
BLUEPRINT: Robust Prevention of Cross-site
Scripting Attacks for Existing Browsers

Mike Ter Louw
mter@cs.uic.edu

V.N. Venkatakrishnan
venkat@cs.uic.edu

Department of Computer Science
University of Illinois at Chicago

Abstract

As social networking sites proliferate across the
World Wide Web, complex user-created HTML content
is rapidly becoming the norm rather than the exception.
User-created web content is a notorious vector for
cross-site scripting (XSS) attacks that target websites
and confidential user data. In this threat climate,
mechanisms that render web applications immune to
XSS attacks have been of recent research interest.

A challenge for these security mechanisms is en-
abling web applications to accept complex HTML input
from users, while disallowing malicious script content.
This challenge is made difficult by anomalous web
browser behaviors, which are often used as vectors for
successful XSS attacks.

Motivated by this problem, we present a new XSS
defense strategy designed to be effective in widely
deployed existing web browsers, despite anomalous
browser behavior. Our approach seeks to minimize
trust placed on browsers for interpreting untrusted
content. We implemented this approach in a tool called
BLUEPRINT that was integrated with several popular
web applications. We evaluated BLUEPRINT against
a barrage of stress tests that demonstrate strong re-
sistance to attacks, excellent compatibility with web
browsers and reasonable performance overheads.

1. Introduction
Cross-site scripting (XSS) attacks are the number-one
security threat on the Internet today. These attacks
breach confidentiality of sensitive data, undermine au-
thorization schemes, defraud users, defame web sites,
and more. The web site www.xssed.com documents
recently successful XSS attacks on major blog and so-
cial networking sites. Notably Facebook, LiveJournal,
MySpace and Orkut have all been hit by these attacks.
XSS attacks can be self-propagating [1], and have the
potential to rapidly victimize millions of people.

Broadly speaking, XSS is injection of unauthorized
script code into a web page. As a web application
processes input from untrusted users, it generates some
low-integrity output web content which we term un-
trusted HTML. The goal of an XSS attack is to embed
malicious script code in untrusted HTML, causing the
script to be executed on a victim’s web browser within
the context of the conduit web application. We say the
attack script is unauthorized because the application
does not intend to allow scripts in untrusted HTML.
Defenses for XSS aim to prevent unauthorized script
execution by enforcing a no-script policy on untrusted
HTML.

1.1. Defense approaches

To disallow script execution in untrusted web content,
a web application might possibly take one of the
following approaches.
Content Filtering. The application may attempt to de-

tect and remove all scripts from untrusted HTML
before sending it to the browser.

Browser Collaboration. The application may collab-
orate with the browser by indicating which scripts
in the web page are authorized, leaving the browser
to ensure the authorization policy is upheld.

Content filtering. Content filtering is otherwise known
as sanitization. This defense technique uses filter func-
tions to remove potentially malicious data or instruc-
tions from user input. Filter functions are applied after
user input is read by a web application, but before the
input is employed in a sensitive operation or output to
the web browser.

Removal of scripts from untrusted content is a dif-
ficult problem for web applications that permit HTML
markup in user input such as blog, wiki and social
networking applications. These applications are ex-
panding and proliferating rapidly [2], [3], thus the
growing need for robust XSS defenses. The WordPress

blog platform is one popular application that empowers
anonymous users to control the presentation of their
blog comments. It does so by permitting input of
structured HTML elements for text formatting (e.g.,
 for bold, <i> for italics). Content filtering based
defenses for this type of application face a difficult
challenge: allowing all benign HTML user input, while
simultaneously blocking all potentially harmful scripts
in the untrusted output.

Simply disallowing HTML syntax control characters
is not a practical filtering solution for these applications
because every control character that can be used to
introduce attack code also has a legitimate use in some
benign, non-script context. For example, the < character
needs to be present in hyperlinks and text formatting,
and the " character needs to be present in generic text
content. Both are legitimate and allowed user inputs,
but can be abused to mount XSS attacks.

Advanced content filters try to anticipate how un-
trusted content will be interpreted by the client web
browser’s parser, as it is the browser parser that makes
crucial decisions about script execution. To be com-
pletely effective in eliminating XSS, a filter function
must necessarily model the full range of parsing behav-
iors pertaining to script execution for several browsers.

This is a very difficult problem, as diligently docu-
mented in the XSS Cheat Sheet [4], which describes a
wide variety of parsing quirks exhibited by different
browsers. Quirks are essentially anomalous browser
parser behavior that either contradict language stan-
dards or account for conditions not well defined by
these standards (such as how to parse malformed
HTML). They are sometimes intentionally introduced
and retained in a browser’s code base to correctly
render existing web sites that depend on the quirks of
older browsers. Quirks vary by browser, are complex to
model, not entirely understood and not all known (es-
pecially for closed-source browsers). Therefore, from a
web application perspective, the task of implementing
correct and complete content filter functions is very
difficult, if not impossible.

Browser collaboration. Robust prevention of XSS
attacks can be achieved if web browsers are made
capable of distinguishing authorized from unauthorized
scripts. This vision was first espoused in BEEP [5],
wherein this approach was implemented by (a) creating
a server–browser collaboration protocol to communi-
cate the set of authorized scripts, then (b) modifying
the browser to understand this protocol and enforce a
policy denying unauthorized script execution.

Although the defense strategy envisioned by the
authors of BEEP is a compelling and effective long-
term solution, their implementation approach leaves
a large void in near-term protection. This is because

web applications adopting this approach require their
users to employ custom BEEP-enabled browsers for
protection from XSS attacks. To scale this approach
there must first be agreement on any proposed stan-
dards for server–browser collaboration, then these new
standards must be incorporated in the normal browser
implementation and deployment cycle for millions of
installed browsers. This is a long, complicated process
that can take several years.

This inherent practical limitation makes browser col-
laboration unsuitable for adoption in the near future by
existing web applications. However, a robust, solution
to XSS defense is desperately needed now to prevent
the immediate, ongoing spate of XSS attacks.

1.2. Objectives and approach

The above discussion highlights the immediate need
for a solution that:
• robustly protects against XSS attacks, even in the

presence of browser parsing quirks,
• supports benign, structured HTML derived from

untrusted user input, and is
• compatible with existing browsers currently in use

by today’s web users.
To clearly define compatibility, we seek a solution

that works on existing, currently deployed browsers in
their default configuration and settings, without any
modifications, either directly to their code base or
through plug-ins. We share this perspective with web
application developers and service providers, who can
not presume that their users will install a customized
browser or download a plug-in for XSS protection.

Our contribution. Due to the prevalence of XSS
attacks and current trends in web applications, there
exists a strong need for preventing these attacks. We
address this need by presenting the design and imple-
mentation of BLUEPRINT: an XSS defense that satisfies
all three objectives mentioned above.

We observe that existing web browsers cannot be
entrusted to make script identification decisions in un-
trusted HTML due to their unreliable parsing behavior.
Therefore, in BLUEPRINT, we enable a web application
to effectively take control of parsing decisions. By
systematically reasoning about the flow of untrusted
HTML in a browser, we develop an approach that pro-
vides facilities for a web application to automatically
create a structural representation — a “blueprint” —
of untrusted web content that is free of XSS attacks.

Our approach employs techniques to carefully trans-
port and reproduce this blueprint in the browser exactly
as intended by the web application, despite anomalous
browser parsing behavior. Our general approach offers
strong protection against script injections, and enables
support for complex script-free HTML user input.

Extensive experiments with BLUEPRINT demonstrate
its resilience against subtle XSS attacks, reasonable
performance overheads, compatibility and effectiveness
on over 96% of existing browser market share.

The remainder of this paper is organized as follows.
Our proposed solution is introduced on a conceptual
level in Section 2, followed by technical details given
in Section 3. Integration with web applications is
discussed in Section 4. A thorough evaluation of our
proposed techniques is presented in Section 5. Related
works are discussed in Section 6 and we conclude in
Section 7.

2. Approach overview
The main obstacle a web application must overcome
when implementing XSS defenses is the divide be-
tween its understanding of the web content represented
by an HTML sequence and the understanding web
browsers will have of the same. For trusted HTML or
JavaScript content, this divide is not an insurmountable
problem: in fact, web application developers routinely
perform testing of trusted content on a variety of
browsers to ensure each browser’s understanding of the
content is consistent with their understanding. For the
remainder of this paper, we assume that web appli-
cations are fully capable of arriving at this common
understanding of trusted content.

With respect to untrusted content, addressing this
divide becomes very challenging. Most often, untrusted
content such as user input is included dynamically in
a web application’s output, therefore the application’s
developer does not have the luxury of arriving at this
common understanding beforehand through testing. As
explained in the introduction, current browser parsers
have many quirks that make the job of arriving at this
common understanding difficult. The technical goal of
our approach is to avoid the problem of understanding
how a browser will parse arbitrary data. Instead we
propose an approach that enforces the application’s un-
derstanding of web content on the browser. To illustrate
the ideas behind our approach, we now analyze the
flow of untrusted data through the browser’s HTML
interpretation process.

