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Fig. 1. Visualization of Old Faithful data: (a) Single-variable dot plot; (b) Two-variable dot plot; Visualization of Cars data: (c) Parallel
Coordinate Dot Plot; (d) Stacked Parallel Coordinate Plot.

Abstract—An ongoing challenge for information visualization is how to deal with over-plotting forced by ties or the relatively lim-
ited visual field of display devices. A popular solution is to represent local data density with area (bubble plots, treemaps), color
(heatmaps), or aggregation (histograms, kernel densities, pixel displays). All of these methods have at least one of three deficiencies:
1) magnitude judgments are biased because area and color have convex downward perceptual functions, 2) area, hue, and brightness
have relatively restricted ranges of perceptual intensity compared to length representations, and/or 3) it is difficult to brush or link to
individual cases when viewing aggregations. In this paper, we introduce a new technique for visualizing and interacting with datasets
that preserves density information by stacking overlapping cases. The overlapping data can be points or lines or other geometric
elements, depending on the type of plot. We show real-dataset applications of this stacking paradigm and compare them to other
techniques that deal with over-plotting in high-dimensional displays.

Index Terms—Dot plots, Parallel coordinate plots, Multidimensional data, Density-based visualization.

1 INTRODUCTION

Overplotting instances in scatterplots, parallel coordinates, and other
displays has been a longstanding problem in information visualiza-
tion. Data points with similar or identical values partially or com-
pletely overlap in a scatterplot. The same data points overlap in a
parallel coordinate plot and in many other multivariate displays. We
tackle this problem with a strategy that stacks representation elements
(symbols, lines, etc.) in an additional dimension based on density or
counts. The height of the stack shows the density in the neighborhood
of a data value.

Several other solutions to this problem have been been devised over
several centuries of charts and graphics. One approach is to aggre-
gate cases in local neighborhoods and to use area to represent density.
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For example, we can bin cases inside political, geographic, or abstract
regions and represent counts by the size of circles or length of bars
superimposed on a map of those regions [7]. The so-called “bubble
plot” was invented by Playfair [25] and has been used for over two
centuries. Unfortunately, sizing symbols to represent aggregates ame-
liorates but does not eliminate overlapping; bubbles or other repre-
sentation elements can still cover each other when their sizes exceed
nearest-neighbor distances. Furthermore, using area to represent mag-
nitude incurs nonlinear distortions in perception [8, 38, 32].

Another approach is to partition a space, aggregate within parti-
tions, and adjust the size of partitions in order to represent counts
[20, 10]. This approach prevents overlaps but risks displacing or dis-
torting density locations. Furthermore, using polygon size to represent
the count of points within a partition has the same nonlinear perceptual
problems that arise with bubble plots.

Another approach is to aggregate and use color to represent the
magnitude of the aggregation [5, 21, 14]. The most common instance
of this approach is the choropleth map. Another approach is to use
kernel density estimation or other forms of smoothing and then rep-
resent the smoothed density with a color or intensity gradient. These
approaches risk distortion from using color to represent a continuum.
Lightness/darkness has a concave downward psychometric function
[38] and representing a linear scale with hue is problematic [4].

Another approach is to dispense with aggregation and to use ran-
dom local displacement to prevent overlap, commonly called jittering
[6]. This is a useful method for representing bootstrap estimates in a



common space [38]. For smaller datasets, this approach works rather
well. Plotting area is quickly overwhelmed as N increases, conse-
quently, jittering has only limited application.

Another approach is to use transparency/opacity (alpha channel) to
represent density. This method is attractive because alternative density
estimators, such as kernel density estimation or histograms take longer
to compute. A scatterplot of semi-transparent point symbols whose
diameters are roughly a tenth of the frame width resembles a kernel
density plot with saturation used to represent the height field for the
density.

Many of these approaches have been applied to parallel coordi-
nates, where over-plotting lines can create the same problems as over-
plotting points. Solutions have involved kernel smoothing methods
[12, 23] and 3D parallel coordinates[29][18, 16].

A serious drawback with all of these methods is that they break the
mapping between individual points and locations on the screen or dis-
play area. The consequence is that brushing and linking are problem-
atic [2] (although see [36] for some other remedies for this drawback).

