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In [Wilkinson et al. 2011] we introduced a new set-covering random-projection classifier that achieved av-
erage error lower than that of other classifiers in the Weka platform. This classifier was based on an L∞

norm distance function and exploited an iterative sequence of three stages (projecting, binning, and cover-
ing) to deal with the curse of dimensionality, computational complexity, and nonlinear separability. We now
present substantial changes that improve robustness and reduce training and testing time by almost an
order of magnitude without jeopardizing CHIRP’s outstanding error performance.
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1. INTRODUCTION
This paper reviews the design of the CHIRP classifier introduced in [Wilkinson et al.
2011] and presents important revisions and extensions of the CHIRP algorithm that
substantially improve its performance. CHIRP was designed to address the curse of
dimensionality and exponential complexity by using projection, binning, and covering
in a sequential framework. For class-labeled points in high-dimensional space, CHIRP
employs computationally-efficient methods to construct 2D projections and sets of rect-
angular regions on those projections that contain points from only one class. CHIRP
organizes these collections of projections and regions into a decision list for scoring
new data points. The scoring model is based on sets of rectangles, called Composite
Hypercube Description Regions.

1.1. Composite Hypercube Description Regions (CHDRs)
While the union of open spherical balls is used to define a basis for the L2 Euclidean
metric topology, we can alternatively use balls based on other Lp metrics. For CHIRP,
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we employ the L∞ or sup metric:

||x||∞ = sup(|x1|, |x2|, . . . |xn|)
when we search for neighbors. In this search, we are looking for all neighbors of a point
at the center of a hypercube of fixed size in a vector space. Because we are concerned
with finite-dimensional vector spaces in practice, we will use max() instead of sup()
from now on.

Definition 1.1. A hypercube description region (HDR) is the set of points less than
a fixed distance from a single point (called the center) using the L∞ norm. A weighted
hypercube description region is an HDR that uses the positively weighted L∞ norm:

||x||∞ = max(w1|x1|, w2|x2|, . . . wn|xn|).
We will assume the term HDR refers to this more general case. Our use of weights
implies that different points in a high-dimensional space can have different weights
defining their hypercubes.

Definition 1.2. A composite hypercube description region (CHDR) is the set of points
inside the union of zero or more hypercube description regions.

The CHDR is the structure we use to define a region containing points belonging to a
single class or to no class. CHDRs are defined for any number of dimensions in a finite-
dimensional vector space. For scalability, we have limited them to two dimensions. The
original motivation for working with CHDRs was a visual classifier [Anand et al. 2009]
that generated a number of 2D projections and presented them sequentially to users
in displays like Figure 1. The subjects constructed CHDRs by drawing rectangular
regions around yellow dots on the display. This crude classifier worked surprisingly
well. Following those promising results, we subsequently removed humans from the
loop and we now grow CHDRs using an iterated covering algorithm. Figure 1 shows
an example of a CHDR covering a 2D projection of the Orange10 dataset used in our
tests later in this article. The CHDR represented by the blue region of the figure is a
composition of rectangles extending out to the edges of the frame.

Fig. 1. A CHDR covering class instances at the periphery of a projected random spherical distribution.
Data are the Orange10 dataset from [Hastie et al. 2001]. The data have been binned into a 24 × 24 grid
with the size of each dot proportional to the count of instances in each bin. Yellow is used to represent
the currently selected class; gray represents all other classes. All-yellow dots represent bins containing
only current class instances. All-gray dots represent bins containing only other-class instances. Gray dots
with yellow centers and yellow dots with gray centers represent mixed-class bins. The CHDR (a union of
rectangles) is colored blue; it covers bins such that the odds of covering current class instances vs. all other
instances are maximized.
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1.2. CHIRP Constructs a List of CHDRs
Each CHDR constructed by CHIRP is based on a different random 2D projection. The
algorithm is a one-against-all classifier [Dietterich and Bakiri 1995]. For each class Ck

in a training set, we (a) compute a 2D projection, (b) bin the projected data values in
a 2D rectangular segmentation, and (c) cover bins containing mostly instances of Ck

with a CHDR. We iterate over classes until we are unable to find bins pure enough to
classify remaining instances in the training set.

The result of this process is a list of CHDRs that can be used to score new data
points. A point is assigned to the first CHDR in the list that contains it. If no CHDR
contains the point, it is assigned to the closest CHDR in the list using smallest point-
to-rectangle L∞ distance.

CHIRP is an ensemble classifier. We run it m times and score a testing instance
based on simple-majority, equally-weighted vote. In this paper, we use m = 7. Increas-
ing m improves accuracy, but with diminishing gains.

Although CHIRP employs some well-known ideas, the combination of them de-
scribed in this paper results in a classifier that is novel and coherent. We will first
discuss related work, then present the algorithm, and finally present performance
comparisons between CHIRP and competitors. We will argue, in conclusion, that the
success of CHIRP is due to the statistical properties of its components and the way
they are combined.