Figure 1 presents an abstract description of how
HTML input (arriving through path A) flows through
a web browser as it is parsed and interpreted. HTML
code is processed by the browser’s HTML lexer and
parser, which produces a parse tree. During this parsing
stage, executable script elements in web content are
identified and corresponding script nodes are created
in the parse tree. This tree is supplied as input via path
B to the document generation stage, and HTML parsing
activity is complete once we enter this stage. The
document generator phase then stores and interprets

Figure 1. Generalized functional diagram of existing
browsers’ HTML interpretation process. Bold lines in-
dicate the path of untrusted data in the BLUEPRINT
approach, which avoids unpredictable syntax decisions.

web content described by the parse tree. For example,
the document generator submits visual elements to
other parts of the browser for rendering, and script
elements are supplied to the JavaScript interpreter for
execution via path C.

We observe that the implicit goal of XSS prevention
is to safely communicate untrusted content to the
browser’s document generation stage, such that the
browser-generated parse tree is free of script nodes.
Note that content filtering based defenses utilize the
path (A, B) in Figure 1, and attempt to anticipate
the behavior of browser parsers to ensure script nodes
are not created when this path is exercised. However,
after supplying untrusted HTML via path A, the web
application has no further control over the resulting
parse tree. The web application therefore cannot ensure
the resulting parse tree is free of script nodes because
browser parser behavior cannot be reliably predicted
due to parsing quirks.

Main idea. The crux of our approach is to eliminate
any dependence on the browser’s parser for building
untrusted HTML parse trees. That is, we eliminate
the use of path B and instead derive an alternative
path to render untrusted content without the risk of

XSS attacks. In our approach, the following steps are
performed by the web application:
1) On the application server, a parse tree is generated

from untrusted HTML with precautions taken to
ensure the absence of dynamic content (e.g., script)
nodes in the tree.

2) On the client browser, the generated parse tree
is conveyed to the browser’s document generator
without taking vulnerable paths such as B which
involve unreliable browser parsing behavior.
This two-step process ensures untrusted content gen-

erated by the browser is consistent with the web ap-
plication’s understanding of the content. The generated
document reflects the application’s intention that the
untrusted content does not contain scripts, therefore all
unauthorized script execution is prevented.

In our approach, we create the parse tree for un-
trusted content programmatically using a small set of
low-level Document Object Model (DOM) primitives
that are well documented [6] and supported on all
JavaScript-enabled browsers. Input is provided to these
DOM APIs (via path E) as both instructions and data:
instructions define parse tree structure and node types,
and data (e.g., character data in text nodes) annotates
nodes of this tree. Once these explicit instructions are
given, the browser’s DOM implementation constructs
the untrusted HTML parse tree, then supplies this
parse tree to the document generator through the final
transition R. Our goal therefore reduces to reliably
transporting both instructions and data safely to path
E for invoking DOM APIs.
Transport of instructions. Transporting instructions
is relatively easy: we simply have the web application
generate trusted JavaScript code that flows through
paths (A, B, C, D, E). Since instructions are entirely
devoid of untrusted content, we can ensure they will be
correctly delivered to path E . This claim is supported
by the discussion at the start of this section about
obtaining predictable behavior from trusted content
through testing on various browsers.

Strictly interfacing with the DOM via trusted code
is not enough to ensure the web application’s in-
tended parse tree ultimately prevails. It is still possible
for trusted code to introduce script nodes into the
parse tree, perhaps unintentionally if the code uses
certain DOM API methods that trigger parsing ac-
tivity. For instance, by invoking document.write()

(path F), character data may be explicitly supplied
to the HTML parser, and may then violate structural
integrity of the intended parse tree or even the structure
of trusted HTML content. There are many similar
interfaces that trigger unsafe parsing behavior, such as
the eval() function (path J), and the innerHTML

property (path F). We take care that our trusted client-

side code does not use these unsafe APIs as it con-
structs parse trees.
Reliable transport of untrusted data. The final com-
ponent of our solution is safe transport of untrusted
data from path A to E for providing input to DOM
APIs. If raw data is exposed to the browser’s parsers,
it is practically infeasible to guarantee all XSS attacks
are prevented. This is because raw data might contain
control character sequences uncaught by a server-side
filter, and these characters can cause the formation of
script nodes if the browser’s parser interprets them as
such. Furthermore, untrusted data must be effectively
isolated from trusted code/data to preserve integrity of
trusted content.

To address the threat posed by raw untrusted data,
we convert this data to an encoded representation that
consists only of characters from a strictly defined “safe
alphabet”. This alphabet (say “a–z”) only contains
characters that are syntactically inert; that is, none
of the safe alphabet characters cause changes in the
syntax state of the browser’s HTML parser as they are
processed. Therefore, for all possible sequences of safe
alphabet characters the browser’s parsing behavior can
be reliably anticipated.

As they are safe to use for data transport without
affecting document structure, we expose these encoded
characters in a text node to the browser’s HTML parser
(shown in Figure 1 taking the alternate route B′).

We then take steps to ensure that untrusted data
completely bypasses the browser’s unreliable Java-
Script parser. Instructions supplied over path E extract
the encoded text node from the DOM via paths (Q,
P), thus avoiding the JavaScript parser altogether. We
decode and recover the raw untrusted character data
to the JavaScript runtime environment’s memory state,
then supply it to DOM APIs as input via path E . In
summary, untrusted data traverses through path (A, B′,
Q, P , E) in the figure.

We now can say the processing of raw untrusted data
by the browser’s DOM implementation will not result
in unauthorized script execution because (as described
above) we only employ DOM APIs that do not trigger
parsing behavior. The parse tree ultimately generated
using our approach is thus supplied via R to the
document generator, which successfully renders the
document free of any XSS attacks.

3. Implementation
We present the implementation of BLUEPRINT using
a running example of a simple blog platform (mod-
eled after WordPress) that allows untrusted, structured
HTML input via article feedback comments from users.
Figure 2(a) is an example of typical benign HTML that
may occur in a comment. Figure 2(b) shows a mali-

1 <p>
2 Here is a page you might find
3 very
4 interesting:
5
6 Link
7 </p><p style="text-align: right;">
8 Respectfully,
9 Alice

10 </p>

1 <p>
2 Here is a page you might find
3 <b """><script>doEvil(. . .)</script>">very
4 interesting:
5 <a href=" javasc
ript:doEvil(. . .);">
6 Link
7 </p><p style="nop:expres/*xss*/sion(doEvil(. . .))">
8 Respectfully,
9 Eve

10 </p>

(a) Benign HTML blog comment (b) Malicious HTML blog comment

Figure 2. BLUEPRINT must be permissive enough to allow (a) benign HTML content derived from untrusted user input,
and still defend against (b) subtle attacks that use malformed content to trigger and exploit browser parsing quirks [4].

cious comment: one that aims to inject script content
in the user’s browser through several attacks. The web
application source code that generates these comments
is discussed in Section 4 along with steps taken to
integrate our defense approach with the application.

The attack scripts in Figure 2(b) are identified in sev-
eral parsing decisions made by the browser on HTML,
link and CSS content (lines 3, 5 and 7, respectively).
Our goals are to fully permit comment 2(a) to be
rendered in the browser and prevent all attacks in
comment 2(b).

Our approach to preventing these attacks leverages
on the understanding that a browser’s parser can be
described as the combined behavior of smaller parsers
that comprise overall parser behavior. In this section,
we detail our strategy to grant web applications control
of generated web content by eliminating the influence
of each of these smaller parsers: the HTML parser (Sec.
3.1), CSS parser (Sec. 3.2), URI parser (Sec. 3.3) and
JavaScript parser (Sec. 3.4).

3.1. Reducing HTML parser influence

On the server side, we produce a parse tree from un-
trusted HTML using a modified version of a conserva-
tive, standards-compliant HTML parser [7]. The parse
tree is transformed into a script-free approximation
by pruning all nodes not allowed by a configurable
whitelist [8] of known, non-executable content types.
This whitelist accommodates a rich, expressive set of
content consisting of HTML elements, attributes, style
properties and link protocols all known to be static.

Static content types are types defined by web lan-
guage standards and verified by experimental results
not to invoke dynamic content such as scripts or brow-
ser plug-ins (e.g., Adobe Flash). The static content
parse tree that results after pruning is marshalled into
an encoded form (a model) suitable for embedding
in the web application’s output. The model encoding
employs a map of content types from the whitelist to
numeric values, which is decoded on the client-side
using a trusted JavaScript library to reconstruct the
parse tree.

