
CS 401: Computer
Algorithm I

Single Source Shortest Path
Xiaorui Sun

1

Single Source Shortest Path

Single Source Shortest Path
Given an (un)directed connected graph 𝐺 = (𝑉, 𝐸) with non-
negative edge weights 𝑐𝑒 ≥ 0 and a start vertex 𝑠.

Find length of shortest paths from 𝑠 to each vertex in 𝐺

Cost of path s-2-3-4-t
 = 9 + 23 + 6 + 6
 = 44.

s

3

t

2

6

7

4
5

23

18
2

9

14

15 5

30

20

44

16

11

6

19

6

length of path = sum of edge weights in path

Single Source Shortest Path
Greedy Recipe:

• Order the input in some way (the most ‘important’ element will be
considered first)

• Go through the input according to the order
• Determine the strategy to construct best current partial solution in

each step

For shortest path: How do we order the input?
• Observation: suppose (𝑠, 𝑣1, 𝑣2, … , 𝑣𝑘, 𝑡) is a shortest path

from 𝑠 to 𝑡, then (𝑠, 𝑣1, 𝑣2, … , 𝑣𝑘) is a shortest path from 𝑠
to 𝑣𝑘.

• Idea: Instead of ordering the input, we order the output

Last Lecture
Observation: suppose (𝑠, 𝑣1, 𝑣2, … , 𝑣𝑘, 𝑡) is a shortest path
from 𝑠 to 𝑡, then (𝑠, 𝑣1, 𝑣2, … , 𝑣𝑘) is a shortest path from 𝑠 to
𝑣𝑘.

Goal: compute the shortest path from 𝑠 to 𝑡
Assumption: know the shortest paths from 𝑠 to all the other
vertices except 𝑡

𝑑 𝑡 = min
𝑣∈𝑉∖{𝑡}

 (𝑑[𝑣] + 𝑐 𝑣,𝑡)

(𝑑[𝑣] denotes the length of the shortest path from 𝑠 to 𝑣,
and 𝑐(𝑣,𝑡) denotes the weight of the edge (𝑣, 𝑡))

Question: How to remove the assumption?
Relaxation: If we know the shortest paths from 𝑠
to all the other vertices with length smaller than

𝑑[𝑡], it is sufficient.
Conclusion: Compute shortest paths in the
ascending order of shortest path lengths

Dijkstra(𝑮, 𝒄, 𝒔) {
 Initialize set of explored nodes 𝑺 ← {𝒔}

 // Maintain distance from 𝒔 to each vertices in 𝑺
 𝒅 𝒔 ← 𝟎

 while (𝑺 ≠ 𝑽)
 {
 Pick an edge (𝒖, 𝒗) such that 𝒖 ∈ 𝑺 and 𝒗 ∉ 𝑺 and
 𝒅[𝒖] + 𝒄(𝒖,𝒗) is as small as possible.

 Add 𝒗 to 𝑺 and define 𝒅[𝒗] = 𝒅[𝒖] + 𝒄(𝒖,𝒗).
 𝑷𝒂𝒓𝒆𝒏𝒕 𝒗 ← 𝒖.
 }

Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm outputs a tree.

Disjkstra’s Algorithm: Correctness
Theorem: For any 𝑢 ∈ 𝑆, the path 𝑃𝑢 on the tree in the shortest
path from 𝑠 to 𝑢 on 𝐺. (For all 𝑢 ∈ 𝑆, 𝑑 𝑢 = dist(𝑠, 𝑢).)
Proof: Induction on 𝑆 = 𝑘.
Base Case: This is always true when 𝑆 = 𝑠 .
Inductive Step: Say 𝑣 is the 𝑘 + 1 𝑠𝑡 vertex that we add to S.
Let (𝑢, 𝑣) be last edge on 𝑃𝑣.
If 𝑃𝑣 is not the shortest path, there is a shorter path 𝑃 to 𝑆.
Consider the first time that 𝑃 leaves 𝑆 with edge (𝑥, 𝑦).
So, 𝑐 𝑃 ≥ 𝑑 𝑥 + 𝑐𝑥,𝑦 ≥ 𝑑 𝑢 + 𝑐𝑢,𝑣 = 𝑑 𝑣 = 𝑐 𝑃𝑣 .

