
Automatically Preparing Safe SQL Queries

Prithvi Bisht, A. Prasad Sistla, and V.N. Venkatakrishnan

Department of Computer Science

University of Illinois, Chicago, USA

{pbisht,sistla,venkat}@cs.uic.edu

Abstract. We present the first sound program source transformation approach for

automatically transforming the code of a legacy web application to employ PRE-

PARE statements in place of unsafe SQL queries. Our approach therefore opens the

way for eradicating the SQL injection threat vector from legacy web applications.

Key words: Static program transformation, Security by construction, Symbolic evalua-

tion, SQL injection

1 Introduction

In the last decade, the Web has rapidly transitioned to an attractive platform, and web

applications have significantly contributed to this growth. Unfortunately, this transition has

resulted in serious security problems that target web applications. A recent survey by the

security firm Symantec suggests that malicious content is increasingly being delivered by

Web based attacks [2], of which SQL injection attacks (SQLIA) have been of widespread

prevalence. For instance, the SQLIA based Heartland data breach1 allegedly resulted in

information theft of 130 millions credit/debit cards.

SQL injection attacks are a prime example of malicious input that change the behavior

of a program by sly introduction of query structure into the input strings. An application

that does not perform input validation (or employs error-prone validation) is vulnerable to

SQL injection attacks. Although useful as a first layer of defense, input validation often is

hard to get right [3, 28, 14]. The absence of proper input validation has been cited as the

number one cause of vulnerabilities in web applications [24].

There is an emerging consensus in the software industry that using PREPARE state-

ments, a facility provided by many database platforms, to construct SQL queries consti-

tutes a robust defense against SQL injections. PREPARE statements are objects that contain

precompiled SQL query structures (without data). This allows a programmer to easily iso-

late and confine the “data” portions of the SQL query from its “code”, avoiding the need

for (error-prone) sanitization of user inputs. In addition, they are efficient because they do

not require any runtime tracking, and provide opportunities to the DBMS server for query

optimization [1, 9].

The existing practice to transform an existing application to make use of PREPARE

statements requires extensive manual effort. The programmer needs to obtain a detailed

understanding of the program that includes identification of all inter-procedural control

and data flows that generate vulnerable SQL queries. Furthermore, these flows have to

be analyzed to obtain the equivalent code for PREPARE statement generation. Each such

control flow needs to be carefully transformed while ensuring that the changes do not

1 http://www.wired.com/threatlevel/2009/08/tjx-hacker-charged-with-heartland

2 Prithvi Bisht, A. Prasad Sistla, and V.N. Venkatakrishnan

alter semantics of the program in any undesirable fashion. Furthermore, additional man-

ual verification may be needed to ensure that the semantics of the transformed program

on non-attack inputs is the same as the original program. This process could be tedious,

sometimes error-prone, and certainly expensive for large-scale web applications.

The objective of this paper is to develop a sound method to automate the above trans-

formation to PREPARE statements. This will overcome the deficiencies of manual ap-

proach, and would result in considerable savings of program development costs. How-

ever, designing a sound method is extremely challenging because a completely automated

method needs to replicate the human understanding of the program logic that constructs

SQL queries. Quite often, this understanding of program logic is guided by additional

documentation such as high-level system designs, flow charts and low level program com-

ments. An automated method that aims to eliminate / minimize human effort cannot de-

pend on the availability or use of any such additional specifications. The web application

code is, therefore, the only specification available to our method, from which an under-

standing of the program logic needs to be automatically extracted to guide the transforma-

tion.

This main contribution of this paper is to address this challenge by developing the first

automated sound program transformation approach that retrofits an existing (legacy) web

application to make use of PREPARE statements. We develop a new method that constructs

a high-level understanding of a program’s logic directly from its low-level string opera-

tions. This method relies on a novel insight that a program’s low-level string operations

along any particular control path can be viewed as a derivation of a symbolic SQL query

that is parametrized by its inputs. Our method directly uses this derivation to identify and

isolate any unsafe string operations that may otherwise result in injection attacks. The iso-

lated operations are then rewritten using PREPARE statements, effectively eliminating the

SQL injection attack vector from the web application.

Our approach is implemented in a tool called TAPS (Tool for Automatically Preparing

SQL queries) which is the first reported sound tool in the literature to perform this transfor-

mation. TAPS has been successfully applied to several real world applications, including

one with over 22,000 lines of code. In addition, some of these applications were vulner-

able to widely publicized SQL injection attacks present in the CVE database, and our

transformation renders them safe by construction.

As a concluding remark to the introduction, we note that there is a rich body of lit-

erature on SQL injection detection and prevention (see the next section). Our objective

is to not propose “one more defense” to this problem. Instead, our contribution is quite

the opposite: to develop an automatic method that will assist developers and system ad-

ministrators to automatically retrofit their programs with the “textbook defense” for SQL

injection.

This paper is organized as follows: Section 3 presents the problem description along

with a running example. Section 4 describes our approach in detail. Section 5 presents

evaluation of TAPS over several open source PHP applications. We conclude in Section 6.

2 Related Work

There has been extensive work on detecting SQL injection vulnerabilities as well as ap-

proaches for defending attacks. Due to space limitations, we briefly summarize them here

(see [28] for a detailed discussion).

Automatically Preparing Safe SQL Queries 3

Defenses based on static analysis There has been extensive research on static analy-

sis to detect whether an application is vulnerable [21, 33, 3, 11, 22, 32, 10, 30]. The most

common theme of detection approaches is to reason about sources (user inputs) and their

influence on query strings issued at sinks (sensitive operations) or intermediate points (san-

itization routines). Our approach provides means for fixing such vulnerabilities through

PREPARE statements.