The figure below gives an overview of this pro-
cess. Typical web application output (a) may con-
tain several instances of untrusted HTML. In our
running example, each of these instances is a sep-
arate blog comment created by a user. Our im-
plementation automatically generates and embeds a
model for each comment. Thus the application’s out-
put is modified by replacing each instance of un-
trusted HTML with its corresponding model and
leaving trusted content unaltered, as shown in (b).

We embed the model in web application output along
with a short, trusted script that invokes the client-side
JavaScript library, which in turn decodes and safely
reconstructs the parse tree within the browser. Figure 3
shows an actual encoded model and accompanying
script for the malicious comment in Figure 2(b). Model
data is embedded in HTML by enclosing it in a code

element. The model is never visible on the rendered
web page because the code element’s display prop-
erty is set accordingly.

1 <code style="display:none;" id="__bp1">
2 =Enk/sCkhlcmUgaXMgYSBwYWdlIHlvdSBta. . .
3 =SkKICAgICI+dmVyeQ===C/k/QIGhlbHBmd. . .
4 =ECg===C/Enk/gCiAgUmVzcGVjdGZ1bGx5L. . .
5 </code><script id="__bp1s">
6 __bp__.cxPCData("__bp1", "__bp1s");
7 </script>

Figure 3. Encoded static model for blog comment (Fig-
ure 2(b)) as generated by the server-side BLUEPRINT
library (Figure 4(b) lines 6–7), and trusted script to invoke
the client-side BLUEPRINT model interpreter.

DOM interface Lines in Figure 2(a)
document.
createElement(a); 1, 3, 5, 7
createTextNode(a); 2, 4, 6, 8, 9
getElementById(a);

element.
appendChild(a); 2–6, 8, 9
insertBefore(a, b); 1, 7
parentNode;
removeChild(a);
setAttribute(a, b); 5
style[a] = b; 7
style.setExpression(a, b); 7

Table 1. DOM APIs used for creating modeled web
content such as the comment in Figure 2(a).

3.1.1. Client-side model interpreter
On the client-side, we decode models using trusted
JavaScript code that we call the model interpreter. The
model interpreter is embedded in the head element
of the web application’s output page as a link to a
15.6kB external script file. This library is cacheable by
browsers to reduce load times. Decoding is performed
by the model interpreter using a reverse map of numeric
values to content types, and parse trees are constructed.

To programmatically reconstruct the parse tree, the
model interpreter uses a small set of DOM interfaces
that are present and exhibit consistent behavior in exist-
ing browsers. For instance, to create an HTML element
we use document.createElement(), to create text
content we use document.createTextNode() and
to enforce hierarchical structure we use element.

appendChild().
Table 1 lists the specific DOM API calls we use to

create untrusted content in the browser. As noted in
Section 2, these API calls do not recursively invoke
the browser’s HTML or JavaScript parser and thus
can be carefully used without risk of XSS attacks.
Methods we use to process untrusted character data
arguments are underlined in Table 1; the other calls
do not process untrusted character data. For instance,
createElement(), which is used to create an element
with a defined type, takes a string of trusted characters
from the whitelist (effectively an enum type) as its
argument, and thus is free of untrusted content.

3.1.2. Model embedding strategies
The original rendering order of content on the page is
preserved by our approach, as models are embedded at
or near the original location of untrusted HTML, and
models are interpreted synchronously as the page is
rendered. When invoked, the model interpreter accepts
a content model as input, constructs the parse tree, and
subsequently removes the model and invocation script
from the document.

Constraints on embedded model data. Since we
embed models in HTML, the browser’s HTML parser
will unavoidably have to process these characters. If the
browser could be tricked to interpret an unauthorized
script within model data, XSS attacks can result. We
drastically reduce this possibility and ensure reliable
browser parsing behavior by imposing three general
restrictions on models:
1) The model is embedded as text content in a code

element (a narrowly defined HTML grammar con-
text).

2) Characters used by the encoded representation are
selected from a syntactically inert alphabet.

3) Text line lengths are conservatively restricted to a
maximum length of 65 characters.

By imposing these constraints we restrict the browser’s
HTML parser to a simple and strictly defined role
that (most importantly) does not require interpreting
complex HTML syntax from untrusted data.

To restrict arbitrary untrusted text data to a sequence
of syntactically-inert characters, we use the Base64
encoding scheme [9]. Base64-encoded strings can use
a very limited alphabet that contains no HTML syntax
control characters:

{a, . . . , z, A, . . . ,Z, 0, . . . , 9, /,+, =}∗

This encoding step enforces a whitelist of syntacti-
cally inert characters that ensure predictable transport
of untrusted data through the browser’s HTML parser.

If the web application serves pages using an obscure
character encoding, care must be taken to ensure the
employed Base64 alphabet is truly syntactically inert.
For instance, the UTF-7 encoding uses the + character
to alter the meaning of subsequent characters, which
can be used to inject script using the standard Base64
alphabet. If stricter control of untrusted character data
is required for an application, our approach can be
adjusted to use an implementation-specific Base64 al-
phabet or more restrictive encodings such as Base32.

The additional constraint we impose is to limit
the length of text lines in inserted model data. It
is feasible that some browsers may be implemented
without support for arbitrarily long lines of HTML,
and may erroneously truncate or alter the data to suit
requirements of the parser. We conservatively limit
model data line lengths to 65 characters and have
verified that all browsers supported by BLUEPRINT can
reliably handle lines of this length.

Using techniques described in this section we ensure
the web application’s intended parse trees for untrusted
HTML is adhered to by the browser, which addresses
a significant number of XSS attack vectors. However,
to fully enforce the no-script policy additional fine-
grained control is needed for two types of parse tree
nodes (CSS and URI), which we describe below.

3.2. Eliminating CSS parser influence

We return to the example of Figure 2. It is important for
BLUEPRINT to permit use of the style attribute as in
line 7(a), which allows the user to express Cascading
Style Sheet (CSS) style / layout preferences for content.
However, the particular syntax on line 7(b) exploits
the style attribute and the browser’s unreliable CSS
language parser to inject a malicious script into the
document. The available DOM APIs for creating CSS
rules are not directly useful to explicitly disallow
all executable CSS, so we employ additional defense
techniques.

3.2.1. Disabling dynamic property values
The DOM API we use to create untrusted style prop-
erties is the element.style object. The whitelist we
use contains a set of known static property names. By
only using property names from the whitelist, we en-
sure dynamic properties that can invoke the browser’s
script interpreter are not created through our use of
the style object. However this API is unsafe to use
in Internet Explorer browsers since version 5.0 due to
their support for special dynamic property values [10],
which allow any property to contain executable code.

For example, if the user sets a CSS property using
the expression(...) syntax, IE will interpret the
argument in parenthesis as JavaScript code. Our initial-
ization code detects the presence of this vector by at-
tempting to execute a benign, trusted script. If dynamic
property value support is detected, BLUEPRINT takes
steps to ensure dynamic property values in untrusted
content are rendered inoperable.

IE does not support a direct interface we can use for
content creation that bypasses this XSS vector. How-
ever, the DOM does provide an indirect interface useful
for this purpose: the setExpression() method. This
method enables BLUEPRINT to embed a trusted script
that will be executed whenever the browser requests
any particular CSS property value. Through extensive
experimental analysis, we have learned that the return
value of this script is a static property value type and
thus is not useful as an XSS injection vector. If a
dynamic property value is returned, we have observed
that the browser disregards the script and does not
execute it.

Our approach for CSS property values is then a
variation on the same theme we use for HTML.
The goal is to transition the CSS parser to a state
which does not trigger the dynamic property value
parser, and thus eliminate this XSS vector. To achieve
this goal, trusted scripts are added to the page via
setExpression() for each untrusted style rule. Each
trusted script added this way is executed by the browser
as a function that dynamically computes a property

value. As explained previously, the return type of this
function is a static property value. Our function simply
looks up the untrusted property value in an array then
returns it as a static value. Thus our trusted script code
explicitly creates static content and avoids APIs that
can potentially create dynamic content.

3.2.2. Defending other CSS attack vectors
Some CSS properties can be used to embed script con-
tent without requiring the use of dynamic property val-
ues. For example, the behavior and -moz-binding

properties allow embedding of script content. Our
defense against these vectors uses a CSS whitelist
consisting entirely of known static property names.
Thus we use property names from the whitelist as
arguments to the style object DOM API, and thereby
ensure only static properties are ever created.

Similarly, CSS allows referencing of external style
sheets using @import rules. If allowed, these external
CSS files could embed XSS attack code so our model
format and interpreter do not support @import rules.

Certain property values can also use the url(...)

syntax to embed hypertext links, which are an XSS
injection vector. BLUEPRINT prohibits this vector using
a general defense strategy for links as described in the
following section.

