
CS 401: Computer
Algorithm I

Interval Scheduling / Interval
Partitioning

Xiaorui Sun

1

Stuff
Homework 2 is out (due at 11:59pm February 23 Friday)

Submit your source code for each problem to gradescope via
blackboard

3

Greedy Algorithm
• Greedy algorithm:

• Divide solution construction into small steps
• Decision in each step: ‘best’ current partial solution at each step

• Recipe:
• Order the input in some way (the most ‘important’ element will

be considered first)
• Go through the input according to the order
• Determine the strategy to construct best current partial solution

in each step

Interval Scheduling

• Job j starts at 𝑠(𝑗) and finishes at 𝑓(𝑗).
• Two jobs compatible if they don’t overlap.
• Goal: find maximum subset of mutually compatible jobs.

4
Time

0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

Greedy Alg: Earliest Finish Time

Consider jobs in increasing order of finish time. Take each job
provided it’s compatible with the ones already taken.

Implementation. O(n log n).
• Remember job 𝑗∗ that was added last to A.
• Job 𝑗 is compatible with A if 𝑠 𝑗 ≥ 𝑓(𝑗∗).

5

Sort jobs by finish times so that f(1) £ f(2) £ ... £ f(n).
𝑨 ← ∅
for j = 1 to n {
 if (job j compatible with 𝑨)
 𝑨 ← 𝑨 ∪ {𝒋}
}
return 𝑨

Correctness

• The output is compatible. (This is by construction.)

How to show it gives maximum number of jobs?
Let 𝑖), 𝑖*, 𝑖+, ⋯ be jobs picked by greedy (ordered by finish time)
Let 𝑗), 𝑗*, 𝑗+, ⋯ be an optimal solution (ordered by finish time)
How about proving 𝑖, = 𝑗, for all 𝑘?
No, there can be multiple optimal solutions.
Idea: Prove that greedy outputs the “best” optimal solution.
Given two compatible orders, which is better?
The one finish earlier.
How to prove greedy gives the “best”?
Induction: it gives the “best” during every iteration.

6

Correctness

Theorem: Greedy algorithm is optimal.

Proof: (technique: “Greedy stays ahead”)
Let 𝑖), 𝑖*, 𝑖+, ⋯ , 𝑖, be jobs picked by greedy, 𝑗), 𝑗*, 𝑗+, ⋯ , 𝑗- those
in some optimal solution in order.
We show 𝑓(𝑖.)	£	𝑓(𝑗.)	 for all 𝑟, by induction on 𝑟.

Base Case: 𝑖) chosen to have min finish time, so 𝑓(𝑖1)	£	𝑓(𝑗1).
IH: 𝑓(𝑖.)	£	𝑓 𝑗. for some r
IS: Since 𝑓 𝑖. ≤ 𝑓 𝑗. ≤ 𝑠(𝑗./)), 𝑗./) is among the candidates
considered by greedy when it picked 𝑖./), & it picks min finish,
so 𝑓 𝑖./) ≤ 𝑓(𝑗./))

Observe that we must have 𝑘 ≥ 𝑚, else 𝑗,/) is among
(nonempty) set of candidates for 𝑖,/).

7

Greedy stays ahead: At each step any other solution has a worse
value for some criterion that eventually implies optimality

This example: criterion = finish time

Lesson

Order is important for greedy algorithms
• In general, the order gives priorities to different elements

(the most important element is ordered first)
• This example: the job can be finished earliest is the most

important job because finishing this job gives more
freedom to finish other jobs

• If you want to solve a problem by greedy, first think
about what is the “right” order of the elements

Greedy stays ahead
• A useful strategy to argue why the solution is the best

8

Interval Partitioning
Technique: Structural

Interval Partitioning

Lecture 𝑗 starts at 𝑠(𝑗) and finishes at 𝑓(𝑗).
Goal: find minimum number of classrooms to schedule all lectures so that no
two occur at the same time in the same room.

10Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

Room 1
Room 2
Room 3
Room 4

A Better Schedule

This one uses only 3 classrooms

11

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

A Greedy Algorithm

Greedy algorithm: Consider lectures in increasing order of
finish time: assign lecture to any compatible classroom.

Correctness: This is wrong!
12

Sort intervals by finish time so that f1 £ f2 £ ... £ fn.
d ¬ 0

for j = 1 to n {
 if (let j is compatible with some classroom k, 𝟏 ≤ 𝒌 ≤ 𝒅)
 schedule lecture j in classroom k
 else
 allocate a new classroom d + 1
 schedule lecture j in classroom d + 1
 d ¬ d + 1
}

Example

13

Time
0 1 2 3 4 5 6

d

a

b

c

Time
0 1 2 3 4 5 6

d

a

b

c

Greedy by finish time gives: OPT:

Time
0 1 2 3 4 5 6

da

b c

A Greedy Algorithm

Greedy algorithm: Consider lectures in increasing order of
start time: assign lecture to any compatible classroom.

Implementation: Exercise!
14

Sort intervals by starting time so that s1 £ s2 £ ... £ sn.
d ¬ 0

for j = 1 to n {
 if (lect j is compatible with some classroom k, 𝟏 ≤ 𝒌 ≤ 𝒅)
 schedule lecture j in classroom k
 else
 allocate a new classroom d + 1
 schedule lecture j in classroom d + 1
 d ¬ d + 1
}

A Structural Lower-Bound on OPT

Def. The depth of a set of intervals is the maximum number that
contain any given time.

Key observation. Number of classrooms needed ³ depth.

Ex: Depth of schedule below = 	3 Þ schedule below is optimal.

Q. Does there always exist a schedule equal to depth of
intervals?

15Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

Correctness

Observation: Greedy algorithm never schedules two incompatible
lectures in the same classroom.

Theorem: Greedy algorithm is optimal.
Proof (exploit structural property).
Let 𝑑 = number of classrooms that the greedy algorithm allocates.
Classroom 𝑑 is opened because we needed to schedule a job, say 𝑗,
that is incompatible with all 𝑑 − 1 previously used classrooms.
Since we sorted by start time, all these incompatibilities are caused
by lectures that start no later than 𝑠(𝑗).
Thus, we have 𝑑 lectures overlapping at time 𝑠 𝑗 + 𝜖, i.e. depth ≥ 𝑑
“OPT Observation” Þ 𝑑 ³ depth,
so 𝑑 = depth and greedy is optimal

16