By contrast, we propose using stacking to provide a view of dense
data that reveals a range of magnitude considerably larger than what
is available in color and area representations. We have also developed
new stacking methods for extending these representations to 3D. We
are not enthusiastic advocates of the use of 3D, but we show examples
of appropriate use of stacking where 2D representations of magnitude
fail.

The main contributions of this paper are:

• We revise the single-variable dot plot algorithm [37] and extend
it to multi-dimensional space.

• We extend stacking dots to stacking lines and show how this
helps solve a problem with parallel coordinates and other case-
wise line plots.

• We show how stacking can be used to represent larger datasets
without disabling brushing and linking.

This paper is organized as follows: Section 2 reviews related work
in the field of density estimation. Section 3 describes and discusses our
stacking algorithms for two and three dimensions. Section 4 extends
stacking dots to stacking lines. We present our conclusions in Section
5.

2 RELATED WORK

While the oldest form of stacking is probably the simple tally, the ap-
proaches we introduce in this paper are related to representations of
density such as histograms and kernels. Histograms are the classic
method for displaying densities [25, 24]. Their virtues are ease of com-
putation (one or two passes through the data suffice) and interpretabil-
ity (histogram bars allow visual estimates of counts or density within
intervals). Their drawbacks are statistical efficiency (histograms do
not closely approximate population distributions in smaller samples),
scale sensitivity (histogram shapes change when cutpoints vary), and
location bias (histogram bars are not necessarily centered on regions
of high conditional density). Kernel density estimates overcome these
deficiencies [27, 28]. Rather than grouping observations together in
bins in the way a histogram does, the kernel density estimator centers
a kernel probability function at each observation. The estimator con-
sists of the sum of these functions; if the functions are smooth (the
usual case) then the kernel density is smooth, unlike the histogram.
The virtues of kernel density estimators compared to histograms are
their unbiasedness and efficiency. Their drawbacks are computational
complexity (particularly in higher-dimensional spaces) and their de-
pendence on a bandwidth parameter. Choice of bandwidth is not a
serious drawback; however, adaptive methods have proven effective in
practice [31].

Dot plots offer a third approach to density representation. Similar
to tallies, dot plots stack small dots on top of each other to repre-
sent conditional counts. Their advantages include a natural framework
for brushing and linking (each dot represents an individual case or

instance), low location bias (dots are centered on data values, unlike
histograms), flexiblility (dot plots work for both continuous or categor-
ical variables), and sensitivity (dot plots reveal granularity in integer
or rounded data, unlike histograms or kernels).

Dot plots have been used for over a century in the medical, eco-
nomic, and scientific literature (e.g., [15, 22]). They were originally
hand-drawn by medical and scientific illustrators. After Wilkinson
[37] introduced an algorithm and computer program to render dot plots
automatically, these plots began to appear in a few statistical packages,
such as, SYSTAT, SPSS, Stata, and R. Other packages (such as BMDP
and Minitab) have offered graphics that appear to be dot plots but are
instead simply histograms with stacks of dots replacing the bars. It
is easy to distinguish “fake” dot plots from the real thing. Simply in-
put irregularly spaced data and observe whether the stacks are evenly
spaced. If they are, the graphic is not a true dot plot.

3 STACKING DOTS

The remainder of this paper covers several different types of stacking,
inspired by the original formulation for dot plots. We begin with a
technical introduction to the dot plot algorithm and then extend this
algorithm to multiple dimensions. We provide several examples on
real datasets to illustrate the usefulness of these extensions. In the
next section, we introduce new methods for stacking lines and show
how these can enhance the usefulness of parallel coordinate plots and
other displays.

3.1 One Variable

This section covers the original dot plot algorithm introduced in [37]
and shows a modification that reduces directional bias in the placement
of dots. This modification also enables the extension of dot plots to
higher dimensions.

3.1.1 Single-variable Dot Plot Algorithm

Figure 2 shows a dot plot for a bimodal dataset. The observations
are the duration of eruptions in minutes for the Old Faithful Geyser in
Yellowstone National Park, Wyoming, USA [27].

Fig. 2. Dot plot of the duration in minutes of Old Faithful eruptions.