2. RELATED WORK
Perhaps the most widespread use of rectangular description regions is in recursive par-
titioning trees [Breiman et al. 1984; Quinlan 1993]. These methods partition a space
into nested rectangular regions that are relatively homogeneous over the values of a
predicted variable. Our approach differs from these models, however, because it is not
restricted to a partitioning. Our description regions need not be disjoint or exhaustive.

Several teams have developed projection-pursuit classifiers [Lee et al. 2005; Flick
et al. 1990; Jimenez and Landgrebe 1995]. These efforts exploit the flexibility of affine
projections but have failed to ameliorate the computational complexity of projection
pursuit.

Researchers have used hyperboxes for classification through neural networks [Simp-
son 1992], mixed integer programming [Üney and Türkay 2006], set covering [Marc-
hand and Shawe-Taylor 2002], and decision lists [Sokolova et al. 2003; Aguilar et al.
1998]. These approaches can be slow to converge on larger datasets. Most importantly,
the hyperbox researchers restrict their method to 2D axis-parallel (pairs of features)
projections, so their utility is limited.

Finally, various researchers have used compositions of rectangles (unions and prod-
ucts) to characterize the results of unsupervised classification [Alpern and Carter
1991; Agrawal et al. 1998; Bu et al. 2005; Gao 2002; Gao and Ester 2006; Pu and
Mendelzon 2005]. The primary focus of these researchers has been to develop rapid
scoring methods that can be implemented inside a database through the use of rect-
angles. We will discuss some of this work in more detail as we describe the CHIRP
algorithm in the next sections.

3. CHIRP TRAINING
The CHIRP training algorithm consists of three stages – projecting, binning, and cov-
ering. We will describe these stages in detail in this section. First, however, we will
summarize preliminary data processing steps similar to those employed in other clas-
sifiers.
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3.1. Preliminary Normalizing and Transforming
We begin by reading n rows and p columns of a training dataset X. We code numerical
values as double precision numbers and string values as integers. We assume numer-
ical values are derived from continuous variables and string values from categorical
variables, although numerals can be treated as strings if so designated. We use the
terms feature and variable interchangeably to mean a mapping of a set of objects to a
set of values.

We normalize the data by rescaling each variable (feature) to the open unit interval.
Then we recode extremely skewed variables with a nonlinear transformation. In the
KDD paper, we used a folded square root transformation. Our decision on whether to
apply this transformation to a given variable was based on computing conventional
standardized skewness and kurtosis of that variable’s values and testing those statis-
tics against a False Discovery Rate criterion. This approach was time-consuming and
sensitive to outliers. In addition, the transformation itself was relatively ad hoc.

We now base our decision to transform on robust measures of skewness and kurto-
sis called L-skewness and L-kurtosis [Hosking 1990]. L-moments are based on order
statistics and are robust against outliers and generalize to a larger family of distri-
butions than do ordinary power-moments. In addition, computing L-moments requires
only a sort plus a pass through half the values.

A second important modification of our original transformation strategy is the sep-
aration of transforms to alleviate skewness and kurtosis. If the absolute value of L-
skewness exceeds .2, we apply the transformation:

y∗ = log(y/(1− y))/20

Otherwise, if L-kurtosis exceeds .2 (a peaked or leptokurtic distribution), we apply
the transformation:

y∗ = 1/(1 + exp(−6y + 3))

Figure 2 shows these two transforms. Our skewness transform resembles the well-
known logit function. Our kurtosis transform resembles the familiar logistic sigmoid
function. The point distribution above each plot shows the effect of the rescaling on
an equally-spaced set of points. For the skewness transform, the outer regions of the
unit interval are magnified and for the kurtosis transform, the middle section of the
interval is magnified.

Our goal in transforming is to improve our chances of discovering class separation
in relatively dense regions. This is especially important because we use binning (a
form of segmentation) to compress our data. Without transformation, highly-skewed
or kurtotic densities might concentrate in only one or two bins. The logic behind this
is similar to the rationale for using linearizing transformations in support vector ma-
chines.

The next three subsections describe the three stages that comprise the core of the
CHIRP algorithm. We iterate these three stages cyclically over classes until we are
unable to classify remaining training data. Each iteration is a one-against-all classifi-
cation step involving the current class vs. other classes.

3.2. Projecting
We compute 2D projections of variables in the hope of locating dense and well-
separated class distributions. To do this, we generate a candidate list of 1D projections,
pick the best of these based on a separation measure for the current class, and pair the
best to make a set of 2D projections.
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Fig. 2. Kurtosis and Skewness Transforms.

Before projecting, we need to scale categorical variables in order to project them
into the same subspace along with continuous variables. To scale categorical variables,
we use a strategy derived from the latent class model [Lazarsfeld and Henry 1968].
For a given categorical variable, we count the unclassified instances of the current
class in each category. We divide this count by the total count of unclassified instances
in each category. Finally, we replace integer category values with the corresponding
proportions based on these two counts.

