculating geometric and shortest path distances and map 
projections are fairly expensive, materializing attribute group 5 
can significantly improve system performance. Another example 
to demonstrate the utilization of materialized views on the 
physically grouped attributes is verifying the recorded trip times 
(indicated by trip_time in group 6) with computed trip times (by 
subtracting pickup time from drop-off times in group 3) by 
materializing the respective attributes in the two groups. We 
further note that among the attributes in the original dataset 
shown in Fig. 2, some of them can be derived from others. For 
example, both start/end zip codes (group 9) and addresses of 
pickup and drop-off locations (group 8) can be derived from 
start/end latitudes and longitudes (group 2) through reverse 
geocoding or other related techniques. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 U2SOD-DB System Architecture 
After determining data layout by grouping attributes 

(vertical partitioning), the next issue is to determine the 
appropriate  number of records in database files so that these 
files can be efficiently streamed among hard drives, CPU main 
memory and GPU device memory. The sizes of the database 
files should be larger than those of hard disk caches but small 
enough to accommodate multiple database files simultaneously 
in CPU/GPU memories so that typical operations can be 
completed in the designated memory buffers. At the same time, 
the numbers of records should correspond to certain time 
granularities as much as possible. In our design, we use month 
as the basic unit (temporal granularity) to segment taxi trip 
records (horizontal partition). Given that there are about half 
million taxi trip records per day in NYC, assuming that an 
attribute group has a record length of 16 bytes (e.g., four 
attributes with each represented by a 4-bytes integer), the 
database file would be 16*0.5*30=240 megabytes. Since the 
hard drive cache and the main memory capacity in our 
experiment system are 16 megabytes and 16 gigabytes, 
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respectively, the database file size seems to be appropriate 
although other sizes might be suitable as well. We plan to 
develop a data layout advisor when U2SOD-DB is applied to 
other types of OD data or applied in a different region by 
incorporating user-defined parameters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  2 Column-Oriented Physical Data Layout in U2SOD-DB 

3.2 Efficient Spatial -Temporal Aggregations 
While many operations and analytical tasks can be 

performed on the U2SOD data, spatial and temporal 
aggregations are among the fundamental ones. Fig. 3 illustrates 
the general framework and example spatial and temporal 
aggregations that are supported by our U2SOD-DB design. Most 
of the temporal aggregations (e.g., daily and hourly) and some 
of the spatial aggregations (e.g., grid based) can use universal 
schemas, while more complex aggregations rely on the schemas 
provided by infrastructure data such as road network and 
administrative hierarchies. While we defer the discussions on 
associating OD data with the infrastructure data through spatial 
joins in the next subsection, we note that, as shown in Fig. 3, 
once the OD locations (i.e., pickup and drop locations in the taxi 
trip data) are associated with street segments or different types 
of zones, the aggregations can be reduced to simple grouping 
without involving expensive spatial and/or temporal operations 

any more. These relatively simple aggregations should be 
supported efficiently as much as possible to allow interactive 
visual explorations.  

Towards this end, we have designed and implemented 
a GPU based spatial and temporal aggregation module in our 
U2SOD-DB. As shown in the experiment section (Section 4), the 
GPU based aggregation module can significantly improve 
aggregation performance by 1-2 orders by making use of the 
massively data parallel computing power on GPUs [8] that are 
already widely available on commodity computers. The design 
uses four parallel primitives, namely Transform, Sort, 
Reduce_By_Key and Scatter. Take the grid-based spatial 
aggregation for an example, the Transform primitive converts 
x/y coordinate pairs into row-major ordered array indices and 
uses the indices as keys for the subsequent three primitives. The 
Sort primitive sorts the keys. As a single commodity GPU 
device can sort integers at the order of a few hundreds of 
millions to over a billion integers per second, this step can be 
efficiently processed for reasonably sized OD datasets in the 
orders of a few hundreds of millions on current commodity 
GPUs. The Reduce_By_Key primitive sums up the numbers of 
the same keys in the input vector and output the unique keys and 
their numbers of occurrences. In the grid-based spatial 
aggregation case, the numbers of pickup or drop-off locations 
within all the non-empty grid cells are computed. The last step 
essentially transforms the aggregation results from a sparse array 
representation into a dense array presentation should the dense 
array representation be more desirable. The step makes use of 
the scatter primitive and is optional. In the grid-based spatial 
aggregation case, a 2D grid is created and the numbers of non-
empty grid cells are written to the corresponding positions by 
using the keys as the indices in the 2D grid (row-major ordered) 
while leaving the empty grid cells to have the initial zero value.  