In its simplest form, the algorithm in [37] for producing this plot or-
ders a set of observations {X1,X2, ...,Xn} and starts with the smallest
data value X1. For any Xi, we look below it within a dot-size neigh-
borhood and stack the dots representing the observations belonging to
this neighborhood. The algorithm moves to the next observation not
included in the current dot stack until there is no observation left.

The size of the dots is crucial to the visual appearance of stacked
dot plots. Large dots can over-smooth the data, while small dots may
highlight too many random details. Choice of dot size is discussed in
Wilkinson’s original paper [37], which relates dot size to the bar-width
of histograms and bandwidth of kernel density estimators. Stacker
picks a default dot size based on the guidelines in Wilkinson’s paper.
A slider is available for adjusting the dot size in real time to view more
or less detail.



3.1.2 Improved Version of Single-variable Dot Plot Algorithm
There are three limitations of the original algorithm:

• This algorithm produces dot plots by moving from the smallest
data point X1 to the largest data point Xn (from left to right).
In like manner, dot plots can be produced by moving in reverse
order (from right to left). These different moving directions pro-
duced different dot plots on the same batch of data. This is not a
desirable consequence.

• Symmetrically distributed data may result in an asymmetric dot-
plot.

• Multidimensional dot plots cannot be extended from this algo-
rithm because it is intrinsically unidimensional along a single
numerical axis.

We have devised an undirected algorithm that overcomes the draw-
backs of the original dot plot algorithm. Instead of starting with the
smallest data value (moving from left to right) or the largest data value
(moving from right to left), we begin with a data point that has the
maximum number of neighbors in a dot-radius neighborhood. Here is
a summary of the algorithm:

1. For each data point Xi, create a set of its neighbors Ci in a dot
radius neighborhood h/2 including itself.

2. Instantiate a set of data points that have not been considered,
D= {X1,X2, ...,Xn}.

3. Start with a data point Xl 2 D that has the maximum number of
neighbors.

4. Place |Cl | dots above the center of this set cl , where cl =
(max(Cl)+min(Cl))/2.

5. Update D: D= DCl .

6. Remove all elements ofCl from the set of neighbors of other data
points in D.

7. Move to the next data point Xl 2 D that has a maximum number
of neighbors.

8. Repeat steps 4-7, until there are no data values left to plot (D is
empty).

Figure 3 compares this algorithm to the original for a symmetric
dataset with 5 observations. The first panel shows dot plots produced
by a left-to-right implementation of the original algorithm, the second
panel shows dot plots produced by a right-to-left implementation of
the original algorithm, and the third panel shows dot plots produced
by the undirected algorithm. The symmetry of the original data is
revealed by the undirected algorithm.

3.1.3 Comparison of Dot Plots with Histograms and Kernel
Density Estimates

To understand the strengths and weaknesses of dot plots, it helps to
compare and contrast them with histograms and kernel density esti-
mates. First of all, dot plots are better for revealing granularity in data.
This can be important when examining integer-valued rating scales
or rounded physical measurements for miscodings or unusual gaps.
Specifically, a dot plot places the dots where the data values actually
occur, so that they leave gaps between values empty for granular data
[38]. In contrast, kernel densities smooth over gaps in the data, and
histogram bins tend to cover gaps.

Second, histograms and kernel densities obscure local features be-
cause they aggregate. By contrast, the dots in dot plots can be labelled
or colored with group values. Moreover, since dot plots represent in-
dividual observations by single symbols, they are suitable for brushing
and linking.

X1 X2X3 X4 X5

X1 X2X3 X4 X5

X1 X2X3 X4 X5

Left-to-right

Right-to-left

Undirected

Fig. 3. Dot plots produced by different algorithms.

Third, dot plots lend themselves to highlighting outliers in a dis-
play because singletons can be labeled, colored, resized or reshaped to
stand out. Histograms and kernels tend to conceal singleton outliers
because they do not have the mass to affect the overall shape.

Finally, dot plots can be devised to handle large datasets by impos-
ing an aggregation on each dot. This condition allows us to define
a continuum between N dots (the traditional dot plot) and 1 dot (the
whole batch aggregated into a single large dot). From a mathematical
perspective, a dot is a ball in a metric (usually Euclidean) space whose
radius determines the set of points within its boundary. In our soft-
ware, we have implemented a slider that determines the dot radius and
allows us to drill-down to different levels of detail.