3.3. Response to URI parser threats

We return again to Figure 2. Line 5(a) depicts a
benign use of Uniform Resource Identifiers (URI), or
“links”, which are a fundamental type of web content.
URIs are most often used to indicate how the browser
should retrieve a web resource (such as a web page or
image file) when the resource is requested. URIs are
composed of several components, the first of which is
the URI scheme component, or “protocol”.

Some URI schemes allow embedding of script
code to be executed whenever the linked resource
is requested, instead of directing the browser to a
remote web resource. This is shown in line 5 of
Figure 2(b), which uses the executable javascript:

URI scheme. This scheme allows links of the form to execute malicious script
code explicitly whenever a link is clicked, or implicitly
when an image is loaded.

The javascript: scheme is a threat because no
API exists for programming the browser to only use
non-executable schemes for untrusted content. The
decision over which scheme will be used is always
controlled by the browser’s URI parser. For example,
the attack shown in Figure 2(b) is successful in IE
6.0, whose URI parser ignores the spaces and control
characters to execute this URI [4]. To reduce the XSS
threat posed by URIs, we propose a 3-tiered defense

consisting of: re-composing untrusted URIs, browser
parse behavior sensing and impact mitigation. BLUE-
PRINT can use any combination of the these tiers for
all URIs during model generation and interpretation.

Re-composing untrusted URIs. Our first step is to
parse the untrusted URI into components. All URIs
have a scheme component which indicates what other
components (e.g., host, path, query) should be present
based upon the scheme definition. We disallow the
untrusted URI if the detected scheme component is
not in a whitelist of non-executable schemes. In most
benign URI, the employed scheme is one of: ftp:,
http:, https: or mailto:.

Next, the URI is re-composed from its components
using trusted data where possible. For example, the
scheme component used in rewriting the URI comes
from the whitelist, and the syntax characters that sepa-
rate components (e.g., /, ?, #) are trusted constants.
Untrusted character data is percent-encoded [11] to
ensure it is comprised only of syntactically inert char-
acters. This process of reducing and encoding untrusted
data ensures the URI is well formed, and declares
our intent of which whitelisted scheme to use. If the
browser is free of URI parsing quirks when given well-
formed input, this process will successfully enforce the
no-script policy for URI.

Sensing browser parse behavior. To create links we
need to expose the re-composed URI to the browser’s
URI parser. As a safety net against parser misinterpre-
tation, we employ a method of sensing browser URI
parse behavior to potentially detect URI parser quirks.
This technique attempts to observe whether the browser
interprets the re-composed URI as having the correct
scheme as intended by our approach.

BLUEPRINT performs this observation as each URI
is processed during model interpretation. To do this
carefully requires that we never expose the data used by
the sensing code to an accidental URI resource request
operation, such as an activation event (e.g., mouse click
or loading of URI). We omit the details of the technique
used here for space limitations, and refer the reader to
the accompanying technical report [12] for a detailed
discussion.

Mitigating XSS impact. BLUEPRINT also supports a
third defense layer that forces all URI-embedded scripts
not caught by the first two layers to execute in a sterile
environment where no threat to sensitive data exists.
Our approach rewrites all URIs as links to a redirection
service hosted on a different-origin server, which the
browser transparently follows to retrieve the actual
untrusted URIs. The browser now treats the redirected
URI request as if it came from this new domain, and
URI-embedded script code (if any) executes in this

domain. Due to same-origin policy restrictions imposed
by browsers, these scripts are not allowed to access
any data or state in the previous (i.e., “referring”) page
environment [13], [14]. For more details, we refer the
reader to the technical report [12].

3.4. Reducing JavaScript parser influence

BLUEPRINT supports embedding of untrusted data in
trusted scripts as string and numeric literals. This is
a common use case for web applications that store
user preferences in JavaScript variables for customizing
runtime behavior of scripts. However, by doing so a
web application may embed malicious user input which
results in a successful XSS attack:

1 var preferredSiteTheme =
2 "’";doEvil(. . .);</script><script>doEvil(. . .);";
3 var preferredFontSize =
4 12+doEvil(. . .);

Directly allowing untrusted characters in script contexts
requires that they be interpreted strictly as data and
never as executable code. Our approach encodes the
untrusted data using syntactically inert characters and
process them using trusted JavaScript code to enforce
the intended data type, thereby avoiding any depen-
dency on the browser’s JavaScript parser to correctly
infer the nature of the untrusted characters.

String literals. We embed untrusted string literals by
replacing them with a call to the model interpreter,
which returns the decoded string value to the calling
context. Thus, line 2 of the above script would be
replaced with the corresponding model:

1 var preferredSiteTheme =
2 __bp__.cxJSString("JyI7ZG9FdmlsKIUpOzwvc2N...");

Numeric literals. We implement numeric literals with
the same technique used for string literals, but process
and return a numeric value instead of a string. Thus,
the model for line 4 of the above script would be:

3 var preferredFontSize =
4 __bp__.cxJSNumber("MTIrZG9FdmlsKIUpOw==");

4. Integration with web applications
The BLUEPRINT implementation consists of a

server-side component and a client side script library.
The server-side component is written in PHP which
facilitates a natural integration with many popular PHP
web applications. To support applications written in
other languages, we have developed an alternative ver-
sion of BLUEPRINT that runs in a separate process and
communicates with the web application over a local
TCP socket [12]. The client-side library is included in
every web page output by the application by linking to
an external JavaScript file.

To use BLUEPRINT, statements in a web application
that output untrusted data need to be identified and
instrumented with calls to our server-side module.

1 // Code for trusted blog content aboveˆˆ.
2 // Code to emit untrusted comments below:
3
4 <?php foreach ($comments as $comment): ?>
5
6 <?php echo($comment); ?>
7
8 <?php endforeach; ?>
9

10 // Code for trusted footer follows...

1 // Code for trusted blog content
2 // appears untransformed aboveˆˆ.
3 <?php foreach ($comments as $comment): ?>
4
5 <?php
6 $model = Blueprint::cxPCData($comment);
7 echo($model);
8 ?>
9

10 <?php endforeach; ?>

Figure 4. Example of (a) original PHP blog source code for emitting untrusted user comments, and (b) modified source
code for automatically generating and emitting a script-free model (Figure 3) of untrusted user comments.

BLUEPRINT supports several embedding contexts that
enforce application-intended constraints on untrusted
content, such as whether the content is allowed to
contain static HTML markup or must be plain text.
Each instrumented call specifies the intended embed-
ding context. We further discuss embedding contexts
later in this section.

Figure 4(a) shows the PHP source for the blog
application whose output was shown in Figure 2. Line
6 of this application outputs an untrusted comment. To
use BLUEPRINT, this statement needs to be replaced
by a call to the BLUEPRINT server-side interface as
shown in Figure 4(b). Currently, our prototype relies
on these changes being made by the developer of a
web application. We note that these changes can be
automatically made to web application source code
by leveraging source-based taint tracking techniques
(e.g., [15]). Once integrated into a web application as
explained above, BLUEPRINT provides fully automatic
protection.

4.1. Context-dependent embedding

The specific location of each embedded model in web
application output depends on the application’s in-
tended use for the corresponding untrusted HTML. We
define seven contexts in which BLUEPRINT supports
embedding models of untrusted content. These contexts
along with examples are shown in Table 2 and are
explained below. We also describe the function of the
client side model interpreter in each context.

Structured HTML context. HTML consisting of
mixed elements and text is represented by the CXPC-
DATA context. In our running example, the blog com-
ment in Figure 2(a) containing HTML appeared in this
context, and the call to Blueprint::cxPCData() in
Figure 4(b) outputs the encoded model for this context.
On the client side, the BLUEPRINT model interpreter
enforces a policy in this context that allows adding only
child or sibling content nodes to the document tree. The
content model for CXPCDATA is embedded directly in
place of the original untrusted HTML.

Plain text contexts. Flat character data regions that
are not allowed to contain nested elements or entity
references, such as CDATA sections, are represented
by the CXCDATA context. For models in this context,
only a single text node will be added to the document
tree. The content model for CXCDATA is embedded
directly in place of the original untrusted text.

A second plain text context is the document title.
Many web applications allow users to specify plain text
to be contained in the title element of a web page.
For instance, many bulletin-board systems display user-
provided message subject lines in the title. To support
this use case, BLUEPRINT defines the CXTITLE context
to accept untrusted plain text to be inserted in the web
page’s title element.

Existing browsers require the title element to be
a child of the document’s head element. However,
CXTITLE models are embedded as child nodes of the
body element because it is safer to exclude untrusted
data from the head, where the document character
encoding is still being determined by the browser and
because code elements cannot occur in the head.