Defenses based on dynamic analysis Dynamic prevention of SQLIA is fairly well re-

searched area and has a large body of well understood prevention techniques: taint based [23,

34, 12, 17], learning based [29, 28, 25, 19, 26, 5, 6, 4, 31], proxy based [27, 20].

At a high level, all these techniques track use of untrusted inputs through a reference

monitor to prevent exploits. Unlike the above approaches, the high-level goal of TAPS is

not to monitor the program – the goal here is to modify the program to eliminate the root

causes of vulnerabilities – isolation of program generated queries from user data while

avoiding any monitoring costs.

Automated PREPARE statement generation [8] investigates the problem of automati-

cally converting programs to generate PREPARE statements. This approach assumes that

the entire symbolic query string is directly available at the sinks. This assumption does not

hold in many typical applications that construct queries dynamically.

3 Background and Problem Statement

We use the following running example: a program that computes a SELECT query with a
user input $u:

1. $u = input();

2. $q1 = "select * from X where uid LIKE ’%";

3. $q2 = f($u); // f - filter function

4. $q3 = "%’ order by Y";

5. $q = $q1.$q2.$q3;

6. sql.execute($q);

The above code applies a (filter) function (f) on the input ($u) and then combines it

with constant strings to generate a query ($q). This query is then executed by a SQL sink

(query execution statement) at line 6.

The running example is vulnerable to SQL injection if input $u can be injected with

malicious content and the filter function f fails to eliminate it. For example, the user input

’ OR 1=1 -- provided as $u in the above example can break out of the expected

string literal context and add an additional OR clause to the query. Typically, user inputs

such as $u are expected to contribute as literals in the parse structure of any query, specif-

ically, in one of the two literal data contexts: (a) a string literal context which is enclosed

by program supplied string delimiters (single quotes) (b) in a numeric literal context. SQL

injection attacks violate this expectation by introducing input strings that do not remain

confined to these literal data contexts and directly influence the structure of the generated

queries [6, 28].

PREPARE statement confines all query arguments to the expected data contexts. These

statements allow a programmer to declare (and finalize) the structure of every SQL query

in the application. Once constructed, the parse structure of a PREPARE statement is frozen

4 Prithvi Bisht, A. Prasad Sistla, and V.N. Venkatakrishnan

and cannot be altered by malformed inputs. The following is an equivalent PREPARE state-

ment based program for the running example.

1. $q = "select * from X where uid LIKE ? order by Y";

2. $stmt = prepare($q).bindParam(0, "s", "%".f($u)."%");

3. $stmt.execute();

The question mark in the query string $q is a “place-holder” for the query argu-

ment %f($u)%. In the above example, providing the malicious input u = ’ or 1=1 --

to the prepared query will not result in a successful attack. This is because the actual

query is parsed with these placeholders (prepare instruction generates PREPARE state-

ment), and the actual binding to placeholders happens after the query structure is finalized

(bindParam instruction). Therefore, the malicious content from $u cannot influence the

structure of query.

The Transformation Problem: In this paper, we aim to replace all queries generated by

a web application with equivalent PREPARE statements. A web application can be viewed

as a SQL query generator, that combines constant strings supplied by the program with

computations over user inputs.

Given a large web application, making a change to PREPARE statements, is challenging

and tedious to achieve through manual transformation. To make the change, a developer

must consider each SQL query execution location (sink) of the program and queries that it

may execute. Depending on the control path a program may generate and execute different

SQL queries at a sink. Looping behavior may be used to introduce a variety of repeated

operations, such as construction of conditional clauses that involve user inputs. Sinks that

can execute multiple queries need to be transformed such that each control path gets its

corresponding PREPARE statement. This requires a developer to consider all control flows

together. Also, each such control flow may span multiple procedures and modules and thus

requires an analysis spanning several procedures across the source code.

A second issue in making this change is : for each control flow, a developer must extract

query arguments from the original program statements. This requires reasoning about the

data contexts. In the running example, the query argument %f($u)% is generated at line

5, and three statements provide its value: f($u) from line 3, and enclosing character (%)

from line 2 and 4, respectively. The above mentioned issues make the problem of isolating

user input data from the original program query quite challenging.

4 Our approach

We will use the running example from the previous section. This application takes a user

input $u and constructs a query in the partial query string variable $q. A partial query

string variable is a variable that holds a query fragment consisting of some string constants

supplied by the program code together with user inputs. Our approach makes the following

assumption about partial query strings.

Main Assumption: We require the web application to be transformed, to not perform

content processing or inspection of partial query string variables.

To guarantee the correctness of our approach, we require this assumption to hold. To

explain this assumption for the running example, we require that once the query string $q

is formed in line 5 of the application by concatenating filtered user input f($u) with pro-

Automatically Preparing Safe SQL Queries 5

gram generated constant strings in variables $q1 and $q3, it does not undergo deep string

processing (i.e., splitting, character level access, etc.,) further en route to the sink. To en-

sure that this assumption holds, our approach and implementation checks that the program

code only performs the following operations on partial query string variables: (a) append

with other program generated constant strings or program variables (b) perform output

operations (such as writing to a log file) that are independent of query construction and

(c) equality comparison with string constant null. Checking the above three conditions is

sufficient to guarantee that our main assumption holds.

