
CS 401: Computer

Algorithm I

Interval Partitioning / Lateness

Minimization

Xiaorui Sun

1

Stuff

Homework 1 is due today at 11:59 PM

Submit your solution (word, pdf, or photos of handwritten work) to

gradescope

3

Greedy Algorithm

• Greedy algorithm:

• Divide solution construction into small steps

• Decision in each step: ‘best’ current partial solution at each step

• Recipe:

• Order the input in some way (the most ‘important’ element will

be considered first)

• Go through the input according to the order

• Determine the strategy to construct best current partial solution

in each step

Interval Partitioning

Technique: Structural

Interval Partitioning

Lecture 𝑗 starts at 𝑠(𝑗) and finishes at 𝑓(𝑗).

Goal: find minimum number of classrooms to schedule all lectures so that no

two occur at the same time in the same room.

5Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

Room 1

Room 2

Room 3

Room 4

Interval partitioning is a problem
similar to interval scheduling, so let's

apply the ideas from interval
scheduling to solve this new problem

A Greedy Algorithm

Greedy algorithm: Consider lectures in increasing order of

finish time: assign lecture to any compatible classroom.

Correctness: This is wrong!

6

Sort intervals by finish time so that f1  f2  ...  fn.

d  0

for j = 1 to n {

 if (let j is compatible with some classroom k, 𝟏 ≤ 𝒌 ≤ 𝒅)
 schedule lecture j in classroom k

 else

 allocate a new classroom d + 1

 schedule lecture j in classroom d + 1

 d  d + 1

}

Example

7

Time
0 1 2 3 4 5 6

d

a

b

c

Time
0 1 2 3 4 5 6

d

a

b

c

Greedy by finish time gives: OPT:

Time
0 1 2 3 4 5 6

da

b c

Inspired by this example, what

potential fixes can be applied to

the incorrect greedy algorithm?

A Greedy Algorithm

Greedy algorithm: Consider lectures in increasing order of

start time: assign lecture to any compatible classroom.

Implementation: Exercise!

8

Sort intervals by starting time so that s1  s2  ...  sn.

d  0

for j = 1 to n {

 if (let j is compatible with some classroom k, 𝟏 ≤ 𝒌 ≤ 𝒅)
 schedule lecture j in classroom k

 else

 allocate a new classroom d + 1

 schedule lecture j in classroom d + 1

 d  d + 1

}

A Structural Lower-Bound on OPT

Def. The depth of a set of intervals is the maximum number that

contain any given time.

Key observation. Number of classrooms needed  depth.

Ex: Depth of schedule below = 3  schedule below is optimal.

Q. Does there always exist a schedule equal to depth of
intervals?

9Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

Correctness

Observation: Greedy algorithm never schedules two incompatible

lectures in the same classroom.

Theorem: Greedy algorithm is optimal.

Proof (exploit structural property).

Let 𝑑 = number of classrooms that the greedy algorithm allocates.

Classroom 𝑑 is opened because we needed to schedule a job, say 𝑗,
that is incompatible with all 𝑑 − 1 previously used classrooms.

Since we sorted by start time, all these incompatibilities are caused

by lectures that start no later than 𝑠(𝑗).

Thus, we have 𝑑 lectures overlapping at time 𝑠 𝑗 + 𝜖, i.e. depth ≥ 𝑑

“OPT Observation”  𝑑  depth,

so 𝑑 = depth and greedy is optimal

10

Exercise

Solving new problems by analogies to old problems
• May not work by trivial extensions

• How to fix? 1. Find counterexamples 2. Analyze the counterexamples and

and modify the algorithm

Exercise: Different way to fix the incorrect greedy algo?

11

Sort intervals by finish time so that f1  f2  ...  fn.

d  0

for j = 1 to n {

 if (let j is compatible with some classroom k, 𝟏 ≤ 𝒌 ≤ 𝒅)
 schedule lecture j in classroom k

 else

 allocate a new classroom d + 1

 schedule lecture j in classroom d + 1

 d  d + 1

}

Change strategy to make decision?

Lateness Minimization

Technique: Exchange Argument

Scheduling to Minimizing Lateness

• Instead of start and finish times, job 𝒊 has

➢Time Requirement 𝒕𝒊 which must be scheduled in a
contiguous block

➢Deadline 𝒅𝒊 by which time the job would like to be
finished

• Jobs are scheduled into
time intervals [𝒔𝒊, 𝒇𝒊] s.t. 𝒕𝒊 = 𝒇𝒊 − 𝒔𝒊.

• Lateness for job 𝒊 is
• If 𝒅𝒊 < 𝒇𝒊 then job 𝒊 is late by 𝑳𝒊 = 𝒇𝒊 − 𝒅𝑖 otherwise its lateness

𝑳𝒊 = 𝟎

• Goal: Find a schedule that minimize the
Maximum lateness 𝑳 = 𝒎𝒂𝒙

𝒊
𝑳𝒊

𝑑𝑗 6

𝑡𝑗 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2 max lateness = 6lateness = 0lateness = 0lateness = 0

14

Minimizing Lateness:

Greedy Algorithms

Greedy template. Consider jobs in some order.

• [Shortest processing time first]

 Consider jobs in ascending order of processing time 𝒕𝒋.

• [Smallest slack]

 Consider jobs in ascending order of slack 𝒅𝒋 − 𝒕𝒋.