Attribute and attribute value contexts. In these two
contexts, CXATTRIB and CXATTRIBVAL, the model is
embedded immediately after the open tag for elements
that support nested (i.e., child) elements. For other
elements, including empty elements which consist of a
single tag (e.g.,) and no children, the model
is embedded as the next sibling immediately after the
element the attribute applies to.

JavaScript data contexts. Content models for
CXJSSTRING and CXJSNUMBER are embedded in the
trusted script directly where untrusted data is used.

5. Evaluation
We conducted extensive experiments to evaluate ef-
fectiveness and performance of BLUEPRINT on eight
popular web browsers: Chrome 1.0; Firefox (versions
2.0 and 3.0); IE (v7.0 and 6.0); Opera 9.6; and Safari
(v3.2 and 3.1). The total market share of these browsers
was recently measured at over 96% [16]. Results of the

Context Description Example
CXATTRIB Element attribute <td align="center" nowrap> . . . </td>
CXATTRIBVAL Element attribute value . . .
CXCDATA Character data (CDATA) <![CDATA[untrusted]]>
CXJSNUMBER JavaScript numeric literal var x = 10;
CXJSSTRING JavaScript string literal var x = "untrusted";
CXPCDATA Parsed character data (PCDATA) <p> untrusted <i>content</i> </p>
CXTITLE Document title <title> Profile for user: untrusted </title>

Table 2. Untrusted HTML embedding contexts supported by BLUEPRINT, as indicated by examples in bold underline.

evaluation fall into three categories: (1) compatibility
with various types of social web applications, (2) ef-
fectiveness against attacks, and (3) several performance
overheads.

5.1. Compatibility and expressiveness

For the following tests, we integrated BLUEPRINT with
two popular web applications that produce HTML out-
put based on untrusted user input: MediaWiki, the code
base used for the web site Wikipedia, and WordPress,
a popular blog application. Both applications directly
allow HTML as input from untrusted users.

Integration with web applications. We integrated
BLUEPRINT into the source code of both applications
by adding calls to our server-side component to au-
tomatically generate and embed models at runtime.
We modified three sensitive outputs in WordPress used
for user comments to blog articles. WordPress did not
exhibit any noticeable difference in functionality due
to the BLUEPRINT integration.

MediaWiki was modified to protect the document ti-
tle and the entire body of article (page-specific) content
using BLUEPRINT, leaving the trusted border region
unmodified. The document title and article content
are derived from wiki markup given by the user, and
thus should be defended from malicious input. We
encountered a problem with MediaWiki, as it included
a script (to hide and reveal the table of contents)
within the untrusted article region — a dangerous
practice. BLUEPRINT disallowed this script, but we
easily relocated it into the trusted part of the page to
restore functionality.

The effective ease with which we were able to
integrate BLUEPRINT in two highly popular and ex-
pressive web application platforms demonstrates the
high compatibility of our approach.

Content complexity. A primary objective of our ap-
proach is to allow untrusted content to be expressive,
yet free from XSS attacks. For blog applications,
untrusted content usually consists of user comments
with simple markup and styling. A better test of the
policies we employed is the wiki application, as the
HTML and CSS markup used is much more complex
and demanding. Elements are finely positioned, images

are frequently embedded, and obscure constructs are
sometimes used to fine-tune the look of a wiki page.

Our test suite included a wiki page that was featured
by Wikipedia (available in [17]). This high standard
is awarded to pages that are very well tuned, both in
information accuracy and presentation. Therefore we
used this page as a benchmark to demonstrate content
expressiveness. In all browsers we tested, the wiki
content rendered as well using our transformations as
it did in original form.

We conclude that BLUEPRINT is permissive enough
for many demanding web applications. The base white-
list we leveraged [8], combined with additional protec-
tions applied to potentially unsafe elements, allow a
flexible yet safe palette for untrusted content.

5.2. Defense effectiveness
The primary goal of our defense is to be effective
against a wide variety of XSS attacks. For our testing
we chose XSS Cheat Sheet [4], which includes com-
plex examples of XSS attack strings. Many of these ex-
amples are noteworthy for undermining sophisticated,
real-world regular expression based defenses. Further-
more, the cheat sheet contains attacks that combine
exploits of several browser parse quirks to achieve
execution of arbitrary script commands.

We categorized all cheat sheet attacks according to
vectors exploited. Also, we created an automated test
platform to evaluate the threat of each attack vector
on multiple browsers. To fully exercise vulnerabilities,
the platform embeds attack strings in a variety of
different contexts in a template web page. We then
integrated BLUEPRINT into the test platform to evaluate
its success rate in defending against attacks.

Results for this experiment are summarized in Ta-
ble 3. At the time of testing, the growing XSS Cheat
Sheet contained 113 entries. Of these, we classified
94 entries as XSS attack examples. The non-XSS
attacks listed are: URI obfuscation (14x), cross-site
request forgery (2x), server-side includes (1x) and PHP
command injection (1x). The informational “attack”
is Character Encoding Example. The test platform
automates testing of 72 attacks in various contexts,
leaving 22 for manual evaluation. For each of the
eight browsers listed above, BLUEPRINT successfully

Type of attack # of variations # defended

Cross-site scripting 94 94
Other (non-XSS) 18 0
Informational 1 0

Total 113 94

Table 3. XSS Cheat Sheet defense effectiveness test
results. Results are for all browsers listed in Sec. 5.

defended all 94 XSS attacks, thus protecting these
browsers from their own parsing quirks.

Evaluating these 94 attack vectors on all browsers in
our test set lends support for our strong XSS defense
claims in Section 2. The attack strings were represented
using a syntactically inert alphabet when exposed to
browser parsers, and as a result there were no success-
ful attacks due to browser parsing decisions. Because
BLUEPRINT only employed reliable DOM APIs to
construct content based on the attack strings, none of
the untrusted input was recursively parsed resulting in
an attack. Also, none of the URI attack vectors suc-
ceeded. Although our very limited expectations about
browser parsing are difficult to prove (especially for
closed-source browsers) they are well supported by our
experimental results.

We also tested our defense against attacks on a well-
known vulnerable system administration page in Word-
Press version 2.0.5 [18]. Our approach was successful
at defending this vulnerability.

5.3. Resource utilization

We stove to stress our implementation and evaluate the
performance of BLUEPRINT-enabled WordPress and
MediaWiki under the worst possible conditions for
varying amounts of embedded untrusted content.

To evaluate WordPress, we measured resource uti-
lization of a real-world blog article as the number of
untrusted user comments increased from 0–250, with
an average of 1kB of HTML per comment (worst-case)
before model generation. For MediaWiki, we measured
resource utilization of the featured Wikipedia article
tested above, as its untrusted content size grew in
roughly 4kB increments.

Test scenario. For the WordPress tests, we considered
all user-created comments as untrusted. These regions
contain untrusted content in 3 contexts: the HTML
comment body, plain text user name and user home
page URI. In wiki pages, the document title and entire
body of article content is under the control of users and
can contain XSS attacks. We considered the title and
all wiki article content as untrusted, allowing testing of
large, complex content models.

Each tested page includes a link to our 15.6kB model
interpreter, which was cached by the browsers in our

0 4 8 12
Average memory overhead with Blueprint enabled (%)

Chrome 1

Firefox 3

Firefox 2

IE 7

IE 6

Opera 9.6

Safari 3.2

Safari 3.1 MediaWiki
WordPress

0 4 8 12
Average memory overhead with Blueprint enabled (%)

Chrome 1

Firefox 3

Firefox 2

IE 7

IE 6

Opera 9.6

Safari 3.2

Safari 3.1

Figure 5. Average memory overhead for all tested
WordPress and MediaWiki pages, by browser.

experiment. The server test platform was Apache 2.2.8
on Ubuntu 8.04 LTS Server, AMD Athlon 64 X2 Dual-
core 4000+ CPU (2.1GHz), and 2GB RAM. The client
test platform used Windows XP, as Windows is the
only platform that natively supports all browsers in our
test. The operating system was installed in a Virtual-
Box OSE virtual machine (allocated 1GB RAM), with
host OS Ubuntu 8.10. Client hardware consisted of a
ThinkPad X61s with Intel Core 2 Duo L7500 processor
(1.60GHz), 4GB RAM.

Memory consumption. The total system memory con-
sumed by each browser was measured for renderings of
original, unmodified pages and pages implementing our
XSS defense. Browser processes were set to initially
display a blank page, and then navigated to a page in
our test set for measurement. Results of this test are
shown in Figure 5. We noted overheads ranging from
zero to 13.6%, but averaging a modest 5%.

