
CS 401: Computer
Algorithm I

Lateness Minimization / Single Source
Shortest Path

Xiaorui Sun

1

2

Stuff
• Homework 2 submission deadline extends to February

27

• In class midterm exam: February 29 Thursday 12:30pm
– 1:45pm

• Midterm review and details of the exam: February 27

3

Recap and Outline
• Greedy algorithm:

• Divide solution construction into small steps
• Decision in each step: ‘best’ current partial solution at each step

• Recipe:
• Order the input in some way (the most ‘important’ element will

be considered first)
• Go through the input according to the order
• Determine the strategy to construct best current partial solution

in each step

Lateness Minimization
Technique: Exchange Argument

Scheduling to Minimizing Lateness
• Instead of start and finish times, job 𝒊 has

ØTime Requirement 𝒕𝒊 which must be scheduled in a
contiguous block

ØDeadline 𝒅𝒊 by which time the job would like to be
finished

• Jobs are scheduled into
time intervals [𝒔𝒊, 𝒇𝒊]	s.t. 𝒕𝒊 = 𝒇𝒊 − 𝒔𝒊.

• Lateness for job 𝒊	is
• If 𝒅𝒊 < 𝒇𝒊 then job 𝒊	is late by 𝑳𝒊 = 	𝒇𝒊 − 𝒅"	otherwise its lateness
𝑳𝒊 = 	𝟎

• Goal: Find a schedule that minimize the
Maximum lateness 𝑳 = 𝒎𝒂𝒙

𝒊
𝑳𝒊

𝑑! 6

𝑡! 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2 max lateness = 6lateness = 0lateness = 0lateness = 0

Greedy Algorithm:
Earliest Deadline First

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d4 = 9 d5 = 14d2 = 8 d6 = 15d1 = 6 d3 = 9

max lateness = 1

Sort deadlines in increasing order (𝒅𝟏 ≤ 𝒅𝟐 ≤ ⋯ ≤ 𝒅𝒏)
𝒇	¬	𝟎
for 𝒊 ← 𝟏 to 𝒏 to
 𝒔𝒊	¬	𝒇
 𝒇𝒊	¬	𝒔𝒊 + 𝒕𝒊
 𝒇	¬	𝒇𝒊
end for

𝑑! 6

𝑡! 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

Proof for Greedy Algorithm:
Exchange Argument

• We will show that if there is another schedule 𝑶 (think
optimal schedule) then we can gradually change 𝑶 so that
• at each step the maximum lateness in 𝑶 never gets

worse
• it eventually becomes the same cost as 𝑨

7

Minimizing Lateness: No Idle Time

8

Observation.
• There exists an optimal schedule with no idle time.

Observation.
• The greedy schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

Definition
• An inversion in schedule 𝑺 is a pair of jobs 𝒊 and 𝒋 such

that 𝒅𝒊 < 𝒅𝒋 but 𝒋 scheduled before 𝒊.

Observation
• Greedy schedule has no inversions.

Observation
• If a schedule (with no idle time) has an inversion, it has

one with a pair of inverted jobs scheduled consecutively.
• Why? If no inversion, then 𝒅𝒊 ≤ 𝒅𝒊#𝟏 for all 𝒊 .

Minimizing Lateness: Inversions

9

ijbefore swap

inversion

Minimizing Lateness: Inversions

10

Definition
• An inversion in schedule 𝑺 is a pair of jobs 𝒊 and 𝒋 such

that 𝒅𝒊 < 𝒅𝒋 but 𝒋 scheduled before 𝒊.

Claim
• Swapping two adjacent, inverted jobs reduces the

number of inversions by one and does not increase the
max lateness.

ij

i j

before swap

after swap

𝒇𝒋$

𝒇𝒊
inversion

Minimizing Lateness: Inversions

Lemma: Swapping two adjacent, inverted jobs
does not increase the maximum lateness.

Proof: Let 𝑶′ be the schedule after swapping.
• All other jobs 𝒌 ≠ 𝒊, 𝒋 have 𝑳𝒌’ = 𝑳𝒌
• Lateness 𝑳𝒊’ ≤ 𝑳𝒊 since 𝒊 is scheduled earlier in	𝑶’	than in 𝑶
• Jobs 𝒊 and 𝒋 together occupy the same total time slot in both

schedules
• 𝒇𝒋’ = 𝒇𝒊	so 𝑳𝒋$ = 𝒇𝒋$ − 𝒅𝒋 = 𝒇𝒊 − 𝒅𝒋 < 𝒇𝒊 − 𝒅𝒊 = 𝑳𝒊

• Maximum lateness has not increased!
11

ij

i j

before swap

after swap

𝒇𝒋$

𝒇𝒊
inversion

𝑶’	

𝑶

Optimal schedules and inversions

Claim: There is an optimal schedule with no idle time and no
inversions
Proof:
• By previous argument there is an optimal schedule 𝑶 with

no idle time
• If 𝑶 has an inversion then it has a consecutive pair of

jobs in its schedule that are inverted and can be swapped
without increasing lateness

• Eventually these swaps will produce an optimal schedule
with no inversions
• Each swap decreases the number of inversions by 1
• There are at most 𝒏(𝒏 − 𝟏)/𝟐 inversions.

(we only care that this is finite.) 14

Did we finish the proof for greedy?

Idleness and Inversions are
the only issue

13

Claim: All schedules with no inversions and no
idle time have the same maximum lateness
Proof:

• Schedules can differ only in how they order jobs
with equal deadlines

• Consider all jobs having some common deadline 𝒅
• Maximum lateness of these jobs is based only on

the finish time of the last of these jobs but the set of
these jobs occupies the same time segment in both
schedules
• Last of these jobs finishes at the same time in

any such schedule.