Next, we generate a set of 1D projections using three-valued vectors with elements

uj ∈ {−1, 0, 1}, j = 1, . . . , p.

Of the p projection weights, r are zero and the remainder are split evenly between -1
and 1.

Choosing r depends on p. When p is small (p ≤ 50), we apply random projections with
zero and nonzero weights. Otherwise, we apply random projections after constraining
p− 50 weights to be zero. Our choice of 50 is guided by results in [Hegde and Baraniuk
2007] and [Li et al. 2006].

3.2.1. Small p. If p is small, we choose r = p/4, r = p/2, or r = 3p/4. We decide among
the three alternatives by generating three random projections (using these r values)
and choosing the one with the largest value of a separation statistic S. For a projection,
our separation statistic is the distance of the current-class projected mean x̄c from the
closest other-class projected mean x̄k:

S = min
k 6=c

(dx̄c,x̄k
)

3.2.2. Large p. If p is large, we set p − 50 weights to zero before doing our random
projections on the remaining features the same way we do for small p. In this case,
we need to determine which features are constrained to have zero weights. To decide,
we compute the class-separation statistic S on each variable. We sort all features on
this statistic and we constrain the p − 50 features with the smallest class-separation
statistics to have zero weights. This process is a form of feature selection, but unlike
other applications that use feature selection to pre-process large datasets, we employ it
inside our iterations. Different features are likely to be selected on different iterations
because class means change as points are removed from the training set.
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Unit-weighting our projections is a form of regularization [Hastie et al. 2001; Tib-
shirani 1995]. Regularized estimators increase bias in order to reduce prediction error.
We discuss this aspect further in the Appendix.

3.3. Binning
The next step in the process is to pair our best 1D projections and bin currently unclas-
sified instances into a bin matrix for each pair. We base the number of bins for each 2D
projection on a formula in [Sturges 1926]. Given n instances, we compute the marginal
number of bins b using

b = 2 log2(n)

This formula produces a few more bins than optimal statistical estimates for bin-
ning normal and mildly skewed distributions [Scott 1979; Wand 1997]. Traditional
methods assume a homogeneous distribution, however, which is clearly not the case in
classification.

Next, we rank our b×b 2D bin matrices on a purity measure. For a given target class
Ck, our purity measure is

Pk =
b∑

i=1

b∑
j=1

ni,jIi,j(Ck)

where

Ii,j(Ck) =
{

1 ni,j = ni,j,k

0 otherwise

In other words, we sum the counts across all bins whose total counts of points falling
in them (ni,j) are due only to class Ck counts (ni,j,k). We want our purity measure to
count only pure bins, because our fitting method will be especially greedy. The more
pure bins we can eliminate early in the process, the better chance we have of seeing
well-separated other classes later.

To recapitulate our current situation: we have generated a small number of 1D ran-
dom projections sorted on our separation measure S and we have paired them to make
a set of 2D projections. We have then chosen the best of these 2D projections based on
our bin purity measure P . We are now working with the upper tail of the extreme-value
distribution of binned, unit-weighted random projections ordered on a bin purity mea-
sure. We now will cover these binned projections with rectangles and pick the cover
that most improves our training-set classification.

3.4. Covering
The last stage in each iteration involves covering pure bins in order to define a classi-
fication region for a given class Ck. Our cover is a CHDR, which is a list of HDRs. Each
CHDR is uniquely associated with a class label.

3.4.1. Growing a CHDR. We developed a covering algorithm after observing humans
select homogeneous regions in a classification “game” [Anand et al. 2009]. Figure 3
shows how this process works. For a given pure bin element bi,j , we grow an HDR
covering the bin and its pure neighbors by expanding upward (b.,j+1), rightward (bi+1,.),
downward (b.,j−1), and leftward (bi−1,.) in a spiral path. In other words, we sequentially
expand each side of the current rectangle by one bin-row or bin-column whose length is
equal to the length of that side. We cease expanding in any of the four directions when
the odds ratio of current-class vs. other-class instances inside the covering rectangle
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Fig. 3. Growing a Hypercube Description Region (HDR) on a binned 2D projection. Each point is located
at the centroid of the instances in each cell. Hollow symbols represent bins containing only instances of the
current class. Solid symbols represent bins containing at least one instance of another class.

begins to decrease. This strategy tends to result in squarish rectangles that cover pure
or empty bins, similar to an approach in [Agrawal et al. 1998].

We grow an HDR for each of the bins in the 2D bin matrix. For each HDR we record
the number of instances of the current class that we have covered. We pick the HDR
that results in the largest current-class count. Finally, if the current-class count in the
HDR exceeds 10, we add the HDR to the current CHDR list for that 2D projection.