The above conditions are in fact conservative and can be relaxed by the developer,

but we believe that the above assumption is not very limiting based on our experimental

evaluation of many real world open source applications. In fact, the above assumption has

been implicitly held by many prior approaches for SQL injection defense. Defenses such

as SQLRand [5], SQLCheck [28] are indeed applicable to real world programs because

this assumption holds for their target applications. We note that all of these approaches

change the original program’s data values. SQLRand randomizes the program generated

keywords, SQLCheck encloses the original program’s inputs with marker tags. These ap-

proaches then require that programs do not manipulate their partial query strings in ar-

bitrary ways. For instance, if a program splits and acts on a partial query string after its

SQL keywords has been randomized, it introduces the possibility of losing the effect of

randomization. A small minority of query generation statements in some programs may

not conform to our main criteria; in this case, our tool reports a warning and requires

programmer involvement as discussed in section 4.5.

4.1 Intuitions behind our Approach

As mentioned earlier, user inputs are expected to contribute to SQL queries in string and

numeric data literal contexts. Our approach aims to isolate these (possibly unsafe) inputs

from the query by replacing existing query locations in the source code with PREPARE

statements, and replacing the unsafe inputs in them with safe placeholder strings. These

placeholders will be bound to the unsafe inputs during program execution (at runtime).

In order to do this, we first observe that the original program’s instructions already con-

tain the programmatic logic (in terms of string operations) to build the structure of its SQL

queries. This leads to the crucial idea behind our approach: if we can precisely identify

the program data variable that contributes a specific argument to a query, then replacing

this variable with a safe placeholder string (?) will enable the program to programmati-

cally compute the PREPARE statement at runtime. The above approach will work correctly

if our main assumption is satisfied. We indeed can ensure that the resulting string with

placeholders at the original SQL sink will have (at runtime) the body of a corresponding

PREPARE statement.

The problem therefore reduces to precisely identifying query arguments that are com-

puted through program instructions. In our approach, we solve this problem through sym-

bolic execution [18], a well-known technique in program verification. Intuitively, during

any run, the SQL query generated by a program can be represented as a symbolic expres-

sion over a set of program inputs (and functions over those inputs) and program-generated

string constants. For instance, by symbolically executing our running example program,

we obtain the following symbolic query expression :

SELECT ... WHERE uid LIKE ’%f($u)%’ ORDER by Y

6 Prithvi Bisht, A. Prasad Sistla, and V.N. Venkatakrishnan

Fig. 1. TAPS: step (1) generates symbolic queries, steps (2-3) separate data reaching the queries,

step (4) removes data from symbolic queries, and steps (5-6) generate the transformed program.

Notice that the query is expressed completely by constant strings generated by the

program, and (functions over) user inputs. (We will define these symbolic expressions

formally later.)

Once we obtain the symbolic expression, we analyze its parse structure to identify

data arguments for the PREPARE statement. In our running example, the only argument

obtained from user input is the string %f($u)% .

Our final step is to traverse the program backwards to the program statements that

generate these arguments, and modify them to generate placeholder (?) instead. Now, we

have changed a data variable of a program, such that the program can compute the body

of the PREPARE statement at runtime.

In our running example, after replacing contributions of program statements that gen-

erated the query data argument %f($u)% with a placeholder (?), $q at line 5 contains the

following PREPARE statement body at runtime:

SELECT ... WHERE uid LIKE ? ORDER by Y, %$q2%

The corresponding query argument is the value %$q2%. Note that the query argument

includes contributions from program constants (such as %) as well as user input (through

$q2) .

Approach overview Figure 1 gives an overview of our approach for the running example.

For each path in the web application that leads to a query, we generate a derivation tree that

represents the structure of the symbolic expression for that query. For our example, $q is

the variable that holds the query, and step 1 of this figure shows the derivation tree rooted

at $q that captures the query structure. The structure of this tree is analyzed to identify

the contributions of user inputs and program constants to data arguments of the query, as

shown in steps 2 and 3. In particular, we want to identify the subtree of this derivation

tree that confines the string and numeric literals, which we call the data subtree. In step

4, we transform this derivation tree to introduce the placeholder value, and isolate the

data arguments. This change corresponds to a change in the original program instructions

and data values. In the final step 5, the rewritten program is regenerated. The transformed

Automatically Preparing Safe SQL Queries 7

program programmatically computes the body of the PREPARE statement in variable $q

and the associated argument in variable $t.

4.2 Handling straight line programs

We give a more precise description using a simple well defined programming language.

We assume that all the variables in the language are string variables. Let · denote string

concatenation operator. The allowed statements in the language are of the following forms:

x = f(), x = y, x = y1 · y2 where x is a variable and y is a variable or a constant, y1, y2

are variables or constants with the constraint that at most one of them is a constant, and

f() is any function including the input function that accepts inputs from the user. Here we

describe our approach for straight line programs. Processing of more complex programs,

that include conditional statements and certain type of simple loops, is presented later in

this section. The approach for such complex programs uses the procedure for straight line

programs as a building block.

Derivation Trees. Now consider a straight line program P involving the above type of

statements. Assume that P has l number of statements. We let Si denote the ith statement

in P . With each i, 1 ≤ i ≤ l, we define a labeled binary tree Ti as follows. Let x = e

be the statement Si. Intuitively, Ti shows the derivation tree for the symbolic value of x

immediately after execution of Si. The root node ri of Ti is labeled with the pair 〈i, x〉 and
its left and right children (Tl, Tr) are defined as follows.

(Tl , Tr) =

((label = x) ,) if e = f()
((label = c) ,) if e = c

(Tj ,) if e = y

(Tj , Tk) if e = y · z

Here c is a constant, Tj and Tk

are the derivation trees of last

statements j and k before i

that update y and z, respectively.

The derivation tree Ti has two sub-trees only when e is y · z. Note that if y (or z) is a

constant then the left (or right) sub-tree is a leaf node labeled with the constant, otherwise

it is a copy of of some T as defined above. Figure 2 gives a program and the tree T6 for

this program.

