
Segmentation of Publication Records of Authors from the Web

Wei Zhang, Clement Yu Neil Smalheiser, Vetle Torvik
Department of Computer Science Department of Psychiatry
University of Illinois at Chicago University of Illinois at Chicago

 {wzhang,yu}@cs.uic.edu smalheiser@psych.uic.edu, vtorvik@uic.edu

Abstract

Publication records are often found in the authors’
personal home pages. If such a record is partitioned into
a list of semantic fields of authors, title, date, etc., the
unstructured texts can be converted into structured data,
which can be used in other applications.

In this paper, we present PEPURS, a publication
record segmentation system. It adopts a novel “Split and
Merge” strategy. A publication record is split into
segments; multiple statistical classifiers compute their
likelihoods of belonging to different fields; finally
adjacent segments are merged if they belong to the same
field. PEPURS introduces the punctuation marks and
their neighboring texts as a new feature to distinguish
different roles of the marks. PEPURS yields high
accuracy scores in experiments.

1. Introduction

The publication records in the researchers’ personal
home pages contain multiple semantic fields, such as
authors, title, and journal, etc. The content of these fields
can be used in different tasks, such as building
publication databases, helping author disambiguation,
tracking author's research activities.

In this paper, we solve the publication record
segmentation problem. It is to partition a publication
record into coherent fields; each field receives a semantic
label. But the fields in the records are not made explicit.
The ordering of the fields changes according to individual
authors. There is no explicit delimiter between two fields.
Some fields are optional while other may appear more
than once. The heterogeneous structure of the publication
records makes this task non-trivial.

We have two helpful observations. First, the
punctuation marks serve as field delimiters (FD), for
example, a comma between the author and the article title.
But the same mark can also be part of the field data, such
as a comma between two authors. Distinguishing the FD
marks from the non-FD marks can help us solve the
segmentation problem. Second, the data from different
fields tends to be more different than that from the same
field. For example, in “281-287, Orlando, FL”. The first

comma is a FD. Its left-hand-side (LHS) text is a page
number while its right-hand-size (RHS) text is a location
word. The second comma is part of the location field.
Both its LHS and RHS text are words. We can determine
the nature of a punctuation mark by examining the
difference between its LHS and RHS words.

In this paper, we implement a text segmentation
system PEPURS (PErsonal PUblication Record
Segmenter) to segment the publication records. We make
the following contributions:
• Using a novel “Split and Merge” strategy for the

segmentation task.
• Using the punctuation marks and their neighboring

text as a novel feature to determine the function of
the marks.

• Multiple text features are used together as a novel
“multiple-feature sequence” to compute the text-
field likelihood.

• The stacked generalization method combines
multiple classification results.

2. System Overview

Figure 1 shows the architecture of PEPURS.

Figure 1. PEPURS System Structure

PEPURS adopts a novel “Split and Merge”
framework: (1) Split a raw publication record into text
segments according to the punctuation marks that could
be used as FDs. Initially we call these marks the
undecided marks (UM) as we do not know if they are the
real FDs; (2) Compute the likelihood of each segment and
each UM belonging to each field by using the
distributions of multiple text features; (3) Merge two
segments s1, s2 and the UM in between to a single
segment if the probability of them bearing the same field
label is greater than that of s1 and s2 having different field
labels and the UM having the FD label.

2.1. Getting the Distribution of the Text Features

In the training set, all the fields (FD is also a field) of
the records are labeled. A tokenizer and a part-of-speech
(POS) tagger also label the words, numbers and
punctuation marks in the fields. Thus the distributions of
various text features in various fields are collected. The
features include the tokens representing the upper-case /
lower-case of the words, the POS, the actual words and
punctuation marks, and the relative position of the words
of different fields in the records. We also collect the
paired features. A pair refers to two adjacent elements of
the same type, such as a pair of words, tokens or POS
tags. Keyword lists are collected from the Web for certain
fields. Such as DBLP author list, major countries and
cities, and organization names.

