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Stuff
Homework 2 is out (due at 11:59pm February 23 Friday)

Submit your source code for each problem to gradescope via 
blackboard
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Greedy Algorithm
• Greedy algorithm: 

• Divide solution construction into small steps
• Decision in each step: ‘best’ current partial solution at each step

• Recipe:
•  Order the input in some way (the most ‘important’ element will 

be considered first)
• Go through the input according to the order
• Determine the strategy to construct best current partial solution 

in each step



Interval Scheduling

• Job j starts at 𝑠(𝑗) and finishes at 𝑓(𝑗).
• Two jobs compatible if they don’t overlap.
• Goal: find maximum subset of mutually compatible jobs.
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Greedy Alg: Earliest Finish Time

Consider jobs in increasing order of finish time. Take each job 
provided it’s compatible with the ones already taken.

Implementation.  O(n log n).
• Remember job 𝑗∗ that was added last to A.
• Job 𝑗 is compatible with A if 𝑠 𝑗 ≥ 𝑓(𝑗∗).
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Sort jobs by finish times so that f(1) £ f(2) £ ... £ f(n).
𝑨 ← ∅
for j = 1 to n {
   if (job j compatible with 𝑨)
      𝑨 ← 𝑨 ∪ {𝒋}
}
return 𝑨



Correctness

• The output is compatible. (This is by construction.)

How to show it gives maximum number of jobs?
Let 𝑖), 𝑖*, 𝑖+, ⋯ be jobs picked by greedy (ordered by finish time)
Let 𝑗), 𝑗*, 𝑗+, ⋯ be an optimal solution (ordered by finish time)
How about proving 𝑖, = 𝑗, for all 𝑘?
No, there can be multiple optimal solutions.
Idea: Prove that greedy outputs the “best” optimal solution.
Given two compatible orders, which is better?
The one finish earlier.
How to prove greedy gives the “best”?
Induction: it gives the “best” during every iteration.
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Correctness

Theorem:  Greedy algorithm is optimal.

Proof:  (technique: “Greedy stays ahead”)
Let 𝑖), 𝑖*, 𝑖+, ⋯ , 𝑖, be jobs picked by greedy, 𝑗), 𝑗*, 𝑗+, ⋯ , 𝑗- those 
in some optimal solution in order. 
We show 𝑓(𝑖.)	£	𝑓(𝑗.)	 for all 𝑟, by induction on 𝑟.

Base Case: 𝑖) chosen to have min finish time, so 𝑓(𝑖1)	£	𝑓(𝑗1). 
IH: 𝑓(𝑖.)	£	𝑓 𝑗.  for some r
IS: Since 𝑓 𝑖. ≤ 𝑓 𝑗. ≤ 𝑠(𝑗./)), 𝑗./) is among the candidates 
considered by greedy when it picked 𝑖./), & it picks min finish, 
so 𝑓 𝑖./) ≤ 𝑓(𝑗./))

Observe that we must have 𝑘 ≥ 𝑚, else 𝑗,/) is among 
(nonempty) set of candidates for 𝑖,/).
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Greedy stays ahead: At each step any other solution has a worse 
value for some criterion that eventually implies optimality

This example: criterion = finish time



Lesson

Order is important for greedy algorithms
• In general, the order gives priorities to different elements 

(the most important element is ordered first)
• This example: the job can be finished earliest is the most 

important job because finishing this job gives more 
freedom to finish other jobs

• If you want to solve a problem by greedy, first think 
about what is the “right” order of the elements

Greedy stays ahead
• A useful strategy to argue why the solution is the best
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Interval Partitioning
Technique: Structural



Interval Partitioning

Lecture 𝑗 starts at 𝑠(𝑗) and finishes at 𝑓(𝑗).
Goal:  find minimum number of classrooms to schedule all lectures so that no 
two occur at the same time in the same room.
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A Better Schedule

This one uses only 3 classrooms
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A Greedy Algorithm

Greedy algorithm:  Consider lectures in increasing order of 
finish time:  assign lecture to any compatible classroom.

Correctness: This is wrong!
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Sort intervals by finish time so that f1 £ f2 £ ... £ fn.
d ¬ 0

for j = 1 to n {
   if (let j is compatible with some classroom k, 𝟏 ≤ 𝒌 ≤ 𝒅)
      schedule lecture j in classroom k
   else
      allocate a new classroom d + 1
      schedule lecture j in classroom d + 1
      d ¬ d + 1 
}    



Example
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A Greedy Algorithm

Greedy algorithm:  Consider lectures in increasing order of 
start time:  assign lecture to any compatible classroom.

Implementation: Exercise!
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Sort intervals by starting time so that s1 £ s2 £ ... £ sn.
d ¬ 0

for j = 1 to n {
   if (lect j is compatible with some classroom k, 𝟏 ≤ 𝒌 ≤ 𝒅)
      schedule lecture j in classroom k
   else
      allocate a new classroom d + 1
      schedule lecture j in classroom d + 1
      d ¬ d + 1 
}    



A Structural Lower-Bound on OPT

Def.  The depth of a set of intervals is the maximum number that 
contain any given time.

Key observation.  Number of classrooms needed  ³  depth.

Ex:  Depth of schedule below = 	3 Þ  schedule below is optimal.

Q.  Does there always exist a schedule equal to depth of 
intervals?
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Correctness

Observation:  Greedy algorithm never schedules two incompatible 
lectures in the same classroom.

Theorem:  Greedy algorithm is optimal.
Proof (exploit structural property).  
Let 𝑑 = number of classrooms that the greedy algorithm allocates.
Classroom 𝑑 is opened because we needed to schedule a job, say 𝑗, 
that is incompatible with all 𝑑 − 1 previously used classrooms.
Since we sorted by start time, all these incompatibilities are caused 
by lectures that start no later than 𝑠(𝑗).
Thus, we have 𝑑 lectures overlapping at time 𝑠 𝑗 + 𝜖, i.e. depth ≥ 𝑑
“OPT Observation”  Þ  𝑑 ³ depth, 
so 𝑑 = depth and greedy is optimal 
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