Symbolic strings. For the program P , we construct the trees Ti, for 1 ≤ i ≤ l. For

each tree Ti, we define a symbolic string, called the string generated by Ti, as the string

obtained by concatenating the labels of leaves of Ti from left to right. If Si is of the form

x = e, then we define the symbolic value of x after Si to be the symbolic string generated

by Ti. For the program given in Figure 2, the symbolic value of q after statement 6 is the

string select * from employee where salary = x1 + x2

Data sub-strings. Assume that the last statement of P is sql.execute(q) and that this

is the only SQL statement in P . Also assume that statement i is the last statement that

updated q. We obtain the symbolic value s of q after statement i from the tree Ti and

parse it using the SQL parser. If it is not successfully parsed then we reject the program.

Otherwise, we do as follows. From the parse tree for s, we identify the sub-strings of s

that correspond to data portions. We call these sub-strings as data sub-strings. For each

data sub-string u, we identify the smallest sub-tree τu, called data sub-tree, of Ti that

generated u. Note that τu is a copy of Tj for some j ≤ i. Clearly, u is a sub-string of

the string generated by τu. Now, we consider the case when the following property (*) is

satisfied. (If (*) is not satisfied we transform P into an equivalent program P ′ that satisfies

8 Prithvi Bisht, A. Prasad Sistla, and V.N. Venkatakrishnan

Fig. 2. Labeled derivation tree for symbolic values of q after execution of statement 6.

(*) and we invoke the following procedure on P ′; this transformation is described later).

Property (*): For each data sub-string u, u is equal to the string generated by τu.

Program Transformation: We modify the program so that data sub-strings in symbolic

strings are replaced by “?” (Rule1) and all such data sub-strings are gathered into argument

lists (Rule1 and Rule2). We achieve this as follows. For each relevant variable x, we

introduce a new variable args(x) that contains its list of arguments and initialize it to the

empty lists in the beginning.

Let the root node of Ti be ri and the root node of sub-tree τu in Ti be ru. We traverse

the tree Ti from node ru to its root and let t1, . . . , tk be the nodes on this path in that order.

Note that t1 = ru and tk = ri. For each j, 1 ≤ j ≤ k, let the label of node tj be given

by 〈j, varj〉 where varj represents the variable being updated at the node tj (note that tj
cannot be a leaf node).

Rule1: Eliminating data subtrees Let j′ be the smallest integer such that 1 < j′ ≤ k

and tj′ has two children. Clearly, the statement Sj′ is of the form varj′ = y′ · z′. If

varj′
−1 = y′ i.e., τu appears in the left subtree of tj′ . We replace Sj′ : varj′ = y′.z′ by

the following two statements.

args(varj′) =

{

[y′] if z′ is a constant

[y′] # args(z′) if z′ is a variable

}

varj′ = “?” · z′

Note that the second statement above introduces “?” in the query and the first one adds

corresponding data sub-string to the argument list. Here [y′] represents a list consisting of

the single variable y′ and operator # represents a list concatenation operation. The opera-

tion [y′] # args(z′) computes a list by concatenating the list [y′] and the list args(z′) in
that order. If tj′

−1 is a right child of tj′ then Rule1 is applied in a symmetric fashion i.e.,

varj′ = y′·′′?′′, variable z′ is used in place of y′, args(y′) is used in place of args(z′),
and z′ is added at the end of the list args(y′). This rule is applied to transform the lines 4

and 5 of the Figure 2.

Rule2: Propagating arguments For each j′′, j′ < j′′ ≤ k, the following rule adds an

additional statement immediately before the Sj′′ to propagate the argument introduced by

Rule1.

args(varj′′) =

{

args(z′′) if Sj
′′ : varj′′ = z′′

args(y1
′′) # args(y2

′′) if Sj
′′ : varj′′ = y1

′′ · y2
′′

}

Automatically Preparing Safe SQL Queries 9

The argument lists for varj′′ is obtained by concatenating the lists args(y1
′′) and

args(y2
′′) in that order. If either one of y1

′′ or y2
′′ is a constant string, the above rule sets

the argument list to be the argument list of the non-constant variable. Note that z′′ cannot

be a constant string. This rule is used to transform the line 6 in the Figure 2.

Ensuring property (*): Now we consider the case when property (*) is not satisfied.

In this case, we transform the program P into another equivalent program for which the

property (*) is satisfied. Let ∆ be the set of all data sub-strings u of the query string s such

that property (*) is violated for them, i.e., u is a strict sub-string of the string generated by

τu.

Now, observe that ru has two children, otherwise τu will not be the smallest sub-tree

that generated u. Let the label of ru be 〈m, y〉. Clearly Sm is of the form y = z1 · z2.

Observe that each leaf node of Ti is labeled with a constant string or the name of a variable.

For each u ∈ ∆, we transform P as follows. Fix any such u. Chose a new variable xu and

add a new statement at the beginning of P initializing xu to the empty string.

The transformation outlined below removes part of u that was computed in z1 and

stores it in xu. Let v be a leaf node of τu such that the left most element of u falls in the

label of v. The label of v can be written as s′ · s′′ such that s′′ is the part that falls in u. Let

t1, . . . , tk be the sequence of nodes in τu from the parent of v to ru where ru is the root

node of τu. For 1 ≤ j < k, replace Sj by New(Sj) as defined below.

New(Sj) =

{

{xu = s′′ · xu ; varj = s′} if j = 1 & S1 : varj = s′ · s′′

{xu = xu · z; varj = varj−1} if 1 < j < k & Sj : varj = varj−1 · z

}

After this, we identify the leaf node w of τu such that the right most element of u falls

in the label of w. P is modified in a symmetric fashion updating variable xu. Finally, we

replace Sm (root of the τu) by the following two statements — xu = z1 · xu; y = xu · z2.