Page size overhead. The change in HTML size for
pages with BLUEPRINT can be attributed to three
factors:
1) per-model overhead due to embedding of model

interpreter invocation scripts,
2) text size overhead due to Base-64 encoding, and
3) HTML markup size efficiency due to encoding of

element tags, attributes and style properties.
To assess these effects, we compared the total size of
untrusted content in the original HTML of each tested
page to the total size of our model code in the modified
page. The measured overhead for WordPress averaged
52.4%, and for MediaWiki averaged 13.9%. The differ-
ence between these can be attributed to the relatively
high ratio of HTML markup to plain text content in
MediaWiki, and the higher number of content models
(534 models for 250 comments) in WordPress. HTML
markup is very efficient in BLUEPRINT, as it takes only
two bytes to encode a open / close tag or attribute
/ property name. However, text is less efficient as it
incurs the 33% overhead due to Base-64 encoding.
Also, our current implementation requires about 95

0 50 100 150 200 250
Comments’ total HTML size (kB)

0

0.5

1

1.5

2

2.5

3

P
ag

e
g

en
er

at
io

n
 t

im
e

(s
)

Original

Blueprint

of blog comments

0 50 100 150 200 250

(a)

0 10 20 30 40
Article content HTML size (kB)

0

0.25

0.5

0.75

1

P
ag

e
g

en
er

at
io

n
 t

im
e

(s
)

Original

Blueprint
(b)

Figure 6. Time taken by server to generate (a) Word-
Press pages with increments of 25 user comments, and
(b) MediaWiki article text as article size increases.

bytes of overhead for each embedded model, due to
the addition of <code> tags and model interpreter
invocation script.

Server page generation overhead. Time required by
the server to generate web pages was measured during
each of our tests and the results are given in Figure 6.
We noted the average increase in processing time was
55% for WordPress and 35.6% for MediaWiki. It is
important to note that each of these applications utilize
built-in HTML parsing and sanitization functions that
are redundant with the addition of parsing in BLUE-
PRINT. Eliminating this redundancy will be helpful in
obtaining optimal performance from our defense.

There was some clear variation in performance be-
tween applications. The implementation of handling
untrusted markup in these applications is very differ-
ent: WordPress makes several (sometimes hundreds)
of calls to BLUEPRINT for model generation, while
MediaWiki only made 3 calls per page. To optimize
page generation times on the server, the results of
this test suggest using BLUEPRINT to generate fewer,
larger content models can be an effective strategy. For
example, instead of using separate models to convey
the blog comment text, author name and URI, a single
model encompassing the entire comment area could be
used. This wider granularity comes at the expense of
fine-grained control over specific areas of a web page
that contain untrusted content.

Client page rendering latency increase. We measured
the additional delay incurred while rendering BLUE-
PRINT-enabled pages on all 8 browsers in our test and

0 50 100 150 200 250
Comments’ total HTML size (kB)

0

0.5

1

1.5

2

2.5

3

3.5

D
if

fe
re

n
ce

 i
n

 p
ag

e
re

n
d

er
 t

im
e

(s
)

Safari 3.1

Safari 3.2

IE 6

IE 7

Opera 9

Firefox 2

Firefox 3

Chrome 1

of blog comments

0 50 100 150 200 250

(a)

0 10 20 30 40
Article content HTML size (kB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

D
if

fe
re

n
ce

 i
n

 p
ag

e
re

n
d

er
 t

im
e

(s
)

Safari 3.1

Safari 3.2

IE 6

IE 7

Opera 9

Firefox 2

Firefox 3

Chrome 1

(b)

Figure 7. Additional time required to render each tested
(a) WordPress blog page and (b) MediaWiki page when
BLUEPRINT was enabled. Results vary by browser.

present the results in Figure 7. In these graphs, the hor-
izontal axis represents the number of bytes the original
untrusted HTML required. We feel this measurement
serves to better apply our results to other applications,
although the size of untrusted content models are
another significant contributing factor to performance.
(One can use average page size overhead results from
this section to roughly convert between the two as
needed.) The vertical axis shows the extra time required
to completely render a BLUEPRINT-enabled page in the
browser, when compared to the regular delay required
to render each page without BLUEPRINT. To mimic
worst-case browser processing overheads, our client
measurements were taken by requesting pages from a
server on the same local network, devoid of any effects
of typical network transmission. As a result, the data
in Figure 7 reflects delays on the server and delays on
the browser due to changes in untrusted content, but
does not reflect typical network delays.

We take a user-centric view in the discussion of
client performance. For example, a user may take
several tens of minutes to read a blog article including
250 comments. Using BLUEPRINT, the page is ren-
dered with less than one second of latency in the best

0 500 1000 1500
Time (ms)

Client with BP
Server with BP
Original client

Original server

End processing

Comment sent / rendered

Begin processing

Page request

Figure 8. Comparison of client / server performance as affects end-user experience with and without BLUEPRINT.
Results are from the experiment on WordPress with 100 untrusted user comments rendered by Firefox 2. Large dots
depict every 25th comment sent (by the server) or rendered (by the client).

performing browser (Chrome 1) and only 3.4 seconds
of latency in the worst performer (IE 6).

There is a large decrease in performance in IE
browsers on the MediaWiki test at an article size of
18kB, due to an increase in markup-to-text ratio at
that position (effects of which are discussed earlier)
and well-known bottlenecks in the IE DOM imple-
mentation. Rendering latencies steadily increased as
WordPress pages grew, while for MediaWiki tests,
better performing browsers such as Safari 3.2 had
relatively constant speeds. This effect can be attributed
to the much more efficient DOM implementations in
these fast browsers that rivals the speed of their own
HTML interpreter, and the smaller file size of the wiki
article (thus less network and server overheads).

CSS performance on IE. Continuing with the user-
centric discussion, we look at how our IE-specific
CSS transformation affects browser performance. Re-
call from Section 3.2.1, to fully protect against CSS-
based XSS attacks, normally-static CSS property values
are transformed into trusted dynamic content. The extra
load of executing a short script every time the browser
requests a style property value could negatively affect
performance.

Of the applications we tested, only MediaWiki made
use of this transformation. A total of 206 calls to
setExpression() were made by our model inter-
preter while creating the full wiki article. Client render-
ing speed was not affected, as both tested IE versions
had similar performance trends on both applications.
Subjectively, we experimented with adjusting browser
window geometry, which generated many thousands of
calls requesting dynamic CSS property values, and did
not perceive negative performance.

Effects on user experience due to delays. As a
final assessment on the impact of BLUEPRINT on user
browsing experience, we compare various stages in the
page request / response cycle with and without our
defense approach. The results of this test are shown
in Figure 8. We observed that server speeds were
very similar for both page requests until untrusted
data regions are encountered. This can be seen in the
very close times in which the first comment becomes
visible to the user on both pages. Although there is an

overall latency, Figure 8 indicates much of this delay
is imperceptible to a user who reads the web page in
a continuous manner from top to bottom. The results
also suggest that overall delays can be mitigated by
serving fewer comments per page as many advanced
online discussion systems such as Slashdot do today.
These systems select a few comments for initial display
then retrieve more comments upon request from the
user via Ajax remote procedure calls. BLUEPRINT fully
supports this optimization, as the server can be pro-
grammed to send models instead of HTML comments
in response to Ajax requests.

6. Related work
Vulnerability Analysis. There are several approaches
[19], [20], [21] that rely on static source code analysis
techniques to detect XSS injection vulnerabilities in
web applications. These techniques identify sources
(i.e., points of input) and sinks (e.g., query issuing
locations), then check whether every source-to-sink
data flow passes through an input validation function.
Wassermann [22] and Balzarotti [23] also proposed
solutions to the important problem of verifying the
correctness of filter functions. These works address
the important issue of analyzing and exposing a web
application’s vulnerabilities. However, as discussed in
[24] and in Section 1, ensuring soundness of any filter
function for script-free HTML is inherently a difficult
problem due to unreliable browser behavior.
Client-side impact mitigation. Noxes [25] and
NoMoXSS [26] are client-side XSS defenses that fo-
cus on ensuring confidentiality of sensitive data (e.g.,
cookies) by analyzing the flow of data through the
browser, rather than preventing unauthorized script
execution. These approaches empower users to protect
themselves from XSS attacks without relying on web
applications to implement an effective defense. How-
ever, attacks that do not violate same-origin policies are
left unprotected by these schemes. Also, novice users
cannot be expected to deploy a client-side XSS defense,
and therefore web applications must provide additional
security to protect all users.
Defense against reflected XSS attacks. Recent works
have shown reflected XSS attacks can be detected by

comparing HTTP request parameters with response
data output by the web application, and mitigated
by filtering the response. This approach has been
implemented on the client side [27], [28] and server
side [29], [30], leveraging the unique perspective and
enforcement capabilities of either side. These solutions
are scalable and effective at preventing reflected XSS
attacks without requiring support from the other end.
Since they do not require web application changes,
they can be rapidly deployed in any organization.
However, these defenses can be manipulated to deny
the execution of legitimate scripts via spoofing attacks.
XSS-DS [29] uses a learning based approach to reduce
these false alarms.

