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Abstract 
 

Publication records are often found in the authors’ 
personal home pages. If such a record is partitioned into 
a list of semantic fields of authors, title, date, etc., the 
unstructured texts can be converted into structured data, 
which can be used in other applications.  

In this paper, we present PEPURS, a publication 
record segmentation system. It adopts a novel “Split and 
Merge” strategy. A publication record is split into 
segments; multiple statistical classifiers compute their 
likelihoods of belonging to different fields; finally 
adjacent segments are merged if they belong to the same 
field. PEPURS introduces the punctuation marks and 
their neighboring texts as a new feature to distinguish 
different roles of the marks. PEPURS yields high 
accuracy scores in experiments. 
 
 
1. Introduction 
 

The publication records in the researchers’ personal 
home pages contain multiple semantic fields, such as 
authors, title, and journal, etc. The content of these fields 
can be used in different tasks, such as building 
publication databases, helping author disambiguation, 
tracking author's research activities. 

In this paper, we solve the publication record 
segmentation problem. It is to partition a publication 
record into coherent fields; each field receives a semantic 
label. But the fields in the records are not made explicit. 
The ordering of the fields changes according to individual 
authors. There is no explicit delimiter between two fields. 
Some fields are optional while other may appear more 
than once. The heterogeneous structure of the publication 
records makes this task non-trivial. 

We have two helpful observations. First, the 
punctuation marks serve as field delimiters (FD), for 
example, a comma between the author and the article title. 
But the same mark can also be part of the field data, such 
as a comma between two authors. Distinguishing the FD 
marks from the non-FD marks can help us solve the 
segmentation problem. Second, the data from different 
fields tends to be more different than that from the same 
field. For example, in “281-287, Orlando, FL”. The first 

comma is a FD. Its left-hand-side (LHS) text is a page 
number while its right-hand-size (RHS) text is a location 
word. The second comma is part of the location field. 
Both its LHS and RHS text are words. We can determine 
the nature of a punctuation mark by examining the 
difference between its LHS and RHS words. 

In this paper, we implement a text segmentation 
system PEPURS (PErsonal PUblication Record 
Segmenter) to segment the publication records. We make 
the following contributions: 
• Using a novel “Split and Merge” strategy for the 

segmentation task. 
• Using the punctuation marks and their neighboring 

text as a novel feature to determine the function of 
the marks. 

• Multiple text features are used together as a novel 
“multiple-feature sequence” to compute the text-
field likelihood. 

• The stacked generalization method combines 
multiple classification results. 

 
2. System Overview 
 

Figure 1 shows the architecture of PEPURS.  

 
 

Figure 1. PEPURS System Structure 



PEPURS adopts a novel “Split and Merge” 
framework: (1) Split a raw publication record into text 
segments according to the punctuation marks that could 
be used as FDs. Initially we call these marks the 
undecided marks (UM) as we do not know if they are the 
real FDs; (2) Compute the likelihood of each segment and 
each UM belonging to each field by using the 
distributions of multiple text features; (3) Merge two 
segments s1, s2 and the UM in between to a single 
segment if the probability of them bearing the same field 
label is greater than that of s1 and s2 having different field 
labels and the UM having the FD label. 
 
2.1. Getting the Distribution of the Text Features 
 

In the training set, all the fields (FD is also a field) of 
the records are labeled. A tokenizer and a part-of-speech 
(POS) tagger also label the words, numbers and 
punctuation marks in the fields. Thus the distributions of 
various text features in various fields are collected. The 
features include the tokens representing the upper-case / 
lower-case of the words, the POS, the actual words and 
punctuation marks, and the relative position of the words 
of different fields in the records. We also collect the 
paired features. A pair refers to two adjacent elements of 
the same type, such as a pair of words, tokens or POS 
tags. Keyword lists are collected from the Web for certain 
fields. Such as DBLP author list, major countries and 
cities, and organization names. 
 
2.2. Splitting a Record into the Segments 
 

In the “split” step, a publication record is partitioned 
into initial segments by naively considering that all the 
instances of the FD marks in this record are real FDs, 
even some of them are just parts of some fields. We call 
all these instances the Undecided Marks (UM). 
 
2.3. The B-Classifier 
 

B-classifier computes the probabilities of the initial 
segments in different fields. It converts a text segment to 
a “Multiple-Feature Sequence” (MFS). The probabilities 
of the MFS in various fields are computed in a unigram-
bigram combined language model. They approximate the 
probabilities of the actual segment. 