The above transformation is done for each u ∈ ∆. We say that changes corresponding

to two different strings in ∆ are conflicting if both of them require different changes to

the same statement of P . Our handling of the cases of conflicting changes is explained in

the next section. Here we assume that changes required by different strings in ∆ are non-

conflicting; Let P ′ be the resulting program after changes corresponding to data strings in

∆ have been carried out. It can be easily shown that P ′ is equivalent to P , i.e., the query

string generated in the variable q by P ′ is same as the one generated by P . Further more,

P ′ can be shown to satisfy the property (*).

4.3 Handling of Conditionals and Procedures

In this section, we discuss our approach and implementation for programs that include

branching statements, function invocations and loops.

Let us first consider branching statements. For programs that include these constructs,

TAPS performs inter-procedural slicing of system dependency graphs (SDGs) [13]. In-

tuitively, for all queries that a SQL sink may receive, the corresponding SDG captures

all program statements that construct these queries (data dependencies) and control flows

among these statements. TAPS then computes backward slices for SQL sinks such that

each slice represents a unique control path to the sink. Each of these control paths is in-

deed a straight line program, and is transformed according to our approach described in the

previous section. A key issue here is the possibility of conflicts: when path P1 and P2 of a

program share an instruction (statement) I that contributes to the data argument, then in-

10 Prithvi Bisht, A. Prasad Sistla, and V.N. Venkatakrishnan

struction I may not undergo the same transformation along both paths, and TAPS detects

such conflicts. Conflict detection and resolution is described in more detail in Section 4.5.

Also note that the inter-procedural slicing segregates unique sequences of procedures in-

voked to construct SQL queries. Such sequences may have multiple intra-procedural flows

e.g., conditionals. These SDGs are then split further for each procedure in above construc-

tion such that each slice contains a unique control flow within a procedure.

The above discussion captures loop-free programs. Handling loops is challenging as

loops in an application can result in an arbitrary number of control paths and therefore we

cannot use the above approach of enumerating paths.

4.4 Loop Handling

First of all, let us consider programs that construct and execute the entire query inside a

single iteration of the loop. Let us call the query so constructed a loop independent query.

In this case, the body of the loop does not contain any intervening loops. To ensure whether

a query location is loop independent, our approach checks for the following sufficient con-

ditions: (1) the query sink is in the loop body and (2) every variable used in the loop whose

value flows into the sink does not depend on any other variable from a previous iteration.

Once these conditions are satisfied, our approach handles loop independent queries as de-

scribed in Section 4.2.

However, there may be other instances where loop bodies do not generate entire queries.

The most common example are query clauses that are generated by loop iterations. Con-

sider the following example:

1. $u1 = input(); $u2 = input();

2. $q1 = "select * from X where Y =".$u1;

3. while (--$u2 > 0){
4. $u1 = input();

5. $q2 = $q2." OR Y=".$u1;

6. }
7. $q = $q1.$q2;

8. sql.execute($q);

In this case, our approach aims to summarize the contributions of the loop using the

symbolic regular expressions. In the above case, at the end of the loop, our objective is to

summarize the contribution of $q2 as (OR Y=$u1)∗, so that the symbolic query expres-

sion can now be expressed as

select * from X where Y = $u1(OR Y=$u1)∗ .

The goal of summarization is essentially to check whether we can introduce placehold-

ers in loop bodies. Once we obtain a summary of the loop, if it is indeed the case that the

loop contribution is present in a “repeatable” clause in the SQL grammar, we can intro-

duce placeholders inside the loop. In the above example, since each iteration of the loop

produces an OR clause in SQL, we could introduce the placeholder in statement at line 5,

and generate the corresponding PREPARE statement at runtime.

Previous work [22] has shown that the body of a loop can be viewed as a grammar that

represents a language contributing to certain parts of the SQL query, and a grammar can

be automatically extracted from the loop body as explained there. We will need to check

whether the language generated by this grammar is contained in the language spawned by

Automatically Preparing Safe SQL Queries 11

the repeatable (pumped) strings generated by the SQL grammar. Note that this containment

problem is not the same as the undecidable general language containment problem for

CFGs, as the SQL grammar is a fixed grammar. However, a decision procedure specific to

the SQL grammar needs to be built.

We instead take an alternative approach for this problem by ensuring that the loop

operations produce regular structures. To infer this we check whether each statement in the

body of the loop conforms to the following conditions: (1) the statement is of the form q →
x where x is a constant or an input OR (2) it is left recursive of the form q → qx, where

x itself is not recursive, i.e., resolves to a variable or a constant in each loop iteration. It

can be shown that satisfaction of these conditions yields a regular language. The symbolic

parser is now augmented to see if the regular structure only generates repeatable strings in

the SQL language. If this condition holds, we introduce placeholders as described earlier.

We find our strategy for loops quite acceptable in practice, as shown in the next section.

4.5 Implementation

We implemented TAPS to assess our approach on PHP applications by leveraging earlier

work Pixy [15, 16] and extending it with algorithms to convert programs to Static Single

Assignment(SSA) format [7], and then implementation of the transformation described

earlier. We briefly discuss some key points below.

We used an off-the-shelf SQL parser and augmented it to recognize symbolic expres-

sions in query strings. The only minor change we had to make was to recognize query

strings with associative array references. An associate array access such as $x[’member’]

contains single quotes and may conflict with parsing of string contexts. To avoid premature

termination of the data parsing context, TAPS ensures that unescaped string delimiters do

not appear in any symbolic expression.