• [Earliest deadline first]

 Consider jobs in ascending order of deadline 𝒅𝒋.

counterexampledj

tj

100

1

1

10

10

2

counterexampledj

tj

2

1

1

10

10

2

Greedy Algorithm:

Earliest Deadline First

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d4 = 9 d5 = 14d2 = 8 d6 = 15d1 = 6 d3 = 9

max lateness = 1

Sort deadlines in increasing order (𝒅𝟏 ≤ 𝒅𝟐 ≤ ⋯ ≤ 𝒅𝒏)
𝒇  𝟎

for 𝒊 ← 𝟏 to 𝒏 to

 𝒔𝒊  𝒇

 𝒇𝒊  𝒔𝒊 + 𝒕𝒊

 𝒇  𝒇𝒊

end for

𝑑𝑗 6

𝑡𝑗 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

Proof for Greedy Algorithm:

Exchange Argument

• We will show that if there is another schedule 𝑶 (think

optimal schedule) then we can gradually change 𝑶 so that

• at each step the maximum lateness in 𝑶 never gets

worse

• it eventually becomes the same cost as 𝑨

16

Minimizing Lateness: No Idle Time

17

Observation.

• There exists an optimal schedule with no idle time.

Observation.

• The greedy schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

Definition
• An inversion in schedule 𝑺 is a pair of jobs 𝒊 and 𝒋 such

that 𝒅𝒊 < 𝒅𝒋 but 𝒋 scheduled before 𝒊.

Observation
• Greedy schedule has no inversions.

Observation
• If a schedule (with no idle time) has an inversion, it has

one with a pair of inverted jobs scheduled consecutively.
• Why? If no inversion, then 𝒅𝒊 ≤ 𝒅𝒊+𝟏 for all 𝒊 .

Minimizing Lateness: Inversions

18

ijbefore swap

inversion

Minimizing Lateness: Inversions

19

Definition

• An inversion in schedule 𝑺 is a pair of jobs 𝒊 and 𝒋 such

that 𝒅𝒊 < 𝒅𝒋 but 𝒋 scheduled before 𝒊.

Claim

• Swapping two adjacent, inverted jobs reduces the

number of inversions by one and does not increase the

max lateness.

ij

i j

before swap

after swap

𝒇𝒋
′

𝒇𝒊

inversion

Minimizing Lateness: Inversions

Lemma: Swapping two adjacent, inverted jobs

does not increase the maximum lateness.

Proof: Let 𝑶′ be the schedule after swapping.

• All other jobs 𝒌 ≠ 𝒊, 𝒋 have 𝑳𝒌’ = 𝑳𝒌

• Lateness 𝑳𝒊’ ≤ 𝑳𝒊 since 𝒊 is scheduled earlier in 𝑶’ than in 𝑶

• Jobs 𝒊 and 𝒋 together occupy the same total time slot in both

schedules

• 𝒇𝒋’ = 𝒇𝒊 so 𝑳𝒋
′ = 𝒇𝒋

′ − 𝒅𝒋 = 𝒇𝒊 − 𝒅𝒋 < 𝒇𝒊 − 𝒅𝒊 = 𝑳𝒊

• Maximum lateness has not increased!
20

ij

i j

before swap

after swap

𝒇𝒋
′

𝒇𝒊

inversion

𝑶’

𝑶

Optimal schedules and inversions

Claim: There is an optimal schedule with no idle time and no

inversions

Proof:

• By previous argument there is an optimal schedule 𝑶 with

no idle time

• If 𝑶 has an inversion then it has a consecutive pair of

jobs in its schedule that are inverted and can be swapped

without increasing lateness

• Eventually these swaps will produce an optimal schedule

with no inversions

• Each swap decreases the number of inversions by 1

• There are at most 𝒏(𝒏 − 𝟏)/𝟐 inversions.

(we only care that this is finite.) 14

Did we finish the proof for greedy?

Idleness and Inversions are

the only issue

22

Claim: All schedules with no inversions and no
idle time have the same maximum lateness
Proof:

• Schedules can differ only in how they order jobs
with equal deadlines

• Consider all jobs having some common deadline 𝒅
• Maximum lateness of these jobs is based only on

the finish time of the last of these jobs but the set of
these jobs occupies the same time segment in both
schedules
• Last of these jobs finishes at the same time in

any such schedule.

Earliest Deadline First is optimal

We know that
• There is an optimal schedule with no idle time or

inversions

• All schedules with no idle time or inversions have the
same maximum lateness

• EDF produces a schedule with no idle time or
inversions

Therefore
• EDF produces an optimal schedule

Life Wisdom:

• Finish your jobs according to deadline!

•  Unfortunately, we don’t see all jobs when born.
23

	Slide 1: CS 401: Computer Algorithm I
	Slide 2: Stuff
	Slide 3: Greedy Algorithm
	Slide 4: Interval Partitioning Technique: Structural
	Slide 5: Interval Partitioning
	Slide 6: A Greedy Algorithm
	Slide 7: Example
	Slide 8: A Greedy Algorithm
	Slide 9: A Structural Lower-Bound on OPT
	Slide 10: Correctness
	Slide 11: Exercise
	Slide 12: Lateness Minimization Technique: Exchange Argument
	Slide 13: Scheduling to Minimizing Lateness
	Slide 14: Minimizing Lateness: Greedy Algorithms
	Slide 15: Greedy Algorithm: Earliest Deadline First
	Slide 16: Proof for Greedy Algorithm: Exchange Argument
	Slide 17: Minimizing Lateness: No Idle Time
	Slide 18: Minimizing Lateness: Inversions
	Slide 19: Minimizing Lateness: Inversions
	Slide 20: Minimizing Lateness: Inversions
	Slide 21: Optimal schedules and inversions
	Slide 22: Idleness and Inversions are the only issue
	Slide 23: Earliest Deadline First is optimal