A contradiction. S
v

y

u

s
x

𝑃𝑣

𝑃Due to the choice of 𝑣𝑃 is the shorter path.

Remarks on Dijkstra’s Algorithm
• Algorithm produces a tree of shortest paths to 𝑠 following

Parent links (for undirected graph)
• Algorithm works on directed graph (with nonnegative weights)
• The algorithm fails with negative edge weights.
• Why does it fail?

Implementing Dijkstra’s Algorithm
Priority Queue: Elements each with an associated key Operations

• Insert
• Find-min

– Return the element with the smallest key

• Delete-min
– Return the element with the smallest key and delete it from the data structure

• Decrease-key
– Decrease the key value of some element

Implementations
Arrays:
• 𝑂(𝑛) time find/delete-min,
• 𝑂(1) time insert/decrease key
Binary Heaps:
• 𝑂(log 𝑛) time insert/decrease-key/delete-min,
• 𝑂(1) time find-min
Fibonacci heap:
• 𝑂(1) time insert/decrease-key
• 𝑂(log 𝑛) delete-min
• O(1) time find-min

Read wiki!

Dijkstra(𝑮, 𝒄, 𝒔) {
 Initialize set of explored nodes 𝑺 ← {𝒔}

 // Maintain distance from 𝒔 to each vertices in 𝑺
 𝒅 𝒔 ← 𝟎
 Insert all neighbors 𝒗 of s into a priority queue with value 𝒄(𝒔,𝒗).

 while (𝑺 ≠ 𝑽)
 {
 Pick an edge (𝒖, 𝒗) such that 𝒖 ∈ 𝑺 and 𝒗 ∉ 𝑺 and
 𝒅[𝒖] + 𝒄(𝒖,𝒗) is as small as possible.
 v  delete min element from 𝑸

 Add 𝒗 to 𝑺 and define 𝒅[𝒗] = 𝒅[𝒖] + 𝒄(𝒖,𝒗).
 𝑷𝒂𝒓𝒆𝒏𝒕 𝒗 ← 𝒖.

 foreach (edge 𝒆 = (𝒗, 𝒘) incident to 𝒗)
 if (𝒘 ∉ 𝑺)
 if (𝒘 is not in the 𝑸)
 Insert 𝒘 into 𝑸 with value 𝒅 𝒗 + 𝒄(𝒗,𝒘)

 else (the key of 𝒘 > 𝒅 𝒗 + 𝒄(𝒗,𝒘))
 Decrease key of 𝒗 to 𝒅[𝒗] + 𝒄(𝒗,𝒘).
}

𝑂(𝑛) of delete min,
each in 𝑂(log 𝑛)

𝑂(𝑛) of insert,
each in 𝑂(1)

𝑂(𝑚) of decrease/insert key,
each runs in 𝑂(1)

31

Minimum Spanning Tree

Spanning Tree

Given a connected undirected graph 𝐺 = 𝑉, 𝐸 .
We call 𝑇 is a spanning tree of 𝐺 if
• All edges in 𝑇 are from 𝐸.
• 𝑇 includes all of the vertices of 𝐺.

32

𝑇

𝐺

Minimum Spanning Tree (MST)

Given a connected undirected graph 𝐺 = (𝑉, 𝐸) with real-
valued edge weights 𝑐𝑒 ≥ 0.
An MST 𝑇 is a spanning tree whose sum of edge weights is
minimized.

33

5

23

10
21

14

24

16

6

4

18
9

7

11
8

𝐺 = (𝑉, 𝐸)

5

6

4

9

7

11
8

𝑐 𝑇 = ෍
𝑒∈𝑇

𝑐𝑒 = 50

Kruskal’s Algorithm [1956]
Kruskal(G, c) {
 Sort edges weights so that 𝒄𝟏 ≤ 𝒄𝟐 ≤ ⋯ ≤ 𝒄𝒎.
 𝑻 ← ∅

 foreach (𝒖 ∈ 𝑽) make a set containing singleton {𝒖}

 for 𝒊 = 𝟏 to 𝒎
 Let 𝒖, 𝒗 = 𝒆𝒊
 if (𝒖 and 𝒗 are in different sets) {
 𝑻 ← 𝑻 ∪ {𝒆𝒊}
 merge the sets containing 𝒖 and 𝒗
 }
 return 𝑻
}

Kruskal

Sort edges weight.
Add edges whenever it
does not create cycle.