We note that the similar process can be applied to 
many aggregations in Fig. 3 as long as a key can be identified 
for aggregation. In addition to simply counting the numbers of 
records under a same key using the Reduce_By_Key primitive, 
many other types of operations can be implemented by using 
user defined binary functions, i.e., functors [22]. Given that 
GPUs are designed to support large-scale floating point 
computation, we believe it is promising to design more 
insightful but more computationally intensive measurements on 
GPUs during the aggregations. This is left for future work. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Example Spatial and Temporal Aggregations in U2SOD-DB 
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3.3 Spatial Join with Infrastructural Data 
Very often OD data needs to be associated with 

infrastructure data, such as street networks, administrative 
regions and census zones. In NYC, the MapPluto tax lot dataset 
[23] has detailed land use information of each tax block. As tax 
blocks are typically at the finer spatial granularity than census 
blocks, they can be very useful in identifying trip purposes. In 
addition, in big cities such as NYC, usually there are large 
numbers of categorized Points of Interests (POI) sites that are 
collected by companies such as NAVTEQ for navigation 
purposes. While the infrastructure data are dynamic themselves, 
the change rates are relatively slow and can be considered static 
for reasonable long study periods. Associating OD data with 
these infrastructure data can be done offline to speed up online 
query processing in many cases. Based on the observation that 
inefficient disk I/Os dominate existing SDB and GIS systems for 
such spatial joins, we leverage the in-memory friendly physical 
data layout and our existing work on GPU-based indexing of 
large-scale point data [24] for this purpose. An open source 
spatial indexing package called libspatialindex [25] is integrated 

to develop a CPU-GPU hybrid approach to achieve the desired 
level of performance of spatial joins in U2SOD-DB. Before 
introducing the design and implementation details, we would 
like to provide more details on the three types of spatial joins 
that U2SOD-DB currently supports based on application needs, 
i.e., P2N-D, P2P-T and P2P-D.  

 
 
 
 
 
 
 
 
 
 

Fig. 4 Illustrations of Three Types of Spatial Joins 
between OD Data and Urban Infrastructure Data 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Illustrations of Spatial Join Processing using a Hybrid Framework and Cache-Friendly In-Memory Data Representations  
 

The P2N-D spatial join associates each point with its 
nearest street network segment. The P2P-T spatial join 
associates each point with a polygon that it falls within, i.e., 
through point-in-polygon test. The P2P-D spatial join associates 
a point with a set of polygons ordered by the smallest distance to 
the edges of such polygons. The three types of spatial joins are 
illustrated in Fig. 4.  The purposes of P2N-D and P2P-T are 
straightforward and we next briefly explain the utilization of the 

P2P-D spatial join in U2SOD-DB for processing taxi trip 
records. Conceptually, most of taxi pickup drop-off locations (or 
origins and destinations in general) should be close to street 
segments but outside of buildings and other types of properties 
that are not accessible to public vehicles. The distances between 
the locations and the boundaries of the properties can be 
important in helping identify trip purposes. However, the same 
O/D location can be associated with multiple polygonal property 
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boundaries and there are some inherent uncertainties of the 
approach. Since we are interested in aggregated trip patterns 
rather than individual trips, the uncertainties are not a problem 
in computing aggregated trip patterns. Compared with P2N-D 
and P2P-T spatial joins, P2P-D can also be useful in handling 
positional errors that are inherent to GPS or GPS-equipped 
devices, especially in NYC where urban canyon effect can be 
significant [21]. We note that P2P-D is related to KNN queries 
in classic SDB when the distance between a point and a polygon 
is used to define nearest neighbors. However, in addition to 
providing parameter K, P2P-D spatial join also has an influence 
window and only the top-K polygons that intersect with the 
influence window are joined with a query point. As such, P2P-D 
spatial join can be considered as a combination of window query 
and KNN query for each query point. From a computing 
perspective, P2P-D is more complex than P2N-D and P2P-T. 
This is because a set of (identifier, distance) pairs, instead of a 
single identifier, needs to be returned from this type of spatial 
join for each location in an OD record. 