3.2 Two Variables

The undirected dot plot algorithm is easily extended to the two-
variable case. We simply compute Euclidean distance between points.
Data point P(p1, p2) belongs to the neighborhood of data point
Q(q1,q2) if

(p1q1)2+(p2q2)2  r2 (1)

where r is dot radius.

3.3 Software

The visualization testbed implemented in this paper, called Stacker,
provides a number of controls to create and manipulate stacked plots.
Figure 4 shows the console. The open data set contains utility usage
by a Chicago family from 2002 to 2008 [19]. The variables plotted
are electricity and water usage. We have distinguished summer and
winter months by selecting red and blue from a color scale. Stacker
offers a color slider for each category on a variable, so a user can pick
contrasting colors. For a continuous variable, Stacker offers a num-
ber of linearized scales. The sliders below this panel control dot size,
opacity, aspect ratio of the geometric representation elements (usually
dots), and overlap of the elements. A button directly below these slid-
ers allows the user to expend additional time to minimize overlaps it-
eratively. The bottom panel offers options for brushing and displaying
axes and data points.

Figure 5 illustrates the use of these controls on the utility dataset.
Figure 5(a) shows the result of using the slider to overlap dots. Fig-
ure 5(b) shows the same plot with ellipsoidal dots. Figure 5(c) shows
transparent dots; the opacity was set to 0.3. This device helps to re-
veal embedded sub-densities; most dots are in the area of low water



Fig. 4. Stacker console.

and low electricity usage. Figure 5(d) shows the plot colored to dis-
tinguish summer (red) and winter (blue) months. This plot shows that
high water and high electricity usage occur in summers.

3.4 Geographic Dot Plots

This section describes an application in which 3D dot plots are used to
show the distribution of Lyme disease in the United States. Dot plots
are particularly suited to geographic applications because they stack
where the data are measured (as opposed to choropleth maps, which
are aggregations).

Figure 6(a) shows the distribution of Lyme disease cases reported in
the U.S. in 2005, mapped by the CDC. As depicted, the Lyme disease
distribution is dense in the Midwest and the East. Each case is rep-
resented by a black dot in the graph. The map is saturated; however,
there is little density discrimination in the concentrated areas. Conse-
quently, it is hard to compare the densities in the Midwest and East,
and it is hard to see variations within the East distribution.

Dot plots overcome these limitations by representing density
through dot stacks. Dots are stacked exactly over the counties where
the Lyme disease cases are reported. Thus, one can visualize not only
Lyme disease cases by region, but also the density distribution within
a region.

Figure 6(b) shows the dot plot of Lyme disease distribution in 2005.
One might argue, of course, that a county-level choropleth map would
be a suitable alternative to the map in Figure 6(a). Nevertheless, it
would be hard to argue that a county-level choropleth map using hue
or brightness could reveal the threefold increase in Lyme disease cases
centered around New England vs. the Midwest.

Dots can be colored by year as depicted in Figure 7. In particular,
red dots are Lyme disease cases reported in 2005, green dots as re-
ported in 2006, and blue dots as reported in 2007. Moreover, Stacker
also supports geodata brushing as depicted in Figure 7. Users can
browse over the dots; the region containing the dots is highlighted in
the table. Similarly, users can select regions from the table and see
them highlighted in the display. With brushing, users can easily com-
pare Lyme disease densities among different regions. Furthermore,
with Stacker, a user can select several regions for further analysis,
while fading others from the view. In this way, one can reduce the
effects of occlusion. In this display, data brushing can be done at the
state or county level.

Fig. 5. Two dimensional dot plots of the data set: (a) Vertically over-
lapped dots; (b) Ellipsoidal dots; (c) Dot plot with opacity set to 0.3; (d)
Colored dots distinguishing different groups.

3.5 Parallel Coordinate Dot Plots

Parallel coordinate plots [13] have become a commonly used tech-
nique for providing insight into multivariate data. In parallel coordi-
nates, each N-dimensional data point is transformed into a polyline
that intersects N parallel axes at the respective value on that dimen-
sion. Parallel coordinate plots allow displaying high-dimensional data
in one plot because the axes are visually separated from each other. For
larger data sets, however, it is difficult to discern relative frequencies
of subsets of points.