Cuts

In a graph 𝐺 = (𝑉, 𝐸), a cut is a bipartition of V into disjoint sets
𝑆, 𝑉 − 𝑆 for some 𝑆 ⊆ 𝑉. We denote it by (𝑆, 𝑉 − 𝑆).

An edge 𝑒 = {𝑢, 𝑣} is in the cut (𝑆, 𝑉 − 𝑆) if exactly one of 𝑢, 𝑣 is in
𝑆.

35

S V-S

u
v

x

S V-S

Properties of the OPT
Simplifying assumption: All edge costs 𝑐𝑒 are distinct.

Cut property: Let 𝑆 be any subset of nodes (called a cut), and let
𝑒 be the min cost edge with exactly one endpoint in 𝑆. Then every
MST contains 𝑒.

Cycle property. Let 𝐶 be any cycle, and let 𝑓 be the max cost
edge belonging to 𝐶. Then no MST contains 𝑓.

36

10

S

red edge is in the MST Green edge is not in the MST

5

7

2 3

5

4

7

V-S

Proof of Correctness (Kruskal)
Consider edges in ascending order of weight.
Case 1: adding 𝑒 to 𝑇 creates a cycle,
𝑒 is the maximum weight edge in that cycle.
cycle property show 𝑒 is not in any minimum spanning tree.
Case 2: 𝑒 = (𝑢, 𝑣) is the minimum weight edge in the cut 𝑆
where 𝑆 is the set of nodes in 𝑢’s connected component.
So, 𝑒 is in all minimum spanning tree.

v

u

Case 2

e
S

Case 1

𝑒

This proves MST is unique if weights are distinct.

40

Summary
• Greedy algorithm: ‘Best’ current partial solution at each

step

• Design greedy algorithm:
How to order your input
Strategy for every step

• Greedy Analysis Strategies
Greedy algorithm stays ahead
Structural
Exchange argument

	Slide 1: CS 401: Computer Algorithm I
	Slide 2
	Slide 3: Single Source Shortest Path
	Slide 4: Single Source Shortest Path
	Slide 5: Last Lecture
	Slide 6: Dijkstra’s Algorithm
	Slide 7: Dijkstra’s Algorithm: Example
	Slide 8: Dijkstra’s Algorithm: Example
	Slide 9: Dijkstra’s Algorithm: Example
	Slide 10: Dijkstra’s Algorithm: Example
	Slide 11: Dijkstra’s Algorithm: Example
	Slide 12: Dijkstra’s Algorithm: Example
	Slide 13: Dijkstra’s Algorithm: Example
	Slide 14: Dijkstra’s Algorithm: Example
	Slide 15: Dijkstra’s Algorithm: Example
	Slide 16: Dijkstra’s Algorithm: Example
	Slide 17: Dijkstra’s Algorithm: Example
	Slide 18: Dijkstra’s Algorithm: Example
	Slide 19: Dijkstra’s Algorithm: Example
	Slide 20: Dijkstra’s Algorithm: Example
	Slide 21: Dijkstra’s Algorithm: Example
	Slide 22: Dijkstra’s Algorithm: Example
	Slide 23: Dijkstra’s Algorithm: Example
	Slide 24: Dijkstra’s Algorithm: Example
	Slide 25: Dijkstra’s Algorithm: Example
	Slide 26: Dijkstra’s Algorithm: Example
	Slide 27: Disjkstra’s Algorithm: Correctness
	Slide 28: Remarks on Dijkstra’s Algorithm
	Slide 29: Implementing Dijkstra’s Algorithm
	Slide 30
	Slide 31
	Slide 32: Spanning Tree
	Slide 33: Minimum Spanning Tree (MST)
	Slide 34: Kruskal’s Algorithm [1956]
	Slide 35: Cuts
	Slide 36: Properties of the OPT
	Slide 37: Cut Property: Proof
	Slide 38: Cycle Property: Proof
	Slide 39: Proof of Correctness (Kruskal)
	Slide 40: Summary