This 10 is not a magic number. It is based on a rule-of-thumb for a slippage test.
[Tukey 1959] wrote:

Given two groups of measurements, taken under conditions (treatments,
etc.) A and B, we feel the more confident of our identification of the direction
of difference the less the groups overlap one another. If one group contains
the highest value and the other the lowest value, then we may choose (i)
to count the number of values in the one group exceeding all values in the
other, (ii) to count the number of values in the other group falling below all
those in the one, and (iii) to sum these two counts (we require that neither
count be zero). If the two groups are of roughly the same size, then the
critical values of the total count are, roughly, 7, 10 and 13, i.e. 7 for a two
sided 5% level, 10 for a two sided 1% level, and 13 for a two sided 0.1% level.

Our application fits this description because we construct an HDR to cover only in-
stances outside the range of other-class instances. There are some caveats, of course.
Our count of other-class instances is often substantially greater than the count of
current-class instances inside an HDR; Tukey’s approach assumes relatively balanced
sample sizes. Second, we work in 2D; Tukey worked in 1D. Third, we count only high-
est values; Tukey counted highest and lowest. Tukey discusses several adjustments to
deal with these problems, but we found little need to employ them since our method
biases the test in a conservative direction. See [Mosteller 1948] for more information
on slippage tests.

Once we compute an HDR, we mark bins that it covers. Then we iterate this proce-
dure over the 2D bin matrix starting with uncovered bins until we can find no HDRs
that meet Tukey’s criterion. The resulting set of HDRs is a CHDR for a 2D bin matrix.

3.5. Iterating
We iterate through classes in cyclical order. For each iteration, we pick a new target
class and repeat our three stages (projecting, binning, covering). This means recalcu-
lating all the statistics within these stages. Fortunately, these are one-pass calcula-
tions, so the iterations are fairly rapid. Furthermore, later iterations are faster than
early ones because peeling away classified points results in fewer points to bin and test.
We terminate iterations when no CHDR can be constructed according to our rules.
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3.6. Missing Values
We use weighted projections for data vectors with missing values. This involves com-
puting a linear combination with weights applied to nonmissing values. The result is
then adjusted by p/p−, where p is the number of weights and p− is the (smaller) num-
ber of nonmissing values. This is a rather poor imputation method. Much better would
be a nearest-neighbor or maximum-likelihood estimate, although we found these too
expensive for our applications.

4. CHIRP SCORING
To score, we normalize and transform a new point. Then we pass through the list of
CHDRs. For each CHDR, we project the point using the stored projections from the
training data. Then we pass through the list of rectangles for that CHDR. The first
rectangle to enclose our projected testing point determines the classification.

If no enclosing rectangle is encountered by the end of the list, we assign the point to
the nearest rectangle in the CHDR list. This computation involves finding the shortest
L∞ distance between a point and a rectangle. Because the perimeter of a CHDR is a
zero level set for a naive density estimator based on the union of rectangular polygons
[Silverman 1986], this point-to-rectangle distance is asymptotically a nearest-neighbor
statistic.

This scoring algorithm is based on a decision list [Rivest 1987]. Unlike trees, decision
lists do not require traversal of the entire depth in order to score new instances (unless,
of course, a cover is not encountered).

5. PERFORMANCE
In this section we will present performance statistics for CHIRP. Because we have
substantially improved the performance of CHIRP since the original KDD paper, we
have recomputed the CHIRP statistics. We will discuss two different aspects of CHIRP
performance: accuracy and efficiency. We conducted an experiment to evaluate CHIRP
against a comprehensive set of competitive classifiers. We first summarize the experi-
mental design and then present results for accuracy and efficiency.

5.1. Datasets
We tested CHIRP and other classifiers on 20 datasets from the UCI Machine Learn-
ing Repository [Asuncion and Newman 2007], [Hastie et al. 2001], and other sources.
Table I summarizes prominent aspects of these datasets.

5.2. Challenges when Evaluating Classifiers
There are at least three reasonable questions for proponents of particular classifiers
who conduct evaluation experiments: 1) Have they “cherry-picked” their datasets to
make their classifiers look effective? 2) Have they included a sufficient number of
datasets to provide reasonable statistical power for their conclusions? and 3) Have
they tested their classifiers against a sufficient number of competitors to insure their
claims are generalizable?

In response to the first question, we selected these particular datasets for their struc-
tural variety; each represents a different challenge for classifiers. We tried not to bias
the results by picking two or more datasets with a similar structure. These datasets in-
clude examples of missing values (Horse), mixed categorical and continuous variables
(Adult), mixed binary variables (Cover), small n (Spect), large n (Poker, Adult), small p
(Swiss Roll), large p (Madelon, Cancer), n� p (Cancer), small g (Adult, Credit, Horse,
...), large g (Cancer), and relatively small ratios of training to testing instances (Poker,
Segment). We also looked for datasets with disparate within-and-between-groups data
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Table I. Characteristics of Datasets