 The proposed solution is a hybrid CPU-GPU 
approach. First, a Constrained Spatial Partition Tree for Point 
Data (CSPT-P Tree) is constructed on GPU using the Thrust 
parallel library [22] which has achieved a 23X speedup than a 
serial CPU implementation as detailed in our technical report 
[24]. Second, an R-Tree is constructed using the libspatialindex 
package [25] on CPU on the infrastructure data (street network 
segments or zones). Third, the bounding boxes of the set of 
points that fall into the leaf nodes of the CSPT-P tree are queried 
against the R-Tree to associate the leaf nodes with polygons. 
Assuming the influence window size is (w, h) and the bounding 
box is (x1,y1, x2, y2), then if the query window  (x1-w,y1-
h,x2+w,y2+h) intersects with the Minimum Bounding Rectangle 
(MBR) of  a polygon/segment indexed by the R-Tree, then the 
CSPT-P tree node and the polygon are paired and queued for 
further processing. This is essentially the filtering phase in 
classic spatial joins [14]. The final step is to actually join the 
points with the polygon/segment. As a polygon/segment is a 
collection of points, this step essentially requires pair-wise 
computation among the points in the two datasets before 
applying an aggregation function g(x) to each of the query 
points. For P2N-D and P2P-D, g(x) is the minimum function on 
distance. For P2P-T, the function g(x) can be a boolean function 
on the number of intersections if a ray-casting algorithm is 
applied. As there are multiple polygons/segments returned from 
a query on the R-Tree, a second aggregation function f(x) is 
needed for reduction. For P2N-D, f(x) is the minimum function 
on distance. For P2P-T, f(x) is a boolean testing function as a 
point can only fall within a single polygon. For P2P-D, f(x) is 
the top-K ranking function on distances.  

Among the differences between our spatial join 
framework and the existing SDB implementations (e.g., 
PostgreSQL), the most signficant one is that our framework 
exploits the cache-conscious array representations extensively 
for both OD location data and the infrastructure data as well as 
their auxiliary indices whereas possible. While existing SDB 
implementations utilize sophisticated data structures to 
efficiently map between database files and main memory buffers 
to reduce I/Os and minimize computation when the available 
main memory buffer is small, this is unnecessary in our 
framework as we aim at making full use of large memory 
capacities available to modern computing systems. Our time-
segmented column-oriented physical layout and the data 

compression modules ensure that the memory footprint within a 
batch computing does not exceed available memory capacity. 
Compared with using memory pointers which is required in 
many dynamic data structures, the array based representation not 
only is cache friendly but also reduces memory footprints 
significantly. The technique is especially useful on modern 
hardware as data accesses are becoming much more expensive 
than computing [17]. 

As detailed in the evaluation section (Section 3), our 
implementation is able to complete a P2P-D spatial join  of 150 
million taxi pickup locations with 43 thousands MapPluto tax lot 
polygons in about 500 seconds using an influence window size 
of (100,100) feet. Analyzing the runtimes of the P2P-D join 
reveals that building the CSPT-P tree for the location data took 
only about 6-7 seconds on GPUS while nearly an order more 
time was spent on querying the intersecting polygons of CSPT-P 
tree quadrants and two orders more time was spent on distance 
computation. This clearly indicates that a more efficient spatial 
indexing approach for infrastructure data is needed in an in-
memory computing environment. We are considering replacing 
the libspatialindex with an in-house GPU-based R-Tree 
implementation or using a simpler multi-level grid file approach. 
It is also relatively straightforward to parallelize distance 
computation on GPUs by assigning a quadrant-polygon pair to a 
GPU computing block and launching multiple threads in a 
computing block proportional to the number of points in a 
quadrant of the location data. Our preliminary results have 
shown more than 150X speedup on distance computation using 
GPU acceleration and we expect 10-40 times speedups for a 
pure GPU implementation. This will bring a total of 3- 4 orders 
of speedup (~2000X) when compared with the baseline serial 
CPU implementations using the state-of-the-art open source 
spatial indexing/query packages. 

4 CASE STUDIES AND PERFORMANCE 
EVALUATIONS  

4.1 Data and Experimental Setting 
In addition to the taxi trip data with 300 million 

records in about two years that have been discussed above, our 
case studies also use several infrastructure datasets, including 
NYC DCPLION street network data and census 2000/2010 data 
that are publically available on the NYC-DCP website [23], and 
the NYC MapPluto Tax Lot data [23] which requires a license. 
Both the taxi trip data and the infrastructure data require several 
preprocessing steps before they can be used in the U2SOD-DB 
system. The details of preprocessing are omitted due to space 
limit. All experiments are performed on a Dell Precision T5400 
workstation equipped with dual quadcore CPUs running at 2.26 
GHZ with16 GB memory, a 500G hard drive and an Nvidia 
Quadra 6000 GPU device. The sustainable disk I/O speed is 
about 100 megabytes per second while the theoretical data 
transfer speed between the CPU and the GPU is 4 gigabytes per 
second through a PCI-E card.  