A number of extensions have addressed this problems. For the vi-
sualization of categorical variables, Parallel Sets [3] substitutes the in-
dividual data points at each axis by a frequency-based area element.
However, this method works only with categorical variables. An-
other strategy is to replace regions of similar lines by a density gra-
dient. Wegman [34] was the first to do this and many have followed
[1, 17, 26, 12].

We have devised two alternatives. The first, parallel dot plots, is
illustrated in Figure 8. This figure contains parallel coordinate plots
of the Utility data used in Section 3.3. Polylines are colored by the
Season categorical variable. Figure 8(a) shows a conventional parallel
coordinate plot rendered by Stacker. Figure 8(b) depicts the parallel
coordinate plot with a dot plot at each axis.



Fig. 6. Lyme disease distribution in 2005: (a) Scatterplot overlaid on
map (b) Geographic dot plot.

Fig. 7. Data brushing in dot plot presenting Lyme disease distribution.

Fig. 8. Views of the Utility data set: a) Conventional parallel coordinate
plot; (b) Parallel coordinate dot plot.

Why do this? Does it add to the visual clutter of the display? Does
3D impair decoding? First of all, we are not suggesting to replace par-
allel coordinate plots with 3D parallel dot displays. We are instead ad-
vocating a pairing of the two types of display in the same application.
Stacker has simple controls to switch back and forth between these
representations. Second, we have arranged a mild perspective view
and narrow dot towers to facilitate length-based magnitude compar-
isons and to minimize occlusion, both of which are significant prob-
lems for 3D bar graphs and other 3D displays. As can be seen in the
figure, the dot towers highlight major differences in frequency that are
not evident in the parallel coordinates display. Notice, for example,
that low gas consumption in the summer months is immediately ap-
parent in the dot display but not conspicuous in the ordinary parallel
coordinate display.

Figure 9 shows data brushing on parallel dot plots. Data brushing
can be done in several ways: one polyline, one dot, one dot stack, or
one class of data. Specifically, Figure 9(a) depicts single dot brushing
in which the polyline and dots associated with that record are high-
lighted (the record selected is March 2008). Figure 9(b) depicts single
stack brushing (the dot stack selected contains months with very low
gas usage). Figure 9(c) depicts single class brushing (the class selected
is winter of every year from 2002 to 2008).

4 STACKING LINES

A second approach we have devised involves stacking lines instead of
dots. For parallel coordinate plots and other types of line plots, we
have implemented a method that extends the dot-stacking algorithm to
line elements. As with dots, we can stack either single lines per case
or stack lines aggregating subsets of cases. In this section, we will
show two different stacking strategies for parallel coordinate plots and
an example of stacking regression lines.

4.1 Stacked Parallel Coordinate Plots

Figure 10 shows several parallel coordinate displays of the Pollen
dataset (http://lib.stat.cmu.edu/datasets/pollen.
data). This artificial dataset, used in a competition at the 1986 Joint
Meetings of the American Statistical Association, was given its name
as well as fake variable names in order to mislead analysts into think-
ing it had to do with biology. Instead, the dataset contains a cluster
of points spelling the word EUREKA surrounded by random points in
five dimensions. Nowadays, the Pollen data are used to illustrate the



Fig. 9. Data brushing on parallel coordinate dot plot of the Utility data
set: (a) One dot brushing; (b) One dot stack brushing; (c) One class of
data brushing.

effectiveness of panning and zooming in 3D visualization programs.
This effectiveness depends on knowing that EUREKA is spelled at the
centroid and knowing that zooming and rotating around this position
can reveal the hidden word. The real challenge involves discovering
the structure without knowing this information.

Figure 10(a) shows an arbitrary 2D view of the data in the form of
a scatterplot. Figure 10(b) is an ordinary parallel coordinate plot of
the data. In both of these graphics, it is impossible to discern the core
word. Figure 10(c) shows the same display with a density gradient
devised by Wegman[35]. A faint line in the center gives us a clue that
there may be a subset of points with its own distribution. Figure 10(d)
shows a more recent version of Wegman’s display [1]. The density
gradient has been modified to make the middle line more salient.