Training Testing Attributes Groups Categorical Vars Continuous Vars
Abalone 2,088 2,089 8 3 No Yes
Adult 32,561 16,281 14 2 Yes Yes
Cancer 144 54 16,063 14 No Yes
Cover 11,340 569,672 54 7 Yes Yes
Credit 345 345 14 2 No Yes
Horse 300 68 22 2 Yes Yes
Madelon 2,000 600 500 2 No Yes
Optdigits 3,823 1,797 64 10 Yes Yes
Orange10 5,000 50,000 10 2 No Yes
Page Blocks 4,000 1,473 10 5 No No
Pendigits 7,494 3,498 16 10 No Yes
Poker 25,010 1,000,000 10 10 No Yes
Satellite 4,435 2,000 36 6 No Yes
Segment 210 2,100 19 7 No Yes
Shuttle 43,500 14,500 9 7 No Yes
Spect 80 187 22 2 Yes No
Swiss Roll 1,000 1,000 3 2 No Yes
Vehicle 679 167 18 4 No Yes
Vowel 528 462 10 11 No Yes
Waveform 300 500 21 3 No Yes

densities (discrete, continuous, mixed, convex, non-convex, etc.). Almost all the test
datasets are real, and each has been widely tested on numerous classifiers.

In response to the second question, we included 20 datasets. This number enabled
relatively narrow confidence intervals on our error results. The median width of our
confidence intervals for standardized errors was .6. The distributions of the standard-
ized errors within classifiers are relatively symmetrical, so our use of the t-distribution
to construct confidence intervals is justified..

In response to the third question, we added CHIRP to the Weka data mining work-
bench [Witten et al. 1999]. Then we tested every classifier in Weka Version 3.6.1, omit-
ting classifiers that could not deal with all 20 datasets (because they were specialized
or were not scalable to the larger datasets). This left a total of 50 classifiers. We in-
cluded hybrid and meta classifiers as well, even though these are not direct competi-
tors because they do not rest on a single geometric model. Tests were run on a 2.5 GHz
Intel Core 2 Duo Macintosh Powerbook with Macintosh OS X Version 10.5.7 and Java
Version 1.5.0 running in a 2GB partition. The full experiment took almost three weeks
of continuous CPU time.

To the best of our knowledge, this is one of the most comprehensive experimental
evaluations of classifiers since the Statlog Project [King et al. 1995; Statnikov et al.
2005; Abdullah et al. 2006]. We also examined published error rates for non-Weka clas-
sifiers on these datasets and found almost all of them to lie in the range of our findings
(except for specialized classifiers such as [Li 2010], which can perform extraordinarily
well on specific types of datasets).

5.3. Accuracy
We computed a variance components analysis on the error rates for every classifier
across datasets. Dataset and Classifier were treated as random factors. The effects of
both factors were highly significant (p < .001). Consequently, we standardized the error
statistics within dataset for our final analysis.

Figure 4 summarizes the error performance for all classifiers. CHIRP has the lowest
standardized error of all classifiers and a relatively small variance. CHIRP is not only
extraordinarily accurate but also unusually consistent across a wide range of data
scenarios.
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Fig. 4. Average standardized error rates and associated 95% confidence intervals for CHIRP and Weka
Version 3.6.1 classifiers. Default parameter values were used for all classifiers.

Figure 5 shows the performance of all the classifiers on these datasets. CHIRP is
highlighted in red. No other family of classifiers had the lowest or near-lowest error
on as many datasets as did CHIRP. There are several remarkable findings in this
plot. First, CHIRP substantially beats the other classifiers on the Cancer dataset. The
simple feature-selection algorithm using the separation index appears effective. This
strategy resembles the common practice of computing t-statistics on genes in microar-
ray research in order to do model selection. Second, CHIRP excels on the Poker Hand
dataset; the other classifiers handle it poorly. Ping Li recommended this dataset be-
cause his boosting classifiers, designed specifically for this type of data, have achieved
over 90% accuracy on Poker. We were surprised to discover how well CHIRP did here,
since we did not consider the peculiar aspects of that dataset in designing CHIRP.
Third, CHIRP achieves the lowest error for the Swiss Roll dataset. It is able to find
enough revealing projections to peel away and extract class information from this dif-
ficult nonlinear manifold.

5.4. Efficiency
Figure 6 shows the training times for the new CHIRP and the other classifiers. Not
surprisingly, some of the worst performing classifiers in Figure 4 are the fastest to
train. The converse is not always true, however. The Multilayer Perceptron classifier
was the least efficient to train, yet its performance was middling. CHIRP’s closest rival
in accuracy, Logistic Model Trees, was substantially slower in training.