Defenses requiring changes to web standards or
browser modifications. Enabling web applications to
communicate web content policies to browsers for
subsequent enforcement is an active research area.
Works in this area [5], [31], [32], [33] leverage on
the web application’s ability to discern between trusted
and untrusted web content, and the browser’s ability to
enforce web content policies. Results show this general
approach is very good at preventing XSS attacks, and
so these works are targeted at web standards writers
and browser developers to facilitate adoption of the
technique. Once standards evolve and browsers that
support these techniques obtain significant deployment
numbers, we expect web applications to start adopting
this approach to reduce their vulnerability to XSS.

DSI [32], Noncespaces [33] and BLUEPRINT are all
related in the common goal of preserving the integrity
of document structure on the browser. Within this
problem context, DSI explores in detail the issue of
providing dynamic integrity protection, while Nonces-
paces explores the issue of supporting fine-grained
policies such as allowed content types in untrusted
content. The implementation approaches in both DSI
and Noncespaces use randomized node delimiters for
isolation and browser collaboration for policy enforce-
ment. Both Noncespaces and DSI are designed to
enable untrusted content to be displayed on existing
browsers, but without any assurance about protection
from XSS attacks on these browsers.

BLUEPRINT explores some of the open problems
suggested in our previous works [34], [35] on XSS
defense. In BLUEPRINT we strive to minimize trust
placed on an existing browser to safely render untrusted
content in a document. For dynamic protection, BLUE-
PRINT relies on careful implementation and testing
of trusted scripts to safely handle untrusted data, by
implementing safeguards such as disallowing direct
writes or dynamically collaborating with the server
using Ajax. Our implementation support for policies
on untrusted HTML content is comparable to Non-

cespaces. In addition, we provide support for policy
enforcement over untrusted data in JavaScript contexts.

Compared to all these approaches that leverage na-
tive browser support, BLUEPRINT requires more pro-
cessing overhead on the web server and browser, and
increased page sizes. However, BLUEPRINT has the
important practical benefit of being an effective defense
mechanism on currently deployed browsers in their
default configurations.
Server-deployed XSS defenses. Several approaches in
the literature [36], [37], [38], [15], [35] help prevent
XSS attacks by utilizing dynamic tracking techniques
to control the propagation and use of unsafe data in
the web application. Although these defenses endeavor
to sanitize untrusted output, they still leverage browser
parsers to interpret untrusted HTML and therefore are
susceptible to attacks that exploit browser parse quirks.

Many software tools [7], [39], [40], [41] use parsing
as an advanced filtering method and normalize HTML
output to minimize the risk of XSS attacks. Given
the status of HTML parsing in various browsers, such
advanced content mitigation schemes are a necessary
first level of defense in preventing sophisticated XSS
attacks. BLUEPRINT seeks to extend the capabilities
of these approaches by minimizing the exposure of
untrusted data to the browser’s parser.
Use of JavaScript to mitigate XSS. In the past year
or two, the application of client-side code to prevent
or mitigate XSS attacks has been pursued by [42],
[43], [44], [45]. BLUEPRINT systematically explores
the application of this approach to minimize trust on
a browser’s parser, offers insights into the strengths of
this idea, develops techniques for defending numerous
XSS vectors, provides a novel implementation and
comprehensive evaluation.

Di Paola [42] sketched the use of client-side Java-
Script code to support a data binding scheme whereby
a web application splits its output web page into two
partitions: one consisting of entirely trusted HTML
with destination markers for untrusted content, and a
second partition containing the untrusted HTML. How-
ever, this partitioning has the unfortunate side effect of
delaying the rendering of untrusted content until after
all trusted content has rendered. BLUEPRINT carefully
reasons through the paths traversed by untrusted HTML
to minimize risks while embedding the untrusted con-
tent inline with trusted HTML. We therefore preserve
the original in-order rendering sequence of the web
page, and further demonstrate that the effect of our
approach on the web experience of the end user is
minimal.

NeatHtml [43] and Caja [44] take an alternate ap-
proach by performing parsing of untrusted HTML
using a client-side trusted JavaScript library. After pars-

ing, untrusted content is filtered in a series of steps to
ensure that it is free of script content. They both embed
untrusted HTML in the web page using trusted client-
side JavaScript code via the innerHTML DOM property
(for Caja this is a deliberate optimization choice),
which protects against node-splitting attacks. However,
as discussed in Section 2, bypassing the parser and
inclusion of untrusted content through innerHTML in
a safe manner requires a very careful and complex
escaping and filtering strategy, as illustrated by the
nuanced implementations in these works. In contrast,
BLUEPRINT does not rely on client-side filtering, and
uses a much less complex client-side library that merely
interprets declarative statements to programmatically
create DOM nodes as intended by the server.

Confining the behavior of untrusted scripts. A num-
ber of recent efforts are actively focused on enabling
safe execution of untrusted scripts by transforming
JavaScript code [46], [47], [48], [49], [44], [45]. These
efforts intervene on script operations to enforce high-
level policy constraints. This is a finer-grained control
than BLUEPRINT offers, as our approach conservatively
disallows execution of all untrusted scripts even if they
are benign (a sufficient requirement for many web
applications such as blogs and wikis).

By restricting untrusted input to FBML [49] (an
HTML-like markup language), Facebook allows em-
bedding of FBJS [50] (a JavaScript-like script lan-
guage) only in strictly defined contexts. The web appli-
cation converts FBML to HTML and transforms FBJS
to monitored JavaScript code. Felt [51] demonstrated
this approach of restricting user input to a language
that carefully limits the use of scripts is not sufficient
for preventing unauthorized scripts in final output.

Caja [44] and Web Sandbox [45] are designed to
safely implement dynamic gadgets for web mash-ups,
and thus must allow the execution of untrusted scripts.
They focus primarily on the difficult challenge of
safely executing untrusted script content and do not
exhaustively explore the problem of enabling a web ap-
plication to exert control over how untrusted content is
interpreted by the browser. In addressing this problem,
BLUEPRINT takes extreme steps to prevent the influ-
ence of browser parsers over the way web content is
generated from untrusted HTML. BLUEPRINT ensures
untrusted data is only visible to the HTML, JavaScript
and URI parsers as a sequence of syntactically-inert
characters. Furthermore, our approach to setting CSS
property values deliberately avoids the parsing state in
IE’s CSS implementation responsible for identifying
script content. These measures lead to a strong assur-
ance that BLUEPRINT can reproduce approved content
models in unmodified browsers accurately, which is an
important and fundamental goal for all of these works.

7. Conclusion
In this paper, we presented the design and implemen-
tation of BLUEPRINT, a robust prevention approach
to cross-site scripting attacks that was demonstrably
effective on existing web browsers comprising over
96% market share. By reducing the web application’s
dependency on unreliable browser parsers, we provide
strong assurance that browsers will not execute unau-
thorized scripts in low-integrity application output.

XSS attacks can be avoided with less overheads
by adding native browser support for enforcing high-
level policies dictated by the web application. How-
ever, it takes a long time for standards to be agreed
upon and browser vendors to implement these changes.
BLUEPRINT is a promising and effective intermediate
solution that can safeguard end-users from XSS attacks
until standards and browsers evolve to provide univer-
sal, built-in support for disallowing unauthorized script
execution.

A prototype implementation of BLUEPRINT is avail-
able for experimentation at the project website:

http://sisl.rites.uic.edu/blueprint

Acknowledgements
We thank Prithvi Bisht and Rohini Krishnamurthi for
valuable insights and support with the server-side im-
plementation. We also thank our shepherd Giovanni
Vigna, R. Sekar and the anonymous reviewers for the
helpful and thorough feedback received. This work was
partially supported by National Science Foundation
grants CNS-0716584 and CNS-0551660.

References
[1] S. Kamkar, “I’m popular,” 2005, description and technical

explanation of the JS.Spacehero (a.k.a. “Samy”) MySpace
worm. [Online]. Available: http://namb.la/popular

[2] OECD Directorate for Science, Technology and Industry, Par-
ticipative Web and User-Created Content: Web 2.0, Wikis and
Social Networking. OECD Publishing, Oct. 2007, ch. 2, pp.
19–25.

[3] B. Newton, “The hyper-growth of web 2.0 applications,” Mar.
2008, seminar. [Online]. Available: http://www.innominds.
com/webinar.html

[4] R. Hansen, “XSS (cross site scripting) cheat sheet esp: for
filter evasion,” 2008. [Online]. Available: http://ha.ckers.org/
xss.html

[5] T. Jim, N. Swamy, and M. Hicks, “Defeating script injection
attacks with browser-enforced embedded policies,” in 16th
International World Wide Web Conference, Banff, AB, Canada,
May 2007.

