
CS 401: Computer

Algorithm I

Lateness Minimization / Weighted

Shortest Path

Xiaorui Sun

1

Homework 2

Homework 2 is out (due at 11:59pm March 4)

Programming homework on Leetcode

• Register a Leetcode account (free), and programming on Leetcode

• You can use any programming language

• Submit your source code to gradescope

• Score for each problem is proportional to the test cases on Leetcode

you can pass (if you can pass all, you get full score on the problem)

Lateness Minimization

Technique: Exchange Argument

Scheduling to Minimizing Lateness

• Instead of start and finish times, job 𝒊 has

➢Time Requirement 𝒕𝒊 which must be scheduled in a
contiguous block

➢Deadline 𝒅𝒊 by which time the job would like to be
finished

• Jobs are scheduled into
time intervals [𝒔𝒊, 𝒇𝒊] s.t. 𝒕𝒊 = 𝒇𝒊 − 𝒔𝒊.

• Lateness for job 𝒊 is
• If 𝒅𝒊 < 𝒇𝒊 then job 𝒊 is late by 𝑳𝒊 = 𝒇𝒊 − 𝒅𝑖 otherwise its lateness

𝑳𝒊 = 𝟎

• Goal: Find a schedule that minimize the
Maximum lateness 𝑳 = 𝒎𝒂𝒙

𝒊
𝑳𝒊

𝑑𝑗 6

𝑡𝑗 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2 max lateness = 6lateness = 0lateness = 0lateness = 0

Question

What is the maximum lateness of the following scheduling?

Answer: 7

𝑑𝑗 6

𝑡𝑗 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14 d2 = 8d6 = 15d1 = 6 d4 = 9d3 = 9

6

Minimizing Lateness:

Greedy Algorithms

Greedy template. Run jobs in some order.

• [Shortest processing time first]

 Consider jobs in ascending order of processing time 𝒕𝒋.

• [Smallest slack]

 Consider jobs in ascending order of slack 𝒅𝒋 − 𝒕𝒋.

• [Earliest deadline first]

 Consider jobs in ascending order of deadline 𝒅𝒋.

7

Minimizing Lateness:

Greedy Algorithms

Greedy template. Run jobs in some order.

• [Shortest processing time first]

 Consider jobs in ascending order of processing time 𝒕𝒋.

• [Smallest slack]

 Consider jobs in ascending order of slack 𝒅𝒋 − 𝒕𝒋.

• [Earliest deadline first]

 Consider jobs in ascending order of deadline 𝒅𝒋.

counterexampledj

tj

100

1

1

10

10

2

counterexampledj

tj

2

1

1

10

10

2

Greedy Algorithm:

Earliest Deadline First

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d4 = 9 d5 = 14d2 = 8 d6 = 15d1 = 6 d3 = 9

max lateness = 1

Sort deadlines in increasing order (𝒅𝟏 ≤ 𝒅𝟐 ≤ ⋯ ≤ 𝒅𝒏)
𝒇 𝟎

for 𝒊 ← 𝟏 to 𝒏 to

 𝒔𝒊 𝒇

 𝒇𝒊 𝒔𝒊 + 𝒕𝒊

 𝒇 𝒇𝒊

end for

𝑑𝑗 6

𝑡𝑗 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

Proof for Greedy Algorithm:

Exchange Argument

• We will show that if there is another schedule 𝑶 (think

optimal schedule) then we can gradually change 𝑶 so that

• at each step the maximum lateness in 𝑶 never gets

worse

• it eventually becomes the same cost as 𝑨

9

Minimizing Lateness: No Idle Time

10

Observation.

• There exists an optimal schedule with no idle time.

Observation.

• The greedy schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

Definition
• An inversion in schedule 𝑺 is a pair of jobs 𝒊 and 𝒋 such

that 𝒅𝒊 < 𝒅𝒋 but 𝒋 scheduled before 𝒊.

Observation
• Greedy schedule has no inversions.

Observation
• If a schedule (with no idle time) has an inversion, it has

one with a pair of inverted jobs scheduled consecutively.
• Why? If no inversion, then 𝒅𝒊 ≤ 𝒅𝒊+𝟏 for all 𝒊 .

Minimizing Lateness: Inversions

11

ijbefore swap

inversion

Minimizing Lateness: Inversions

12

Definition

• An inversion in schedule 𝑺 is a pair of jobs 𝒊 and 𝒋 such

that 𝒅𝒊 < 𝒅𝒋 but 𝒋 scheduled before 𝒊.

Claim

• Swapping two adjacent, inverted jobs reduces the

number of inversions by one and does not increase the

max lateness.

ij

i j

before swap

after swap

𝒇𝒋
′

𝒇𝒊

inversion

Minimizing Lateness: Inversions

Lemma: Swapping two adjacent, inverted jobs

does not increase the maximum lateness.

Proof: Let 𝑶′ be the schedule after swapping.