The new CHIRP is more than three times faster than the original. Much of this
improvement came from attention to memory usage and adaptations to the Weka ar-
chitecture. Nevertheless, the new CHIRP is still slower to train than some of the other
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Fig. 5. Errors for CHIRP (in red) and the other classifiers (in blue) on 20 test datasets.

classifiers. In the main, this is due to its ensemble architecture. In a parallel computing
environment, each thread would run concurrently. This would be trivial to implement
on a multi-core processor or in a parallel environment such as Map Reduce. As with
Random Forests, it would take minimal algorithmic modifications to run CHIRP in
separate threads. Even without these modifications, however, CHIRP is reasonably ef-
ficient. The longest training time for other classifiers (rulesDTNB on Madelon) was
38 hours. The longest training time for CHIRP was 27 minutes on Poker Hand. The
longest time for an SVM was 15 hours (SMOPuk on Adult).

Figure 7 shows the testing times per instance for the new CHIRP and the other clas-
sifiers. In contrast to its training performance, CHIRP falls in the fastest group of clas-
sifiers, with performance that is not significantly worse than decision trees (although
its standard error is somewhat larger). Interestingly, the support vector machines are
generally the slowest in testing; the SVM with the lowest overall error (SMOPuk) is
among the slowest performers in a testing environment.

Again, scoring could be speeded up for CHIRP by parallelizing the voting. The
longest scoring time for any classifier on one instance was 4 minutes (lazyKStar on
Satellite). The longest scoring time for CHIRP was less than a tenth of a second (on
Satellite). The longest scoring time for an SVM was 22 seconds (SMOPuk on Satellite).
These longer times are problematic, because scoring times of more than a few seconds
would be impractical for online applications. By contrast, CHIRP is a good candidate
for online classification in a time-critical environment.

5.4.1. Theoretical Performance. CHIRP makes one pass through n rows of the training
data to compute data limits and basic statistics. For each of the g classes, it makes an
additional pass through the data to construct 25 2D bin matrices. CHIRP sorts this

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 0, Publication date: 2012.



0:12

lazy.KStar
rules.ZeroR

lazy.IBk
lazy.LWL

misc.HyperPipes
lazy.IB1

misc.VFI
rules.OneR

trees.Stump
BayesUpdate

NaiveBayes
BayesNet

meta.Filterered
trees.REPTree
meta.AdaBoost

meta.MultiBoost
rules.Conjunctive

trees.Random
trees.J48

meta.Attribute
meta.ClassCluster

trees.J48graft
meta.MultiClass

rules.PART
meta.Bagging

meta.LogitBoost
rules.Table
meta.END
rules.JRip

trees.BFTree
trees.Simple

Logistic
rules.Ridor

trees.LADTree
SMOPolyKernel

meta.ClassRegress
trees.FT

RBFNetwork

meta.Dagging
trees.NBTree

meta.Ensemble
rules.DTNB

SMOPuk
meta.Decorate

SMONPolyKernel
SimpleLogistic

SMORBFKernel

CHIRP

trees.LMT
Perceptron

C
la

s
s
if
ie

r

.01 .1 1 10 100

Mean Train Times (seconds)
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classifiers.

bin-matrix list and picks the top 5 candidate 2D bin matrices. It iterates through this
process m times, adding a CHDR to the decision list at each step. Thus, we should
expect CHIRP to be O(gmnp) in time. To test this expectation, we did a simulation.

We generated spherical Gaussians for n = {500, 5000, 50000}, p = {20, 40, 60, 80, 100},
and g = {2, 4, 6, 8, 10}. In each of the 75 datasets, the first g Gaussians had unit vari-
ance with centroids located at the corners of a (g − 1)-simplex with edges of length 7.
Values for the remaining p− g variates were N(0, I).

Figure 8 shows a graph of the performance of CHIRP on these random datasets. We
have enhanced the plot with a distance-weighted least-squares smoother. The points
are fit well (R = .96, with well-behaved residuals) by the simple linearized model:

E[log(t)] = −11.389 + 0.942 log(n) + 1.655 log(g) + 0.677 log(p)

Our empirical results show that CHIRP is sub-linear in n and p and super-linear in g.
It would appear that CHIRP is not the best candidate for problems involving hundreds
or thousands of classes. For relatively small g, however, CHIRP performance is similar
to that of k-means clustering, which is O(gnp) on g clusters, n cases, and p variables.

6. DISCUSSION
Our experiment provides clear evidence that CHIRP outperforms competitive clas-
sifiers across a wide range of well-known datasets used to evaluate classifiers. We
intend to investigate in more detail how this happened, although we designed each
stage using well-established findings from the statistical and machine-learning litera-
ture. What is unique about CHIRP is how these components are assembled. We need
to investigate how these components interact.
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Fig. 8. Training times for CHIRP on random datasets. The parameters in these plots are number of classes
(g), number of features (p), and number of instances (n).

