CS 401: Computer
Algorithm |

Greedy Algorithms: Interval Scheduling

Xiaorui Sun

Stuff

Homework 1 due tomorrow 11:59pm

Homework 2 will be released tomorrow, due Feb
23 11:59pm

Homework 2

Programming homework on Leetcode

» Register a Leetcode account (free), and programming on Leetcode
* You can use any programming language

« Submit your code to gradescope

» Score for each problem is proportional to the test cases on Leetcode
you can pass (if you can pass all, you get full score on the problem)

C @ leetcode.com/problems/can-place-flowers/ h X @ @ » 0O é :

(Leet(odz Explore Problems Interview Contest Discuss ©

& Description A Solutior B Discuss (999+) © Submissions (o]

605. Can Place Flowers

Easy 93191 GP 685 < AddtoList (0 Share bool canPlaceFlowers(int* flowerbed, int flowerbedSize, int n){

}
You have a long flowerbed in which some of the plots are planted, and some are not. However,
flowers cannot be planted in adjacent plots.

Given an integer array flowerbed containing 0'sand 1's, where 0 means empty and 1
means not empty, and an integer n, return if n new flowers can be planted in the flowerbed
without violating the no-adjacent-flowers rule.

Example 1:

Input: flowerbed = [1,0,0,0,1], n =1
Output: true

Example 2:

Input: flowerbed = [1,0,0,0,1], n = 2
Output: false

Constraints:

e 1 <= flowerbed.length <= 2 * 10%
—x Your previous code was restored from your local storage. Reset to default
* flowerbed[i] IS 0 Or 1.

= Problems % Pick One < Prev 34/261 Next > Console ~ Contribute i » Run Code ~

Greedy Algorithms

* High level idea

» Solution is built in small steps

 Decisions on how to build the solution are made to
maximize some criterion without looking to the future

» Want the ‘best’ current partial solution as if the
current step were the last step

Greedy Algorithms

* High level idea

» Solution is built in small steps

Independent set Vertex coloring

Greedy Algorithms

* High level idea

» Solution is built in small steps

 Decisions on how to build the solution are made to
maximize some criterion without looking to the future

» Want the ‘best’ current partial solution as if the
current step were the last step

* General Recipe:

* Order the input in a good way

 Go over the input one by one and make decision on
each input with a good strategy

Interval Scheduling

« Job j starts at s(j) and finishes at f(j).
« Two jobs compatible if they don’t overlap.
« Goal: find maximum subset of mutually compatible jobs.

Time

Greedy Strategy

Sort the jobs in some order. Go over the jobs and take
jobs that are compatible with the previous jobs already
taken.

Main question:

« What order?

« Does it give the optimum answer?

 Why?

Possible Approaches for Inter Sched

Sort the jobs in some order . Go over the jobs and take jobs that are
compatible with the previous jobs already taken.

[Shortest interval] Consider jobs in ascending order of interval length

fG) =s@).
[Earliest start time] Consider jobs in ascending order of start time s(j).

[Earliest finish time] Consider jobs in ascending order of finish time f(j).

Possible Approaches for Inter Sched

Sort the jobs in some order . Go over the jobs and take jobs that are
compatible with the previous jobs already taken.

[Shortest interval] Consider jobs in ascending order of interval length

fG) =s@G).

a b

[Earliest start time] Consider jobs in ascending order of start time s(j).

a b c

[Earliest finish time] Consider jobs in ascending order of finish time f(j).

10

Greedy Alg: Earliest Finish Time

Consider jobs in increasing order of finish time. Take each job
provided it's compatible with the ones already taken.

Sort jobs by finish times so that £(1) < £(2) < ... < f£(n).
A<0Q
for j =1 ton {
if (job j compatible with A4)
A< AuU{j}
}

return A

Implementation. O(n log n).
« Remember job j* that was added last to A.
« Job j is compatible with Aif s(j) = f(*).

11

Greedy Alg: Example

B

H . Time

12

Correctness

« The output is compatible. (This is by construction.)

How to show it gives maximum number of jobs?
Let iy, i,, i3, - be jobs picked by greedy (ordered by finish time)
Let ji,j,, j3, - be an optimal solution (ordered by finish time)
How about proving i, = j, for all k?
No, there can be multiple optimal solutions.
|dea: Prove that greedy outputs the “best” optimal solution.
Given two compatible orders, which is better?
The one finish earlier.
How to prove greedy gives the “best”?
Induction: it gives the “best” during every iteration.

13

Greedy stays ahead: At each step any other solution has a worse
value for some criterion that eventually implies optimality

This example: criterion = finish time

Proof. (technique: “Greedy stays ahead”)

Let iy, iy, i3,::, i De jobs picked by greedy, ji,j,,J3, ", Jm those
In some optimal solution in order.

We show f(i,) < f(j,) for all r, by induction on r.

Base Case: i; chosen to have min finish time, so f(i,) < f(j,).
IH: f(i,) < f(j,) for some r

1IS: Since (i) < () < s(,+1), j-+1 IS among the candidates
considered by greedy when it picked i,.,,, & it picks min finish,

SO f(ir+1) < f(Ur+1)

Observe that we must have k > m, else j; ., is among

(nonempty) set of candidates for iy ;. H

Lesson

Order is important for greedy algorithms

* In general, the order gives priorities to different elements
(the most important element is ordered first)

« This example: the job can be finished earliest is the most
important job because finishing this job gives more
freedom to finish other jobs

 If you want to solve a problem by greedy, first think
about what is the “right” order of the elements

Greedy stays ahead
« A useful strategy to argue why the solution is the best

15