Figure 10(e) shows a stacked parallel coordinate plot of the same
data where stacks are colored based on their heights. One easily rec-
ognizes the central cluster comprising EUREKA. This is a clear illus-
tration of the fact that stacking enables a larger range of magnitude
representation than intensity. As we have seen with the Lyme dataset,
it is difficult to construct a linear brightness gradient that has a resolu-
tion throughout its range sufficient to detect extreme values [8].

From Figure 10(e), we selected the central cluster in the stacked
parallel coordinate display and requested plots of these data in new
windows: Figure 10(f) zooms in on the central cluster; the polylines
are colored by stack height. One can detect six smaller clusters in
the central cluster. Figure 10(g) shows a scatterplot of data in the six
clusters. Zooming in on this collection of points, we see the word
EUREKA spelled in the scatterplot. Additionally, the data points are
colored by the stacks which they belong to. In just three gestures, we
have identified the code at the center of the scatterplot.

Fig. 10. Visualization of the Pollen data set: (a) Scatterplot; (b) Con-
ventional parallel coordinates; (c) Brightness used to represent density
of profiles; (d) Interactive Parallel Coordinates Frequency Plots with a
brightness gradient; (e) Parallel coordinate plot with line stacks; (f) The
central stacks colored by height; (g) Scatterplot of the subset of points
in (f).



Fig. 11. Several techniques to visualize a portion of the Cars dataset:
(a) Interactive Parallel Coordinates Frequency Plots when a scaling fac-
tor s = 0.5 ; (c) Density Plots using logarithmic color transfer function;
(d) Parallel coordinate plot with line stacks; (e) Another view of Parallel
coordinate plot with line stacks; .

Another example is shown in Figure 11. In this example, we use
the Cars dataset. The data contain 392 instances and several different
kinds of variables: categorical, integer, continuous. Figure 11(a) is an
ordinary parallel coordinate plot of the data. Figure 11(b) shows the
Interactive Parallel Coordinates Frequency Plot [1] for the same data.
This program assigns pixel intensity proportional to the frequency of
the adjacent pairs of variables.

Figure 11(c) shows a Density Plot [23] for the same data. This tech-
nique smooths the polylines (similar to a kernel density estimate) and
generates a color gradient in order to highlight clusters. A nonlinear
transfer function is used to accentuate the contrast.

Figure 11(d) and (e) show a stacked parallel coordinate plots in two
different views. As in the previous example, stacks are colored based
on their heights. Looking at Figure 11(d) (e), one notices that the last
pair of variables (Year and Origin) shows more cars coming from the
first origin than from the others. In all cars produced by the first origin,
one can easily detect the year during which the first origin produced
the most (the red stack). This important detail is not evident in the
other plots.

4.2 Categorical Stacked Parallel Coordinate Plots

As with ordinary dot plots, stacked parallel coordinate plots work well
for both continuous and categorical data; no special adjustments are
required. Figure 12 shows how this works. The data are from the Ti-
tanic survivors data set [9]. The data involve four categorical attributes
for each of the 2201 people on board the Titanic when it struck an ice-
berg and sank. The attributes are cabin class (first class, second class,
third class, crew member), age (adult or child), sex (male or female),
and whether or not the person survived.

Figure 12(a) shows a parallel coordinate plot of these data using an
algorithm in [12]. Figure 12(b) shows the stacked parallel coordinate
plot. The figure shows another variation of our stacking algorithm. We
anchor the lines at the vertices in order to reduce occlusions and we
permute the values to place large densities at the rear. The stacks are
shaded with a linearized hue scale to help distinguish density magni-
tudes. The stacked parallel coordinate plot clearly reveals the major
discrepancies in survival rates. A disproportionate number of males
and adult passengers did not survive. Notice that Figure 12(a) fails
to reveal this dramatic contrast because there is not sufficient dynamic
range in the color palette to represent the magnitude of the count range.

Fig. 12. Visualization of Titanic dataset: (a) Parallel coordinates of
counts with profiles colored to represent frequency; (b) Parallel coor-
dinates of counts with line stacks to represent frequency.