We do have several preliminary answers to the question of why CHIRP works so
well. First, CHIRP handles nonconvex, discrete and disjoint densities by covering in-
stead of partitioning. We suspect (but have not yet proven) that covering requires fewer
rectangles than partitioning in the case of certain topologies (such as the Orange10 or
Waveform datasets). Second, its categorical scaling algorithm allows us to combine dis-
crete and continuous densities to search for homogeneous joint regions. Third, CHIRP
is an ensemble classifier. Its use of random projections naturally lends itself to a voting
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architecture. Fourth, CHIRP uses affine instead of axis-parallel projections; other set-
covering classifiers do not employ this technique. Fifth, the two fitness measures used
for ranking projections (the class separation measure S and the bin purity measure
P ) target different aspects of densities. The S measure values projections with large
margins; the P measure values projections with compact subsets. Projections missed
by one are likely to be found by the other. Finally, CHIRP embeds its projections and
covers inside its iterations; we have, for the first time, used projections and covers re-
cursively. This architecture contributes to the ability of CHIRP to peel away sets of
exterior points that obscure other sets in the core of a density. This peeling is adaptive;
CHIRP responds to the topology of the conditional density as it shrinks in size and
changes shape on each iteration.

CHIRP can have difficulty with certain higher-dimensional densities because its
covers are confined to 2D projections. Its ability to peel off subsections of higher-
dimensional densities mitigates against this weakness, but there are some configu-
rations it cannot exploit. Like all classifiers, CHIRP cannot outperform everyone on
every dataset.

There were several questions raised about CHIRP during and after the KDD discus-
sion session. Some of these deserve notice. One questioner recommended that we use
the ROC area under curve (AUC) instead of average error as a criterion for compar-
ing classifiers. Setting aside the well-known problems with AUC [Hanczar et al. 2010;
Hand 2010], we must point out that CHIRP does not provide any sort of classifica-
tion probability estimate that would be needed for computing AUC. We have explored
this possibility through interpreting the CHDRs as fixed rectangular kernels, but this
effort has so far led nowhere. In any case, we do not believe the results would dif-
fer substantially, since AUC and average error are highly correlated when marginal
distributions are relatively balanced, as is the case with most of our datasets.

One commented that we should have used our categorical coding algorithm to pre-
process categorical variables for other classifiers. This would be impossible, since
CHIRP does categorical recodes on every iteration. It is an essential and non-separable
part of our algorithm. We think it is a distinct advantage of our design.

Finally, a Weka team member mentioned that the default tree-number setting for
Random Forests was a poor choice. He recommended changing this number to 100. The
change made a huge difference. Random Forests moved from thirty-second to third
place, behind Logistic Model Trees. The size of this improvement raises a question
about the settings for other classifiers. Since our simulation requires almost a month
of CPU time, customizing settings to improve the performance of individual classifiers
is not practical. We expect supporters of specific classifiers will fiddle with parameter
values in order to improve their performance on these datasets and we welcome that
effort. We must repeat, however, that customizing settings for individual datasets de-
feats the purpose of any comparison. In plain language, we believe that the rules for
our experiment take some of the “black art” out of classifier comparisons. If default
settings can be improved (as Weka will be doing with Random Forests in the next re-
lease), then they should become defaults for all datasets and the Weka team should
be responsible for making the change. Because most published classifier comparisons
have been idiosyncratic, opportunistic, and selective, their variability precludes objec-
tive evaluations. To deal with this pervasive problem, we recommend that published
evaluations of new classifiers or modifications to existing ones be conducted in Weka
on a suite of test datasets that includes at least the ones we have employed. This pro-
cedure would provide objective historical statistics as well as meaningful timing data.
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7. CONCLUSION
Producing an error rate that matches or exceeds other known classifiers on a wide
range of datasets is not the principal distinction of this research. Such a result could
be accomplished through an incremental improvement of any of the most competitive
classifiers. Indeed, this is what sets the bar so high for a new classifier; the three or
four leading classifier frameworks have been polished for decades.

Accomplishing extraordinary accuracy with a novel classifier is what distinguishes
this research. The CHIRP project began with a simple idea: to link a visually-
motivated covering algorithm to a random projection machine. It evolved with the re-
alization that random projections could be nested within iterations. And it concluded
with the discovery that covers on random projections could be used to peel away sub-
sets of points to unwrap high-dimensional nonlinear configurations. Because this ar-
chitecture is so new, we expect to see substantial improvements in the future.

The result so far:

— The performance is sub-quadratic in complexity on n, p, and g (number of instances,
number of features, and number of classes).

— CHIRP does not depend on sensitive adjustable parameters (convergence criteria,
kernel types, bandwidths, pruning schedules, etc.). We tested this assertion by as-
sessing its performance over a wide range of parameter settings. Most importantly,
none of the potentially settable CHIRP parameters was adjusted to optimize perfor-
mance on a specific dataset in our training or testing.

— CHIRP had the lowest average standardized testing error rate and achieved the low-
est error rate on more datasets than did any other classifier. Clearly, these datasets
were not selected to favor CHIRP; we included well-known datasets designed to
present classifiers with the broadest variety of challenges.