• All other jobs 𝒌 ≠ 𝒊, 𝒋 have 𝑳𝒌’ = 𝑳𝒌

• Lateness 𝑳𝒊’ ≤ 𝑳𝒊 since 𝒊 is scheduled earlier in 𝑶’ than in 𝑶

• Jobs 𝒊 and 𝒋 together occupy the same total time slot in both

schedules

• 𝒇𝒋’ = 𝒇𝒊 so 𝑳𝒋
′ = 𝒇𝒋

′ − 𝒅𝒋 = 𝒇𝒊 − 𝒅𝒋 < 𝒇𝒊 − 𝒅𝒊 = 𝑳𝒊

• Maximum lateness has not increased!
13

ij

i j

before swap

after swap

𝒇𝒋
′

𝒇𝒊

inversion

𝑶’

𝑶

Optimal schedules and inversions

Claim: There is an optimal schedule with no idle time and no

inversions

Proof:

• By previous argument there is an optimal schedule 𝑶 with

no idle time

• If 𝑶 has an inversion then it has a consecutive pair of

jobs in its schedule that are inverted and can be swapped

without increasing lateness

• Eventually these swaps will produce an optimal schedule

with no inversions

• Each swap decreases the number of inversions by 1

• There are at most 𝒏(𝒏 − 𝟏)/𝟐 inversions.

(we only care that this is finite.) 14

Did we finish the proof for greedy?

Idleness and Inversions are

the only issue

15

Claim: All schedules with no inversions and no
idle time have the same maximum lateness
Proof:

• Schedules can differ only in how they order jobs
with equal deadlines

• Consider all jobs having some common deadline 𝒅
• Maximum lateness of these jobs is based only on

the finish time of the last of these jobs but the set of
these jobs occupies the same time segment in both
schedules
• Last of these jobs finishes at the same time in

any such schedule.

Earliest Deadline First is optimal

We know that
• There is an optimal schedule with no idle time or

inversions

• All schedules with no idle time or inversions have the
same maximum lateness

• EDF produces a schedule with no idle time or
inversions

Therefore
• EDF produces an optimal schedule

Life Wisdom:

• Finish your jobs according to deadline!

• Unfortunately, we don’t see all jobs when born.
16

Single Source Shortest Path

Single Source Shortest Path

Given an (un)directed connected graph 𝐺 = (𝑉, 𝐸) with non-

negative edge weights 𝑐𝑒 ≥ 0 and a start vertex 𝑠.

Find length of shortest paths from 𝑠 to each vertex in 𝐺

Cost of path s-2-3-4-t
 = 9 + 23 + 6 + 6
 = 44.

s

3

t

2

6

7

4

5

23

18

2

9

14

15 5

30

20

44

16

11

6

19

6

length of path = sum of edge weights in path

Single Source Shortest Path

Greedy Recipe:

• Order the input in some way (the most ‘important’ element will be

considered first)

• Go through the input according to the order

• Determine the strategy to construct best current partial solution in

each step

For shortest path: How do we order the input?

• Idea: Instead of ordering the input, we order the output

Dijkstra(𝑮, 𝒄, 𝒔) {

 Initialize set of explored nodes 𝑺 ← {𝒔}

 // Maintain distance from 𝒔 to each vertices in 𝑺

 𝒅 𝒔 ← 𝟎

 while (𝑺 ≠ 𝑽)

 {

 Pick an edge (𝒖, 𝒗) such that 𝒖 ∈ 𝑺 and 𝒗 ∉ 𝑺 and

 𝒅[𝒖] + 𝒄(𝒖,𝒗) is as small as possible.

 Add 𝒗 to 𝑺 and define 𝒅[𝒗] = 𝒅[𝒖] + 𝒄(𝒖,𝒗).

 𝑷𝒂𝒓𝒆𝒏𝒕 𝒗 ← 𝒖.

 }

Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm outputs a tree.

	Slide 1: CS 401: Computer Algorithm I
	Slide 2: Homework 2
	Slide 3: Lateness Minimization Technique: Exchange Argument
	Slide 4: Scheduling to Minimizing Lateness
	Slide 5: Question
	Slide 6: Minimizing Lateness: Greedy Algorithms
	Slide 7: Minimizing Lateness: Greedy Algorithms
	Slide 8: Greedy Algorithm: Earliest Deadline First
	Slide 9: Proof for Greedy Algorithm: Exchange Argument
	Slide 10: Minimizing Lateness: No Idle Time
	Slide 11: Minimizing Lateness: Inversions
	Slide 12: Minimizing Lateness: Inversions
	Slide 13: Minimizing Lateness: Inversions
	Slide 14: Optimal schedules and inversions
	Slide 15: Idleness and Inversions are the only issue
	Slide 16: Earliest Deadline First is optimal
	Slide 17
	Slide 18: Single Source Shortest Path
	Slide 19: Single Source Shortest Path
	Slide 20: Dijkstra’s Algorithm
	Slide 21: Dijkstra’s Algorithm: Example
	Slide 22: Dijkstra’s Algorithm: Example
	Slide 23: Dijkstra’s Algorithm: Example
	Slide 24: Dijkstra’s Algorithm: Example
	Slide 25: Dijkstra’s Algorithm: Example
	Slide 26: Dijkstra’s Algorithm: Example
	Slide 27: Dijkstra’s Algorithm: Example
	Slide 28: Dijkstra’s Algorithm: Example
	Slide 29: Dijkstra’s Algorithm: Example
	Slide 30: Dijkstra’s Algorithm: Example
	Slide 31: Dijkstra’s Algorithm: Example
	Slide 32: Dijkstra’s Algorithm: Example
	Slide 33: Dijkstra’s Algorithm: Example
	Slide 34: Dijkstra’s Algorithm: Example
	Slide 35: Dijkstra’s Algorithm: Example
	Slide 36: Dijkstra’s Algorithm: Example
	Slide 37: Dijkstra’s Algorithm: Example
	Slide 38: Dijkstra’s Algorithm: Example
	Slide 39: Dijkstra’s Algorithm: Example
	Slide 40: Dijkstra’s Algorithm: Example