2.2. Splitting a Record into the Segments

In the “split” step, a publication record is partitioned
into initial segments by naively considering that all the
instances of the FD marks in this record are real FDs,
even some of them are just parts of some fields. We call
all these instances the Undecided Marks (UM).

2.3. The B-Classifier

B-classifier computes the probabilities of the initial
segments in different fields. It converts a text segment to
a “Multiple-Feature Sequence” (MFS). The probabilities
of the MFS in various fields are computed in a unigram-
bigram combined language model. They approximate the
probabilities of the actual segment.

Unigram-Bigram Combined Language Model. The
unigram and the bigram are two cases of the n-gram
language model [4]. The probability of a string s=(w1 w2
w3 w4) is a sentence is defined as p(s). In the unigram
model, p(s) = p(w1) × p(w2) × p(w3) × p(w4). In the
bigram model, p(s) = p(w1) × p(w2|w1) × p(w3|w2) ×
p(w4|w3), which can be written as p(s) = p(w1 w2) × p(w2
w3)/p(w2) × p(w3 w4)/p(w3) according to the definition of

conditional probability p(wi+1|wi) = p(wi wi+1) / p(wi). We
make an approximation by using the independent events:
p(x y) = p(x) × p(y) if x and y never appear as a pair. For
example, If (w3 w4) is never found as a pair, p(s) = p(w1
w2) × p(w2 w3)/p(w2) × p(w4)

Multi-Feature Sequence Representation of the Text

Segment. If an incoming word is unknown, it will have a
probability of 0. Smoothing [7] avoids this by assigning a
small value to that word. We modify it to use the token
and POS labels of that word to replace the word itself; use
the probabilities of the token and POS labels to
approximate the probability of the actual word. These
probabilities should be better than the small default value.
A Multi-Feature Sequence (MFS) is designed to replace
the original words, in which the unknown words are
replaced by their corresponding token and POS labels.
The paired elements are distinguished from the single
elements in the MFS. Then we compute the probability of
a MFS by using the bigram-unigram combined model.

Example 1. We have a category C. The training set of
C has a word pair of “c d” and the single words of “b”
and “e”. Given a segment s of “a b c d e f g”, its MFS
is: “a” as unknown_single, “b” as word_single, “c d” as
word_pair, “e” as word_single, “f g” as unknown_pair”.
The probability of s in C is computed as

 p(C | s)
∝ p(s | C) × p(C) ∝ p(MFS|C) ×p(C)
 = p(“a” as unknown_single, “b” as word_single,
 “c d” as word_pair, “e” as word_single,
 “f g” as unknown_pair | C) × p(C)
 = {p(“a” as unknown_single | C) ×
 p(“b” as word_ single | C) ×
 p(“c d” as word_pair | C) ×
 p(“e” as word_ single | C) ×
 p(“f g” as unknown_pair | C)} × p(C)
 = {[p(token(a) | C) + p(POS(a) | C)]/2 ×
 p(word(b) | C) ×
 p(word_pair(c d) | C) ×
 p(word(e) | C) ×
 [p(token_pair(f g) | C) + p(POS_pair(f g) | C)]/2}
 × p(C)

2.4. The P-Classifier

The P-classifier uses the position of a segment in the
record as the only feature. A record r has m elements (w1
w2 ... wm), the position of wi, pwi, is computed as (i/m) in
(0, 0.1]. Split the space of (0, 0.1] evenly into ten
intervals: (0, 0.1], (0.1, 0.2), …, (0.9, 1]. The pwi falls
into one of them and receives an interval number, intvli,
between 0 and 9. wi is finally represented by intvli. When

r is partitioned into n segments, assume the ith segment
segi have the jth word to the kth word.

)()|...(

)()|(

CpCIntvlIntvlp
p(C)|C) ... wpp(wp

CpC ... wwp) ... ww|p(C

)seg|p(C

kj

kj

kjkj

i

×∝
×∝

×==

2.5. The Stacked Generalization

Stacked generalization [5, 8] is a general method of
combining multiple predictions. We put the B-classifier
and P-classifier at level-0 and a decision tree classifier at
level-1. The probability outputs of the B- and P-classifier
are used to train the decision tree. Given a test segment s,
B- and P- classifiers give out the probability values of s in
different fields. The decision tree combines these values
to a single field label prediction.

