
CS 401: Computer
Algorithm I

Greedy Algorithms: Interval Scheduling
Xiaorui Sun

1

2

Stuff

Homework 1 due tomorrow 11:59pm

Homework 2 will be released tomorrow, due Feb
23 11:59pm

Homework 2
Programming homework on Leetcode
• Register a Leetcode account (free), and programming on Leetcode
• You can use any programming language
• Submit your code to gradescope
• Score for each problem is proportional to the test cases on Leetcode

you can pass (if you can pass all, you get full score on the problem)

4

Greedy Algorithms

• High level idea
• Solution is built in small steps
• Decisions on how to build the solution are made to

maximize some criterion without looking to the future
• Want the ‘best’ current partial solution as if the

current step were the last step

5

Greedy Algorithms

• High level idea
• Solution is built in small steps

Independent set Vertex coloring

6

Greedy Algorithms

• High level idea
• Solution is built in small steps
• Decisions on how to build the solution are made to

maximize some criterion without looking to the future
• Want the ‘best’ current partial solution as if the

current step were the last step

• General Recipe:
• Order the input in a good way
• Go over the input one by one and make decision on

each input with a good strategy

Interval Scheduling

• Job j starts at 𝑠(𝑗) and finishes at 𝑓(𝑗).
• Two jobs compatible if they don’t overlap.
• Goal: find maximum subset of mutually compatible jobs.

7
Time

0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

Greedy Strategy

Sort the jobs in some order. Go over the jobs and take
jobs that are compatible with the previous jobs already
taken.

Main question:

• What order?

• Does it give the optimum answer?

• Why?

8

Possible Approaches for Inter Sched

Sort the jobs in some order . Go over the jobs and take jobs that are
compatible with the previous jobs already taken.

[Shortest interval] Consider jobs in ascending order of interval length
𝑓 𝑗 − 𝑠(𝑗).

[Earliest start time] Consider jobs in ascending order of start time 𝑠(𝑗).

[Earliest finish time] Consider jobs in ascending order of finish time 𝑓(𝑗).

9

Possible Approaches for Inter Sched

Sort the jobs in some order . Go over the jobs and take jobs that are
compatible with the previous jobs already taken.

[Shortest interval] Consider jobs in ascending order of interval length
𝑓 𝑗 − 𝑠(𝑗).

[Earliest start time] Consider jobs in ascending order of start time 𝑠(𝑗).

[Earliest finish time] Consider jobs in ascending order of finish time 𝑓(𝑗).

10

a b c

d

a b

c

Greedy Alg: Earliest Finish Time

Consider jobs in increasing order of finish time. Take each job
provided it’s compatible with the ones already taken.

Implementation. O(n log n).
• Remember job 𝑗∗ that was added last to A.
• Job 𝑗 is compatible with A if 𝑠 𝑗 ≥ 𝑓(𝑗∗).

11

Sort jobs by finish times so that f(1) £ f(2) £ ... £ f(n).
𝑨 ← ∅
for j = 1 to n {
 if (job j compatible with 𝑨)
 𝑨 ← 𝑨 ∪ {𝒋}
}
return 𝑨

Greedy Alg: Example

12

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

0 1 2 3 4 5 6 7 8 9 10 11
B CA ED F G H

Correctness

• The output is compatible. (This is by construction.)

How to show it gives maximum number of jobs?
Let 𝑖), 𝑖*, 𝑖+, ⋯ be jobs picked by greedy (ordered by finish time)
Let 𝑗), 𝑗*, 𝑗+, ⋯ be an optimal solution (ordered by finish time)
How about proving 𝑖, = 𝑗, for all 𝑘?
No, there can be multiple optimal solutions.
Idea: Prove that greedy outputs the “best” optimal solution.
Given two compatible orders, which is better?
The one finish earlier.
How to prove greedy gives the “best”?
Induction: it gives the “best” during every iteration.

13

Correctness

Theorem: Greedy algorithm is optimal.

Proof: (technique: “Greedy stays ahead”)
Let 𝑖), 𝑖*, 𝑖+, ⋯ , 𝑖, be jobs picked by greedy, 𝑗), 𝑗*, 𝑗+, ⋯ , 𝑗- those
in some optimal solution in order.
We show 𝑓(𝑖.)	£	𝑓(𝑗.)	 for all 𝑟, by induction on 𝑟.

Base Case: 𝑖) chosen to have min finish time, so 𝑓(𝑖1)	£	𝑓(𝑗1).
IH: 𝑓(𝑖.)	£	𝑓 𝑗. for some r
IS: Since 𝑓 𝑖. ≤ 𝑓 𝑗. ≤ 𝑠(𝑗./)), 𝑗./) is among the candidates
considered by greedy when it picked 𝑖./), & it picks min finish,
so 𝑓 𝑖./) ≤ 𝑓(𝑗./))

Observe that we must have 𝑘 ≥ 𝑚, else 𝑗,/) is among
(nonempty) set of candidates for 𝑖,/).

14

Greedy stays ahead: At each step any other solution has a worse
value for some criterion that eventually implies optimality

This example: criterion = finish time

Lesson

Order is important for greedy algorithms
• In general, the order gives priorities to different elements

(the most important element is ordered first)
• This example: the job can be finished earliest is the most

important job because finishing this job gives more
freedom to finish other jobs

• If you want to solve a problem by greedy, first think
about what is the “right” order of the elements

Greedy stays ahead
• A useful strategy to argue why the solution is the best

15