[6] World Wide Web Consortium, “Document object model
(DOM) level 2 core specification,” Nov. 2000. [Online].
Available: http://www.w3.org/TR/DOM-Level-2-Core/

[7] E. Z. Yang, “HTML Purifier.” [Online]. Available: http:
//htmlpurifier.org

[8] ——, “HTML Purifier: Default whitelist.” [Online]. Available:
http://htmlpurifier.org/live/smoketests/printDefinition.php

[9] S. Josefsson, “The Base16, Base32, and Base64 data
encodings,” Jul. 2003, RFC 3548. [Online]. Available:
http://tools.ietf.org/html/rfc3548

[10] M. Wallent, “About dynamic properties,” 1998. [Online].
Available: http://msdn.microsoft.com/en-us/library/ms537634.
aspx

[11] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform
resource identifier (URI): Generic syntax,” Jan. 2005, RFC
3986. [Online]. Available: http://tools.ietf.org/html/rfc3986

[12] M. Ter Louw and V. N. Venkatakrishnan, “Blueprint: Robust
prevention of cross-site scripting attacks for existing browsers,”
University of Illinois at Chicago, Tech. Rep., May 2009.

[13] Wikipedia contributors, “Same origin policy,” Feb. 2008.
[Online]. Available: http://en.wikipedia.org/w/index.php?title=
Same origin policy&oldid=190222964

[14] World Wide Web Consortium, “HTML 4.01 specification,”
Dec. 1999. [Online]. Available: http://www.w3.org/TR/html4/

[15] W. Xu, S. Bhatkar, and R. Sekar, “Taint-enhanced policy
enforcement: A practical approach to defeat a wide range of
attacks,” in 15th USENIX Security Symposium, Vancouver, BC,
Canada, Aug. 2006.

[16] Net Applications, “Browser version market share,”
statistics for Q4 2008. [Online]. Avail-
able: http://marketshare.hitslink.com/browser-market-share.
aspx?qprid=2&qptimeframe=Q&qpsp=39

[17] Wikipedia Contributors, “2005 Azores subtropical storm,” Nov.
2008. [Online]. Available: http://en.wikipedia.org/w/index.
php?title=2005 Azores subtropical storm&oldid=243545716

[18] D. Kierznowski, “WordPress persistent XSS,” Dec.
2006. [Online]. Available: http://michaeldaw.org/md-hacks/
wordpress-persistent-xss/

[19] V. B. Livshits and M. S. Lam, “Finding security errors in
Java programs with static analysis,” in 14th Usenix Security
Symposium, Baltimore, MD, USA, Jul. 2005, pp. 271–286.

[20] Y. Xie and A. Aiken, “Static detection of security vulner-
abilities in scripting languages,” in 15th USENIX Security
Symposium, Vancouver, BC, Canada, Aug. 2006.

[21] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis
tool for detecting web application vulnerabilities,” in IEEE
Symposium on Security and Privacy, Oakland, CA, USA, May
2006.

[22] G. Wassermann and Z. Su, “Static detection of cross-site
scripting vulnerabilities,” in 30th International Conference on
Software Engineering, Leipzig, Germany, May 2008.

[23] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,
C. Kruegel, E. Kirda, and G. Vigna, “Saner: Composing
static and dynamic analysis to validate sanitization in web
applications,” in IEEE Symposium on Security and Privacy,
Oakland, CA, USA, May 2008.

[24] D. Wagner, “Answers to homework #1,” 2008. [On-
line]. Available: http://www.cs.berkeley.edu/∼daw/teaching/
cs261-f08/hws/hw1sol.html

[25] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic, “Noxes: A
client-side solution for mitigating cross-site scripting attacks,”
in 21st Annual ACM Symposium on Applied Computing, Dijon,
France, Apr. 2006.

[26] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel,
and G. Vigna, “Cross-site scripting prevention with dynamic
data tainting and static analysis,” in 14th Annual Network &
Distributed System Security Symposium, San Diego, CA, USA,
Feb. 2007.

[27] D. Ross, “IE 8 XSS filter architec-
ture / implementation,” Aug. 2008. [Online].
Available: http://blogs.technet.com/swi/archive/2008/08/19/
ie-8-xss-filter-architecture-implementation.aspx

[28] G. Maone, “NoScript features: Anti-XSS protection.” [Online].
Available: http://noscript.net/features#xss

[29] M. Johns, B. Engelmann, and J. Posegga, “XSSDS: Server-
side detection of cross-site scripting attacks,” in 24th Annual
Computer Security Applications Conference, Anaheim, CA,
USA, Dec. 2008.

[30] R. Sekar, “An efficient black-box technique for defeating web
application attacks,” in 16th Annual Network & Distributed
System Security Symposium, San Diego, CA, USA, Feb. 2009.

[31] A. Felt, P. Hooimeijer, D. Evans, and W. Weimer, “Talking
to strangers without taking their candy: Isolating proxied
content,” in 1st International Workshop on Social Network
Systems, Glasgow, Scotland, Apr. 2008.

[32] P. Saxena, D. Song, and Y. Nadji, “Document structure in-
tegrity: A robust basis for cross-site scripting defense,” in 16th
Annual Network & Distributed System Security Symposium,
San Diego, CA, USA, Feb. 2009.

[33] M. Van Gundy and H. Chen, “Noncespaces: Using random-
ization to enforce information flow tracking and thwart cross-
site scripting attacks,” in 16th Annual Network & Distributed
System Security Symposium, San Diego, CA, USA, Feb. 2009.

[34] M. Ter Louw, P. Bisht, and V. N. Venkatakrishnan, “Analysis
of hypertext isolation techniques for cross-site scripting pre-
vention,” in 2nd Workshop in Web 2.0 Security and Privacy,
Oakland, CA, USA, May 2008.

[35] P. Bisht and V. N. Venkatakrishnan, “XSS-GUARD: Precise
dynamic prevention of cross-site scripting attacks,” in 5th
Conference on Detection of Intrusions & Malware, and Vul-
nerability Assessment, Paris, France, Jul. 2008.

[36] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and
D. Evans, “Automatically hardening web applications using
precise tainting,” in 22nd IFIP TC 7 Conference on System
Modeling and Optimization, Turin, Italy, Jul. 2005.

[37] T. Pietraszek and C. Vanden Berghe, “Defending against
injection attacks through context-sensitive string evaluation,” in
8th International Symposium on Recent Advances in Intrusion
Detection, Seattle, WA, USA, Sep. 2005.

[38] Z. Su and G. Wassermann, “The essence of command injec-
tion attacks in web applications,” in 33rd ACM SIGPLAN–
SIGACT Symposium on Principles of Programming Languages,
Charleston, SC, USA, Jan. 2006.

[39] “PHP input filter,” 2008. [Online]. Available: http://www.
phpclasses.org/browse/package/2189.html

[40] “The KSES project,” 2008. [Online]. Available: http:
//sourceforge.net/projects/kses

[41] “The htmLawed project,” 2008. [Online].
Available: http://www.bioinformatics.org/phplabware/internal
utilities/htmLawed/index.php

[42] S. Di Paola, “Preventing XSS with data binding.” [Online].
Available: http://www.wisec.it/sectou.php?id=46c5843ea4900

[43] D. Brettle, “NeatHtml: Displaying untrusted content securely,
efficiently, and accessibly,” Jun. 2008, white paper.
[Online]. Available: http://www.brettle.com/NeatHtml/docs/
Fighting XSS with JavaScript Judo.html

[44] Google Caja, “A source-to-source translator for securing
JavaScript-based web content.” [Online]. Available: http:
//code.google.com/p/google-caja/

[45] Microsoft Live Labs, “Web Sandbox.” [Online]. Available:
http://websandbox.livelabs.com

[46] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Es-
meir, “BrowserShield: Vulnerability-driven filtering of dy-
namic HTML,” in 7th Symposium on Operating Systems De-
sign and Implementation, Seattle, WA, USA, Nov. 2006.

[47] D. Yu, A. Chander, N. Islam, and I. Serikov, “JavaScript
instrumentation for browser security,” in 34th Annual ACM
SIGPLAN–SIGACT Symposium on Principles of Programming
Languages, Nice, France, Jan. 2007.

[48] H. Kikuchi, D. Yu, A. Chander, H. Inamura, and I. Serikov,
“JavaScript instrumentation in practice,” in 6th Asian Sym-
posium on Programming Languages and Systems, Bangalore,
India, Dec. 2008.

[49] Facebook Developers, “Facebook markup language.”
[Online]. Available: http://wiki.developers.facebook.com/
index.php/FBML

[50] ——, “Facebook JavaScript.” [Online]. Available: http:
//wiki.developers.facebook.com/index.php/FBJS

[51] A. Felt, “Defacing Facebook: A security case study,” Jul.
2007, white paper. [Online]. Available: http://www.cs.virginia.
edu/felt/fbook/facebook-xss.pdf