Unigram-Bigram Combined Language Model. The 
unigram and the bigram are two cases of the n-gram 
language model [4]. The probability of a string s=(w1 w2 
w3 w4) is a sentence is defined as p(s). In the unigram 
model, p(s) = p(w1) × p(w2) × p(w3) × p(w4). In the 
bigram model, p(s) = p(w1) × p(w2|w1) × p(w3|w2) × 
p(w4|w3), which can be written as p(s) = p(w1 w2) × p(w2 
w3)/p(w2) × p(w3 w4)/p(w3) according to the definition of 

conditional probability p(wi+1|wi) = p(wi wi+1) / p(wi). We 
make an approximation by using the independent events: 
p(x y) = p(x) × p(y) if x and y never appear as a pair. For 
example, If (w3 w4) is never found as a pair, p(s) = p(w1 
w2) × p(w2 w3)/p(w2) × p(w4) 

 
Multi-Feature Sequence Representation of the Text 

Segment. If an incoming word is unknown, it will have a 
probability of 0. Smoothing [7] avoids this by assigning a 
small value to that word. We modify it to use the token 
and POS labels of that word to replace the word itself; use 
the probabilities of the token and POS labels to 
approximate the probability of the actual word. These 
probabilities should be better than the small default value. 
A Multi-Feature Sequence (MFS) is designed to replace 
the original words, in which the unknown words are 
replaced by their corresponding token and POS labels. 
The paired elements are distinguished from the single 
elements in the MFS. Then we compute the probability of 
a MFS by using the bigram-unigram combined model. 
 

Example 1. We have a category C. The training set of 
C has a word pair of “c d” and the single words of “b” 
and “e”. Given a segment s of “a b c d e f g”, its MFS  
is: “a” as unknown_single, “b” as word_single, “c d” as 
word_pair, “e” as word_single, “f g” as unknown_pair”. 
The probability of s in C is computed as 

     p(C | s) 
∝ p(s | C) × p(C) ∝ p(MFS|C) ×p(C) 
 = p(“a” as unknown_single,  “b” as word_single, 
        “c d” as word_pair,        “e” as word_single, 
        “f g” as unknown_pair | C) × p(C) 
 = {p(“a” as unknown_single | C) ×  
      p(“b” as word_ single | C) × 
      p(“c d” as word_pair | C) × 
      p(“e” as word_ single | C) × 
     p(“f g” as unknown_pair | C)} × p(C) 
 = {[p(token(a) | C) + p(POS(a) | C)]/2 × 
        p(word(b) | C) ×  
       p(word_pair(c d) | C) ×  
       p(word(e) | C) ×  
      [p(token_pair(f g) | C) + p(POS_pair(f g) | C)]/2} 
      × p(C) 

 
2.4. The P-Classifier 
 

The P-classifier uses the position of a segment in the 
record as the only feature. A record r has m elements (w1 
w2 ... wm), the position of wi, pwi, is computed as (i/m) in 
(0, 0.1]. Split the space of (0, 0.1] evenly into ten 
intervals: (0, 0.1], (0.1, 0.2), …, (0.9, 1]. The pwi falls 
into one of them and receives an interval number, intvli, 
between 0 and 9. wi is finally represented by intvli. When 



r is partitioned into n segments, assume the ith segment 
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2.5. The Stacked Generalization 
 

Stacked generalization [5, 8] is a general method of 
combining multiple predictions. We put the B-classifier 
and P-classifier at level-0 and a decision tree classifier at 
level-1. The probability outputs of the B- and P-classifier 
are used to train the decision tree. Given a test segment s, 
B- and P- classifiers give out the probability values of s in 
different fields. The decision tree combines these values 
to a single field label prediction.  
 
2.6. Merging the Initial Segments 
 

An UM m, its LHS segment s1 and RHS segment s2 
are tested. If the probability of them bearing the same 
field label is greater than that of s1 and s2 having different 
field labels and the UM having the FD label, they are 
merged to a single segment. Otherwise they have 
different field labels. A publication record may have 
multiple initial segments and UMs, The merging process 
starts from the first “segment, UM, segment” triple. If 
they are merged, the new segment replaces the triple. The 
merging process moves to next available triple. It stops 
until it reaches the end of the record. 
 
3. Related Work 
 

Hidden Markov Model (HMM) and Viterbi algorithm 
is a popular combination in the research community. 
DATAMOLD [3] introduces a hierarchical text feature 
structure for the record data. Their features are single 
words and tokens only, not having the POS and the paired 
features. DATAMOLD has an 87% accuracy score on a 
Citeseer publication record set. CRAM [1] also adopts the 
HMM, Viterbi, hierarchical single-element features. It 
uses a huge database (100,000 records) for training in 
attempt to replace the human labeled training set. On a 
test set of the 100 most cited publications in Citeseer, 
CRAM yields an accuracy score of 91% to 92%. 

Human expert knowledge is also used to partition the 
records. Citeseer [6] adopts human-written heuristics to 
extract some fields from the whole record. But they only 
extract author and title fields, because their task is not the 
record segmentation but a text similarity comparison 
problem. 

The punctuation marks have been ignored by most of 
the text processing works. However, a rather recent 

tokenization system BAccHANT [2] showed that the 
punctuation marks, when used with its left and right 
neighboring characters, may yield better results than not 
using them. PEPURS adopts the same idea of using 
punctuation marks but generalizes the idea of using the 
left/right neighboring character to the using of left/right 
neighboring text segment. 
 
4. Conclusions 
 

We evaluated PEPURS with a set of 1674 publication 
records that were downloaded from the personal home 
pages of Computer Science researchers. We measured the 
number of the data that were correctly segmented and 
labeled. In various 10-fold validation setups, PEPURS 
had accuracy scores between 92% and 93% when using 
the whole data set; and scores between 90% and 93% 
when using half of the set. These scores were higher than 
the score of 83% from a HMM system. The experimental 
results show that our “Split and Merge” framework is 
robust and can be applied to real world data environment. 
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