An analytic tool should allow us to drill down easily to subcate-
gories. Figure 13 shows how this works with Stacker. We color the
stacks by cabin class, so we can examine the conditional distributions
of the other variables. Figure 13(a) shows this breakdown; it is evident
that the largest category of passengers was the crew (red). Figure 13(b)
highlights the crew with the help of single class filtering. Figure 13(c)
highlights all surviving passengers. A surprising number of the male
crew survived relative to the number of female first or second class
passengers who survived. This outcome did not reflect well on the
company that owned the Titanic (theWhite Star Line). In Figure 13(d),
we highlight male surviving passengers by clicking on the middle line
stack. In each of the selections in the figure, Stacker highlights cases
in its data editor, so we can examine them more closely.



Fig. 13. (a) Parallel coordinate with line stacks of the Titanic dataset;
(b) Class filtering: Crew in the boat; (c) Dot stack brushing: Survived
passengers; (d) Line stack brushing: Male survived passengers.

4.3 Stacked Regression Lines

Our stacking algorithm can be applied to other geometric elements
used in visualizations. Figure 14 shows an example. The upper panel
shows a plot of the level curves of the theoretical distribution of sam-
ple estimates of a population regression function. Statistical packages
compute this distribution in order to derive a confidence interval on a
regression line. Statisticians know that the cross-section of this dis-
tribution is a normal distribution under the conditional normality as-
sumption for ordinary least squares, but no statistics book or Web site
that we could find plots this distribution in such a way that would re-
veal this conditional distribution. Students would be hard pressed to
discern the real shape of the distribution from Figure 14(a).

Accordingly, we decided to simulate the distribution by computing
5,000 multiple regressions. Each regression was computed on 25 ran-
domly generated bivariate normals with a population correlation of .7.
Figure 14(b) shows the result of our simulation. We have oriented the
3D plot a little differently in order to show clearly the resulting dot
plot comprised of the ends of the cylinders representing the regression
lines. The envelope of these lines clearly reveals the underlying nor-
mal distribution. Having this figure in an introductory statistics book
would give students an understanding of the distribution of linear re-
gression functions with normally distributed error. The two panels of
Figure 14 would make an excellent side-by-side plot for illustrating
the geometry of the ordinary least squares regression model and help
students get beyond formulas.

5 CONCLUSIONS

Tallies are one of the oldest forms of visualization. The term tally
comes from the practice of cutting notches into bones or sticks. More
than 30 years ago, Tukey reformulated tallies as stem-and-leaf plots
[30], which are numerical tallies that closely resemble single-variable
dot plots. In the computer era, tallies appear to have fallen out of favor
(although there is at least one iPhone app for them). Perhaps this is
because they are thought to be primitive, to be replaced by “modern”
kernel densities, mosaic plots, and other displays. We argue otherwise.
Stacking counts deserves a new look and a formal evaluation. We
plan to do that now that we have a testbed for generating them. We
believe stacking, in appropriate applications, can outperform mosaics,
treemaps, parallel coordinates, and other count displays in a perceptual
experiment involving judging count magnitudes.

In conclusion, we note the following:

• Stacking in 3D should be regarded as an adjunct rather than a
substitute for 2D displays. Just as a 3D plot of a manifold can
reveal mathematical structure not discernable in a 2D contour
plot, so can stacking reveal a data-based structure not evident in
2D panels or contours, as we have seen in Figure 14.

• Stacking is especially appropriate when color, area, or other aes-
thetic variables do not have the dynamic range to permit extreme
magnitude comparisons. Figure 10 is a cogent example of this
point. While brightness perception admits to several orders of
magnitude in ideal conditions, printed and computer displays
greatly reduce the perceptual range of a stimulus. The third panel
of Figure 10 shows a faint white horizontal area, while the fifth
panel shows a huge ridge running through the display. We would
need custom filtering on the black-and-white image to expose
this large a contrast.

• Stacking is not limited to points and lines. Theme River [11]
and Baby Name Voyager [33] stack areas to represent time se-
ries. Our algorithm implements stacking at the individual case
level. We advocate extending our algorithm to other geometric
representation elements.
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Fig. 14. Regression lines: (a) contours of conditional distribution com-
puted by SYSTAT; (b) 5,000 regression lines stacked and colored by
height of stack.
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