Limitations and Developer Intervention TAPS requires developer intervention if either

one of the following conditions hold: (i) the main assumption is violated (Section 4) (ii)

a well-formed SQL query cannot be constructed statically (e.g., use of reflection, library

callbacks) (iii) the SQL query is malformed because of infeasible paths that cannot be

determined statically (iv) conflicts are detected along various paths (v) query is constructed

in a loop that cannot be summarized.

TAPS implements static checks for all of the above and generates reports for all un-

transformed control flows along with program statements that caused the failure. A de-

veloper needs to qualify a failure as: (a) generated by an infeasible path and ignore or

(b) re-write of violating statements possible. The number of instances of type (a) can be

reduced by more sophisticated automated analysis using decision procedures. In case of

(b), TAPS can be used after making appropriate changes to the program. In certain cases,

the violating statements can be re-written to assist TAPS e.g., a violating loop can be

re-written to adhere to a regular structure as described earlier. The remaining cases can

either be addressed manually or be selectively handled through other means e.g., dynamic

prevention techniques.

In case of failures, TAPS can also be deployed to selectively transform the program

such that control paths that are transformed will generate prepared queries, and those un-

transformed paths will continue to generate the original program’s (unsafe) SQL queries.

The sufficient condition to do this in a sound manner is that the variables in untransformed

part be not dependent (either directly or transitively) on the variables of the transformed

12 Prithvi Bisht, A. Prasad Sistla, and V.N. Venkatakrishnan

Application Size CVE Analyzed Analyzed Transfor- Transfor- Human

(LOC) Vulnerability SQL Control med SQL med Control Intervention

(prefix CVE-) Sinks Flows Sinks Flows Flows

WarpCMS 22,773 - 14 200 14 186 14

Utopia NewsPro 7,323 - 2 336 2 333 3

AlmondSoft 6,633 2009-3226 22 33 17 27 6

PortalXP TE 5,121 2009-3148 122 122 122 122 0

Gravity Board 2,422 2009-1277 62 62 62 62 0

MyNews 1,792 2009-0739 1 34 1 34 0

Auth 284 2009-0738 1 5 1 5 0

BlueBird 288 2009-0740 1 5 1 5 0

Yap Blog 264 2009-1038 2 6 2 6 0

Table 1. Effectiveness suite applications, transformed SQL sinks and control flows: TAPS trans-

formed over 93% and 99% of the analyzed control flows for the two largest applications.

paths. In this case, the transformation can be done selectively on some paths. All sinks

will be transformed to PREPARE statements, and any untransformed paths will make use

of the PREPARE statements (albeit with unsafe strings) to issue SQL queries with an empty

argument list.

5 Evaluation

Our evaluation aimed to assess TAPS on two dimensions: (a) effectiveness of the approach

in transforming real world applications, and (b) performance impact of transformation

induced changes.

5.1 Effectiveness

Test suite Table 1 column 1 lists SQLIA vulnerable applications from another research

project on static analysis [32] and applications with known SQLIA exploits from Common

Vulnerabilities and Exposures (CVE 2009) repository. This table lists their codebase sizes

in lines of code and any known CVE vulnerability identifiers (column 2 and 3), number of

analyzed SQL sinks and control flows that execute queries at SQL sinks (column 4 and 5),

transformed SQL sinks and control flows (column 6 and 7) and number of control flows

that required developer intervention (column 8). In this test suite, the larger applications

invoked a small number of functions to execute SQL queries. This caused the number of

analyzed sinks and control flows to vary across applications.

Transformed control flows For the three largest applications, TAPS transformed 93%,

99% and 81% of the analyzed control flows. Although smaller in LOC size, the Utopia

news pro application had a greater fraction of code involving complex database operations

and required analyzing more control flows than any other application. For the remaining

applications, TAPS achieved a transformation rate of 100%. This table suggests that TAPS

was effective in handling the many diverse ways that were employed by these applications

to construct queries.

TAPS did not find any partial query string variables used in operations other than

append, null checks and output generation / logging (supports main assumption from Sec-

Automatically Preparing Safe SQL Queries 13

Application Statements Args Functions SSA Flow Static Transf-

changed extracted traversed conversion enumeration checks ormation

(%) Avg (max) Avg (max) time (%) time (%) time (%) time (%)

WarpCMS 438 (1.9%) 6.6 (27) 2.2 (3) 98.6 0.4 0.4 0.6

Utopia News Pro 333 (4.5%) 1.1 (8) 2.9 (6) 86.9 5.3 6.7 1.1

AlmondSoft 46 (0.7%) 1.3 (4) 1.3 (2) 61.3 12.2 0.1 26.4

PortalXP TE 332 (6.5%) 1.5 (9) 1.0 (1) 96.7 1.0 2.2 0.1

Gravity Board 172 (7.1%) 1.5 (15) 1.0 (1) 94.8 1.3 3.3 0.6

MyNews 56 (3.1%) 2.4 (5) 2.5 (3) 80.7 10.8 2.2 6.3

Auth 17 (6.1%) 3.0 (4) 2.0 (2) 23.4 37.3 8.9 30.4

BlueBird 17 (6.0%) 3.0 (4) 2.0 (2) 23.5 34.6 12.4 29.5

Yap Blog 8 (3.0%) 4.0 (7) 2.0 (2) 53.5 14.2 16.8 15.5

Table 2. Transformation changed less than 5% lines for large applications.

tion 4). Further, TAPS did not encounter conflicts while combining changes to program

statements required for transformed control flows.

Untransformed control flows The last column of the Table 1 indicates that TAPS re-

quires human intervention to transform some control flows.

As TAPS depends on symbolic evaluation, it did not transform flows that obtained

queries at run time e.g., the Warp CMS application used SQL queries from a file to restore

the application’s database. In two other instances, it executed query specified in a user in-

terface. In both these cases, no meaningful PREPARE statement is possible as external input

contributes to the query structure. If the source that supplies the query is trusted, then these

flows can be allowed by the developer. The limitations of the SQL parser implementation

were responsible for two of the three failures in the Utopia news pro application and the

rest are discussed below.