2.6. Merging the Initial Segments

An UM m, its LHS segment s1 and RHS segment s2
are tested. If the probability of them bearing the same
field label is greater than that of s1 and s2 having different
field labels and the UM having the FD label, they are
merged to a single segment. Otherwise they have
different field labels. A publication record may have
multiple initial segments and UMs, The merging process
starts from the first “segment, UM, segment” triple. If
they are merged, the new segment replaces the triple. The
merging process moves to next available triple. It stops
until it reaches the end of the record.

3. Related Work

Hidden Markov Model (HMM) and Viterbi algorithm
is a popular combination in the research community.
DATAMOLD [3] introduces a hierarchical text feature
structure for the record data. Their features are single
words and tokens only, not having the POS and the paired
features. DATAMOLD has an 87% accuracy score on a
Citeseer publication record set. CRAM [1] also adopts the
HMM, Viterbi, hierarchical single-element features. It
uses a huge database (100,000 records) for training in
attempt to replace the human labeled training set. On a
test set of the 100 most cited publications in Citeseer,
CRAM yields an accuracy score of 91% to 92%.

Human expert knowledge is also used to partition the
records. Citeseer [6] adopts human-written heuristics to
extract some fields from the whole record. But they only
extract author and title fields, because their task is not the
record segmentation but a text similarity comparison
problem.

The punctuation marks have been ignored by most of
the text processing works. However, a rather recent

tokenization system BAccHANT [2] showed that the
punctuation marks, when used with its left and right
neighboring characters, may yield better results than not
using them. PEPURS adopts the same idea of using
punctuation marks but generalizes the idea of using the
left/right neighboring character to the using of left/right
neighboring text segment.

4. Conclusions

We evaluated PEPURS with a set of 1674 publication
records that were downloaded from the personal home
pages of Computer Science researchers. We measured the
number of the data that were correctly segmented and
labeled. In various 10-fold validation setups, PEPURS
had accuracy scores between 92% and 93% when using
the whole data set; and scores between 90% and 93%
when using half of the set. These scores were higher than
the score of 83% from a HMM system. The experimental
results show that our “Split and Merge” framework is
robust and can be applied to real world data environment.

Acknowledgments

Work supported in part by NIH under grants
LM07292 and LM08364. Research funded jointly by the
National Library of Medicine and the National Institute of
Mental Health.

References

[1] Eugene Agichtein and Venkatesh Ganti, “Mining Reference
Tables for Automatic Text Segmentation”, In Proceedings of the
ACM SIGKDD, 2004.
[2] Robert Arens, “A Preliminary Look into the Use of Named
Entity Information for Bioscience Text Tokenization”, In
Proceedings of HLT/NAACL 2004: Companion Volume, 2004,
pp. 201 - 205.
[3] Vinayak Borkar, Kaustubh Deshmukh and Sunita Sarawagi,
“Automatic Segmentation of Text into Structured Records”,
ACM SIGMOD, 2001.
[4] P. F. Brown, V. J. Della Pietra, P. V. deSouza, J. C. Lai and
R. L. Mercer, “Class-based n-gram models of natural language”,
Computational Linguistics, 18(4), 1992, pp. 467 – 477.
[5] Melissa K. Carroll and S.-H. Cha, “Application of Stacked
Generalization to a Protein Localization Prediction Task”, in
Proceedings of 7th JCIS, Cary, North Carolina, 2003, pp. 13 –
16.
[6] Steve Lawrence, C. Lee Giles and Kurt Bollacker,
“Autonomous Citation Matching”, In Proceedings of the Third
International Conference on Autonomous Agents, 1999.
[7] Chris Manning and Hinrich Schütze, “Foundations of
Statistical Natural Language Processing”, MIT Press, 1999.
[8] D. Wolpert, “Stacked generalization”, Neural Networks, vol.
5, 1992, pp. 241 – 259.