— CHIRP is readily parallelizable at the random projection stage and/or voting stage.
— CHIRP is simple and tiny. Its JAR file is under 50K in size. The algorithm iterates

over only three steps.
— CHIRP is a novel algorithm; it is not a hybrid classifier. This fact would tend to

support the idea that CHIRP can contribute relatively independent classification in-
formation to the results of other classifiers.

Given these distinctive features and its fundamental differences from other classifiers,
CHIRP is uniquely suited for applications where there is limited or no a priori knowl-
edge of the process generating the data.
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8. APPENDIX
Suppose there are two normal populations with respective p×1 mean vectors µ1 and µ2

and common p×p covariance matrix Σ. Without loss of generality, we will assume that
µ1 = −µ2. The two-group Linear Discriminant Analysis (LDA) classification algorithm
assigns a new point x to the group with the smaller Mahalanobis distance

(x− µi)
T Σ−1(x− µi), i = 1, . . . , 2

Equivalently, if the Fisher linear discriminant function

δF (x) = Σ−1(µ1 − µ2)T x

is negative, we assign x to the first group, otherwise to the second.
Because we do not usually know µ1 or µ2 or Σ, we customarily estimate them via

maximum likelihood on n observations of sample data and employ the discriminant
function

dF (x) = Σ̂−1(µ̂1 − µ̂2)T x

for our classification rule.
When p > n, the maximum likelihood estimate of Σ cannot be computed because

the conventional matrix estimator is singular. Classical remedies for computing the
linear discriminant function in these cases include using a Moore-Penrose inverse or
selecting a subset of the p variables (features) to get our estimate.

Alternatively, we can assume Σ = σ2I. In this case, the estimated discriminant
function passes through µ̂1 and µ̂2 and the decision rule based on the linear discrimi-
nant function is equivalent to a Naive Bayes rule. Bickel and Levina [Bickel and Lev-
ina 2004] prove that the Naive Bayes classification rule substantially outperforms the
Fisher linear discriminant rule under broad conditions when the number of variables
grows faster than the number of observations. This gives us some confidence that we
do not substantially increase prediction error by ignoring covariance structure when
searching for maximum separation of means in higher-dimensional spaces.

Suppose we now replace the discriminant function coefficients with unit weights

dU (x) = uT x,

where ui ∈ {−1, 0, 1}. Suppose also that we choose unit weights that produce the great-
est spread between sample means on the dU (x) discriminant function. The number of
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possible weights we must consider before making this choice is 1
2 (3p− 1). (The 1

2 is due
to the symmetry of dU (x) around zero).

The following lemma gives us the upper bound of the angle between the optimal
unit-weight vector dU (x) and the Fisher discriminant vector dF (x).

LEMMA 8.1. Let U be the set of all non-null p×1 vectors u, where ui ∈ {−1, 0, 1}. Let
x be a p × 1 vector in Rp. Let ux be the element of U that is closest in angle to x. Then
for any x, the maximum possible angle between ux and x is

θmax = arccos
(

1/
√
p2 − 2

∑p
m=1

√
m
√
m− 1

)
For p = 50, for example, using dU (x) instead of dF (x) will shrink the values of µ̂1 and

µ̂2 projected on dF (x) toward zero by a factor of approximately .3. The gains from this
type of shrinkage are discussed in [Wainer 1976; Hastie et al. 2001; Tibshirani 1995;
Guo et al. 2005] and elsewhere. It belongs to a class of regularization methods that,
relative to maximum likelihood estimators like dF (x), are more resistant to outliers
and have lower prediction error in new samples.

In practice, we cannot expect to find the projection dU (x) with the greatest sepa-
ration of means because it is impractical to search over 1

2 (3p − 1) weight vectors for
large p. We can get close, however, by taking advantage of the Johnson-Lindenstrauss
Theorem [Johnson and Lindenstrauss 1984]. This theorem states that if a metric on
X results from an embedding of X into a Euclidean space, then X can be embedded
in Rk with distortion less than 1 + ε, where k = O(ε2log|X|). Remarkably, this em-
bedding is achieved by projecting onto a random k-dimensional subspace. Because our
discriminant rule depends on a similarity transformation of Euclidean distances, we
can logarithmically reduce the complexity of the problem through random projections.

Johnson-Lindenstrauss was originally proven for Gaussian weights, but Achlioptas
[Achlioptas 2001] showed that unit-weighted projections do not jeopardize accuracy
in approximating distances. Furthermore, [Li et al. 2006] showed that unit random
weights for most purposes can be made very sparse with the following probabilities:

uj =


1 with probability 1

2
√

p

0 with probability 1− 1√
p

−1 with probability 1
2
√

p

In sum, we get lower prediction-error, robustness, scalability, and better approxi-
mation to the maximum-separation vector by using random unit weights in CHIRP.
Furthermore, by constructing 2D projections from these random 1D projections and
using (possibly) non-convex set covers on them, we substantially outperform LDA and
other classifiers when the normality assumption is not plausible.
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