The taxi trip data are partitioned both vertically and 
horizontally as described in Section 3.1. Among the 11 attribute 
groups, only groups 3, 4, 5, 6 are used in this study. While more 
sophisticated analysis is possible, for example, analyzing 
profitability at the shift level, in this paper, we focus on two 
aspects. The first one is the essential functionality that is 
important to taxi trip analysis. In this case, the importance of 
performance is secondary to functionality and U2SOD-DB will 
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be evaluated by its unique functionality. The second aspect is 
the performance of key operations, including both online 
aggregations and offline spatial joins. In this case, we will 
compare the performance of the U2SOD-DB modules with the 
best-effort serial CPU implementations.  

4.2 Performance Evaluations on parallel 
spatial and temporal aggregations 

To evaluate the GPU-based spatial and temporal 
aggregation approach presented in Section 3.2, we feed the 177 
million taxi trips in 2009 to the system with a spatial coverage of 
approximately 3*3 miles that covers the middle- and low- 
Manhattan at a 0.5 feet spatial resolution which results in over 
150 million pickup locations in the area. While the GPU 
memory footprint of the algorithm depends only on the number 
of locations prior to generating a final grid with the value in 
each cell representing the number of pickup locations that fall 
within the cell, the GPU memory limit (6GB on Nvidia Quadro 
6000 device) prevents us from experimenting CSPT-P tree 
levels 14 or above where the number of grid cells is 256 million 
(228) or higher. As such, we have performed grid-based spatial 
aggregations at the levels 8-13 (6 levels) using the 2D sparse 
matrix presentation with additional aggregations on levels 14-16 
using a 1D vector representation (c.f. Section 3. 2). The resulting 
2D grids at the levels 8 and 13 are shown in Fig. 6. The picture 
on the right clearly shows the effects of the street network on the 
taxi pickup locations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Grid-Based Spatial Aggregations of Pickup Locations in 
2009 with two Resolutions 

Since the grid-based spatial aggregations can also be 
easily implemented on CPUs by sequentially looping through all 
locations and increasing the counters at the corresponding grid 
cells, our evaluations focus on the performance gains due to 
GPU accelerations in U2SOD-DB. First, the total GPU runtimes 
vary from 240 ms at level 8 to 326 ms at level 13, a 38.5% 
increment. In contrast, the CPU times increase from 2497 ms to 
17786 ms, a 712.3% increment. The results clearly demonstrate 
the scalability of our GPU-based implementation. While GPU 
memory capacity currently is a limiting factor, we can 
coordinate the radix sort algorithm on both CPUs and GPUs to 
allow larger numbers of data points to be sorted which is left for 
future work. Second, more importantly, when comparing GPU 
total runtimes with CPU runtimes, we see a gain of 10-30X 
speedup as the grid levels increase. We would also like to note 
that our GPU implementation uses the Thrust parallel primitives 
[22]. Although very often a good tradeoff between coding 

complexity and code efficiency, the primitives based 
implementations usually are not the most efficient 
implementations achievable. By re-implementing the module 
using a native programming language to consolidate the four 
steps (c.f. Section 3.2) and use GPU shared memory efficiently, 
it is quite possible to further reduce GPU runtimes at all levels 
for higher speedups. We note that the CPU implementation only 
involves the transform and scatter steps without needing the sort 
and reduce steps which is only possible for sequential 
algorithms. In addition, the CPU implementation also has been 
optimized with –O3 compilation flag and thus we do not expect 
further performance improvements. We have also experimented 
temporal aggregations at the hour and minute temporal 
granularities using the same set of data after spatial filtering. 
The runtimes for the GPU and CPU implementations are 197.63 
ms and 1709.02 ms, respectively, at the minute granularity with 
a bin number of 24*60=1440, i.e., a speedup of 8.6X has been 
achieved. The runtimes are slightly lower at the hour granularity 
(bin number = 24) where the runtimes are 165.12ms for GPU 
and 1598.89 ms for CPU, respectively.  Again, a 9.7X speedup 
has been achieved. 

While it seems that the runtimes for both spatial and 
temporal aggregations on CPUs are already acceptable in many 
offline applications, we argue that GPU accelerations can further 
make real time and interactive spatial and temporal aggregations 
possible by providing sub-second response times. As the 
experiments have shown, this currently is not possible on CPUs, 
especially in the case of high-resolution spatial aggregations. 
While using indexing and/or materialization can potentially also 
reduce the runtimes of CPU-based applications to sub-second 
level, our primitives based GPU implementation is preferable 
due to its simplicity. The implementation essentially requires 
only 4 lines of code with each line corresponding to a parallel 
primitive and a few lines to implement a functor (C++ 
functional object) to map between values and bin numbers 
(either a grid cell in spatial aggregations or a time index in 
temporal aggregations). When the aggregation rules get more 
complex, such as combinations of spatial and temporal queries, 
we expect our GPU based implementation will achieve higher 
speedups over CPU based ones. We leave the performance 
studies of complex spatial, temporal and spatiotemporal 
aggregations for future work. 