Queries computed in loops A total of 18 control flows used loops that violated restric-

tions imposed by TAPS and were not transformed (11 - Warp CMS, 1 - Utopia news pro, 6

- AlmondSoft). These control flows generated queries in loop bodies that used conditional

statements or nested loops. We also found 23 instances of queries computed in loops, in-

cluding a summarization of implode function, that were successfully transformed. In all

such cases queries were either completely constructed and executed in each iteration of

the loop or loop contributed a repeatable partial query.

For untransformed flows TAPS precisely identified statements to be analyzed e.g., the

Warp CMS application required 195 LOC to be manually analyzed instead of complete

codebase of 22K LOC. This is approximately two orders of magnitude reduction in LOC

to be analyzed.

Changes to applications As shown in the second column of Table 2 a small fraction

of original LOC was modified during transformation. The columns 3 and 4 of this table

show average (maximum) number of data arguments extracted from symbolic queries and

functions traversed to compute them, respectively. 2% of changes in LOC were recorded

for Warp CMS - the largest application, whereas approximately 5% of lines changed for

database intensive Utopia news pro application. We noticed that a significant portion of

14 Prithvi Bisht, A. Prasad Sistla, and V.N. Venkatakrishnan

code changes only managed propagation of the data arguments to PREPARE statements.

Some of these changes can be eliminated by statically optimizing propagation of argu-

ments list e.g., for all straight line flows that construct a single query, PREPARE statement

can be directly assigned the argument list instead of propagating it through the partial

queries. Overall, this small percentage of changes points to TAPS’s effectiveness in locat-

ing and extracting data from partial queries.

Further, as columns 3 and 4 suggest, TAPS extracted a large number of data arguments

from symbolic queries constructed in several non-trivial inter-procedural flows. For a man-

ual transformation both of these vectors may lead to increased effort and human mistakes

and may require substantial application domain expertise. For successfully transformed

symbolic queries the deepest construction spanned 6 functions in the Utopia news pro ap-

plication and a maximum of 27 arguments (in a single query) were extracted for the Warp

CMS application, demonstrating robust identification of arguments.

5.2 Performance Experiment

Performance of transformed applications TAPS was assessed for performance over-

head on a microbench that consisted of an application to issue an insert query. This

application did not contain tasks that typically interleave query executions e.g., HTML

generation, formatting. Further, the test setup was over a LAN and lacked typical Internet

latencies. Overall, the microbench provided a worst case scenario for performance mea-

surement.

We measured end-to-end response times for 10 iterations each with TAPS transformed

and original application and varied sizes of data arguments to insert queries from 256B

to 2KB. In some instances TAPS transformed application outperformed the original ap-

plication. However, we did not find any noteworthy trend in such differences and both

applications showed same response times in most cases. It is important to note here that

dynamic approaches typically increase this overhead by 10-40%. Whereas, TAPS trans-

formed application’s performance did not show any differences in response times. Overall,

this experiment suggested that TAPS transformed applications do not have any overheads.

Performance of the tool We profiled TAPS to measure the time spent in the following

phases of transformation: conversion of program to SSA format, enumeration of control

flows, static checks for violations described earlier, derivation tree generation and chang-

ing the program. The time taken by each phase is summarized in the last four columns of

Table 2. The largest application took around 2 hours to transform whereas the rest took

less than an hour. The smallest three applications were transformed in less than 5 seconds.

For large applications TAPS spent a majority of time in the SSA conversion. The only

exception to this case occurred for AlmondSoft application which had smaller functions in

comparison to other applications and hence SSA conversion took lesser time. We wish to

note here that TAPS is currently not optimized. A faster SSA conversion implementation

may improve performance of the tool and by summarizing basic blocks some redundant

computations can be removed. For a static transformation these numbers are acceptable.

6 Conclusion

In this paper, we presented TAPS, a static program transformation tool that modifies web

applications to make use of PREPARE statements. We presented experimental results with

Automatically Preparing Safe SQL Queries 15

several open-source applications to assess the effectiveness of TAPS. Our approach pro-

vides evidence that it is possible to successfully design retrofitting techniques that guaran-

tee security (by construction) in legacy applications, and eliminate well known attacks.

Acknowledgments

This work was supported in part by National Science Foundation grants CNS-0716584,

CNS-0551660, CNS-0845894, CNS-0917229, ITR-0716498, CCF-0916438 and CCF-0742686.

Thanks are due to Mike Ter Louw and Kalpana Gondi for their suggestions on improving

the draft. Finally, we thank the anonymous referees for their feedback.

References

1. JDBC: Using a prepared statements. http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html.

2. Symantec Internet Security Threat Report, volume XI. Technical report, Symantec, March 2007.

3. D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna. Saner:

Composing static and dynamic analysis to validate sanitization in web applications. In IEEE

Symposium on Security and Privacy, pages 387–401, Oakland, California, 2008.

4. S. Bandhakavi, P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan. Candid: preventing sql

injection attacks using dynamic candidate evaluations. In ACM conference on Computer and

communications security, pages 12–24, Alexandria, Virginia, USA, 2007.

5. S. W. Boyd and A. D. Keromytis. SQLrand: Preventing SQL Injection Attacks. In Applied

Cryptography and Network Security Conference (ACNS 2004), volume 3089/2004, pages 292–

302, College Park, Maryland, June 2004.

6. G. Buehrer, B. W. Weide, and P. A. G. Sivilotti. Using parse tree validation to prevent sql

injection attacks. In 5th International Workshop on Software engineering and Middleware,

pages 106–113, Lisbon, Portugal, 2005.

7. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently comput-

ing static single assignment form and the control dependence graph. ACM Transactions on

Programming Languages and Systems, 13(4):451–490, 1991.

8. F. Dysart and M. Sherriff. Automated fix generator for sql injection attacks. In ISSRE ’08:

Proceedings of the 2008 19th International Symposium on Software Reliability Engineering,

pages 311–312, Seattle, WA, 2008.

9. H. Flak. MYSQL prepared statements. http://dev.mysql.com/tech-

resources/articles/4.1/prepared-statements.html.

10. X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao. A static analysis framework for

detecting sql injection vulnerabilities. In International Computer Software and Applications

Conference, pages 87–96, Beijing, China, 2007.

11. W. G. J. Halfond and A. Orso. AMNESIA: Analysis and Monitoring for NEutralizing SQL-

Injection Attacks. In IEEE/ACM international Conference on Automated software engineering,

pages 174–183, Long Beach, CA, USA, 2005.

12. W. G. J. Halfond, A. Orso, and P. Manolios. Using positive tainting and syntax-aware evaluation

to counter sql injection attacks. In ACM SIGSOFT international symposium on Foundations of

software engineering, pages 175–185, Portland, Oregon, USA, 2006.

13. S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. In ACM

SIGPLAN 1988 conference on Programming Language design and Implementation, pages 35–

46, Atlanta, Georgia, 1988.

14. M. Howard and D. Leblanc. Writing Secure Code. Microsoft Press, Redmond, WA, USA, 2001.

15. N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis tool for detecting web application

vulnerabilities (short paper). In IEEE Symposium on Security and Privacy, pages 258–263,

Oakland, California, 2006.

16 Prithvi Bisht, A. Prasad Sistla, and V.N. Venkatakrishnan

16. N. Jovanovic, C. Kruegel, and E. Kirda. Precise alias analysis for static detection of web ap-

plication vulnerabilities. In PLAS ’06: Proceedings of the 2006 workshop on Programming

languages and analysis for security, pages 27–36, Ottawa, Ontario, Canada, 2006.

17. A. Kieyzun, P. J. Guo, K. Jayaraman, and M. D. Ernst. Automatic creation of sql injection and

cross-site scripting attacks. In IEEE International Conference on Software Engineering, pages

199–209, Vancouver, Canada, 2009.

18. J. C. King. Symbolic execution and program testing. Communications of the ACM, 19(7):385–

394, 1976.

19. Y. Kosuga, K. Kono, M. Hanaoka, M. Hishiyama, and Y. Takahama. Sania: Syntactic and

semantic analysis for automated testing against sql injection. Computer Security Applications

Conference, Annual, 0:107–117, 2007.

20. A. Liu, Y. Yuan, D. Wijesekera, and A. Stavrou. Sqlprob: a proxy-based architecture towards

preventing sql injection attacks. In ACM symposium on Applied Computing, pages 2054–2061,

Honolulu, Hawaii, 2009. ACM.

21. V. B. Livshits and M. S. Lam. Finding security vulnerabilities in java applications with static

analysis. In USENIX Security Symposium, pages 18–18, Baltimore, MD, 2005.

22. Y. Minamide. Static approximation of dynamically generated web pages. In international

conference on World Wide Web, pages 432–441, Chiba, Japan, 2005.

23. A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans. Automatically hardening

web applications using precise tainting. In IFIP International Information Security Conference,

pages 295–308, Chiba, Japan, 2005.

24. OWASP. The ten most critical web application security vulnerabilities. http://www.owasp.org.

25. T. Pietraszek and C. V. Berghe. Defending Against Injection Attacks through Context-Sensitive

String Evaluation. In Recent Advances in Intrusion Detection, Seattle, Washington, September

2005.

26. F. S. Rietta. Application layer intrusion detection for sql injection. In Annual Southeast regional

conference, pages 531–536, Melbourne, Florida, 2006. ACM.

27. R. Sekar. An efficient black-box technique for defeating web application attacks. In Network

and Distributed Systems Symposium, San Diego, CA, 2009.

28. Z. Su and G. Wassermann. The essence of command injection attacks in web applications. In

ACM Symposium on Principles of Programming Languages, pages 372–382, Charleston, South

Carolina, USA, 2006.

29. S. Thomas, L. Williams, and T. Xie. On automated prepared statement generation to remove sql

injection vulnerabilities. Inf. Softw. Technol., 51(3):589–598, 2009.

30. O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman. Taj: effective taint analysis

of web applications. In PLDI ’09: Proceedings of the 2009 ACM SIGPLAN conference on

Programming language design and implementation, pages 87–97, Dublin, Ireland, 2009.

31. F. Valeur, D. Mutz, and G. Vigna. A Learning-Based Approach to the Detection of SQL Attacks.

In Conference on Detection of Intrusions and Malware and Vulnerability Assessment (DIMVA),

pages 123–140, Vienna, Austria, July 2005.

32. G. Wassermann and Z. Su. Sound and precise analysis of web applications for injection vulner-

abilities. In ACM SIGPLAN conference on Programming language design and implementation,

pages 32–41, San Diego, California, USA, 2007.

33. Y. Xie and A. Aiken. Static detection of security vulnerabilities in scripting languages. In

USENIX-SS’06: Proceedings of the 15th conference on USENIX Security Symposium, Vancou-

ver, B.C., Canada, 2006.

34. W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy enforcement: a practical approach

to defeat a wide range of attacks. In USENIX-SS’06: Proceedings of the 15th conference on

USENIX Security Symposium, Vancouver, B.C., Canada, 2006.