4.3 Performance Evaluations on P2P-D 
Spatial Join 

To test the efficiency of the P2P-D spatial join 
implementation, we have built a CSPT-P tree for the taxi trips 
whose pickup locations fall within the study area shown in Fig. 
7. We limit the spatial extent of the study area mostly because 
our current CSPT-P tree construction algorithm can only 
calculate Morton codes from points with 32 bits (the extension is 
left for future work). We could have covered all NYC areas 
using a coarser spatial resolution. Since more than 85% of 
pickup locations of all the taxi trips in 2009 fall within the study 
area, we believe it is acceptable to limit our study area but use a 
higher spatial resolution (0.5 feet). For the CSPT-P tree 
construction, the only parameter to set is the maximum number 
of points that is allowed in the leaf nodes of the CSPT-P tree 
(N). Table 1 lists the end-to-end runtimes using three N values 
of1000, 2000 and 5000. We have used the default parameters for 
the R-Tree. The number of nearest neighbors is empirically set 
to 10. From the results listed in Table 1 we can see that our 

Top: grid size =256*256 
resolution=128 feet  
Right: grid size =8192*8192 
resolution=4 feet   
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current implementation is able to achieve an end-to-end runtime 
in the order of 500-2000 seconds using a variety of parameter 
combinations for P2P-D spatial join between the 150,417,865 
pickup locations and 43,252 polygons. Compared with pure 
CPU implementation which requires about 30.5 hours to 
complete the same P2P-D join, we have achieved more than two 
orders (100X) of speedup. Given the involved computational 
intensities in terms of numbers of locations (A), quadrant-
polygon pairs (D), point to polygon edge distance computations 
(E) and the resulting records (F) listed in Table 1, it is clear that 
modern processors are quite capable of processing large-scale 
U2SOD data and there are great potential for parallel processing 
for larger-scale data.  
Table 1 Computation Intensities and Runtimes of P2P-D spatial 

join on 150 million locations and 43 thousands polygons 
Max # of points in a 
 CSP-Tree quadrant 

1000 2000 5000 

 A 15,0417,865 
B 893,871 458,737 166,601  
C (sec.) 7.422 7.184 6.829 
D (million) 7.036 3.430 1.370 
E (billion) 15.401 12.309 13.623 
F (billion) 1.025 0.997 1.022 
G (sec.) 115.377 53.501 20.253 
H (sec.) 595.061 462.516 519.809 
I (sec.) 36.723 34.813 46.260 

Query  
Window  
Size 
w=100 
h=100 

K (sec.) 754.583 558.014 593.151 
D (million) 20.015 9.850 3.752 
E (million) 29.312 25.848 27.078 
F (billion) 1.377 1,290 1.313 
G (sec.) 171.317 80.353 30.508 
H (sec.) 1,197.532 1,090.533 1,118.527 
I (sec.) 269.790 210.558 227.604 

Query  
Window  
Size 
w=200 
h=200 

K (sec.) 1646.061 1388.628 1383.468 
(A) - #of pickup locations, (B) - #of CSPT-P Tree quadrants, (C) -
CSPT-P Tree construction time (sec.)  (D) - #of quadrant-polygon pairs  
(E)- #of point to polygon edge distance computation (F) - #of resulting 
records (G) - index query time (sec.) (H) data query time (sec.) (I) - 
result gathering time (sec.) (K)- total time (sec.) = C+G+H+I 

7 CONCLUSION AND FUTURE WORK 
In this paper, we reported our design and 

implementation of U2SOD-DB, a column-oriented, GPU-
accelerated, in-memory data management system targeted at 
large-scale ubiquitous urban sensing origin-destination data. 
Experiment results show that U2SOD-DB is capable of handling 
hundreds of millions of taxi-trip records with GPS recorded 
pickup and drop-off locations and times efficiently.  

The accomplished work so far is preliminary in nature 
when compared to our ultimate goals. First, while we target at 
the general U2SOD data when we abstract data models, design 
operations and develop efficient implementations, they may be 
specific to taxi trip data and thus more generalizations are 
needed. Second, while a few GPGPU based algorithms have 
been proposed for efficient implementations of essential 
functionality of the system, there are quite a few that still rely on 
existing packages that are serial CPU code. More research 
efforts are needed to make the system achieve even better 
performance by fully exploiting GPGPU technologies. Finally, a 
SQL front end is needed to make the system a true database 
system. These are left for future work.   
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