Earliest Deadline First is optimal
We know that

• There is an optimal schedule with no idle time or
inversions

• All schedules with no idle time or inversions have the
same maximum lateness

• EDF produces a schedule with no idle time or
inversions

Therefore
• EDF produces an optimal schedule

Life Wisdom:
• Finish your jobs according to deadline!
• L Unfortunately, we don’t see all jobs when born.

14

Single Source Shortest Path

Single Source Shortest Path
Given an (un)directed connected graph 𝐺 = (𝑉, 𝐸) with non-
negative edge weights 𝑐% ≥ 0 and a start vertex 𝑠.

Find length of shortest paths from 𝑠 to each vertex in 𝐺

Cost of path s-2-3-4-t
 = 9 + 23 + 6 + 6
 = 44.

s

3

t

2

6

7

4
5

23

18
2

9

14

15 5

30

20

44

16

11

6

19

6

length of path = sum of edge weights in path

Single Source Shortest Path
Greedy Recipe:

• Order the input in some way (the most ‘important’ element will be
considered first)

• Go through the input according to the order
• Determine the strategy to construct best current partial solution in

each step

For shortest path: How do we order the input?
• Idea: Instead of ordering the input, we order the output

Dijkstra(𝑮, 𝒄, 𝒔) {
 Initialize set of explored nodes 𝑺 ← {𝒔}

 // Maintain distance from 𝒔 to each vertices in 𝑺
 𝒅 𝒔 ← 𝟎

 while (𝑺 ≠ 𝑽)
 {
 Pick an edge (𝒖, 𝒗) such that 𝒖 ∈ 𝑺 and 𝒗 ∉ 𝑺 and
 𝒅[𝒖] + 𝒄(𝒖,𝒗) is as small as possible.

 Add 𝒗 to 𝑺 and define 𝒅[𝒗] = 𝒅[𝒖] + 𝒄(𝒖,𝒗).
 𝑷𝒂𝒓𝒆𝒏𝒕 𝒗 ← 𝒖.
 }

Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example

0

¥
¥

¥

¥

¥

¥

¥

¥

¥

¥
¥

¥

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

¥

¥

¥

¥

¥

¥

¥
¥

¥

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

¥

¥

¥

¥

¥

¥

¥
¥

¥

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

¥

9

¥

¥

¥

¥

¥
¥

¥

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

¥

9

¥

¥

¥

¥

¥
¥

¥

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

8

9

¥

¥

¥

¥

7
5

¥

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

8

9

¥

¥

¥

¥

7
5

¥

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

8

9

¥

¥

¥

¥

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

8

9

¥

¥

¥

¥

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

8

9

¥

¥

¥

¥

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

¥

¥

¥

¥

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

¥

¥

¥

¥

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

15

¥

10

¥

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

15

¥

10

¥

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

15

14

10

20

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

15

14

10

20

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

15

14

10

19

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

15

14

10

19

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

15

14

10

18

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

15

14

10

18

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm outputs a tree.

Disjkstra’s Algorithm: Correctness
Theorem: For any 𝑢 ∈ 𝑆, the path 𝑃C on the tree in the shortest
path from 𝑠 to 𝑢 on 𝐺. (For all 𝑢 ∈ 𝑆, 𝑑 𝑢 = dist(𝑠, 𝑢).)
Proof: Induction on 𝑆 = 𝑘.
Base Case: This is always true when 𝑆 = 𝑠 .
Inductive Step: Say 𝑣 is the 𝑘 + 1 DE vertex that we add to S.
Let (𝑢, 𝑣) be last edge on 𝑃F .	
If 𝑃F is not the shortest path, there is a shorter path 𝑃 to 𝑆.
Consider the first time that 𝑃 leaves 𝑆 with edge (𝑥, 𝑦).
So, 𝑐 𝑃 ≥ 𝑑 𝑥 + 𝑐G,H ≥ 𝑑 𝑢 + 𝑐C,F = 𝑑 𝑣 = 𝑐 𝑃F .

A contradiction. S
v

y

u

s
x

𝑃&

𝑃Due to the choice of 𝑣𝑃 is the shorter path.

Remarks on Dijkstra’s Algorithm
• Algorithm produces a tree of shortest paths to 𝑠 following

Parent links (for undirected graph)
• Algorithm works on directed graph (with nonnegative weights)
• The algorithm fails with negative edge weights.
• Why does it fail?

Implementing Dijkstra’s Algorithm
Priority Queue: Elements each with an associated key Operations

• Insert
• Find-min

– Return the element with the smallest key

• Delete-min
– Return the element with the smallest key and delete it from the data structure

• Decrease-key
– Decrease the key value of some element

Implementations
Arrays:
• 𝑂(𝑛) time find/delete-min,
• 𝑂(1) time insert/decrease key
Binary Heaps:
• 𝑂(log 𝑛) time insert/decrease-key/delete-min,
• 𝑂(1) time find-min
Fibonacci heap:
• 𝑂(1) time insert/decrease-key
• 𝑂(log 𝑛) delete-min
• O(1) time find-min

Read wiki!

Dijkstra(𝑮, 𝒄, 𝒔) {
 Initialize set of explored nodes 𝑺 ← {𝒔}

 // Maintain distance from 𝒔 to each vertices in 𝑺
 𝒅 𝒔 ← 𝟎
 Insert all neighbors 𝒗 of s into a priority queue with value 𝒄(𝒔,𝒗).

 while (𝑺 ≠ 𝑽)
 {
 Pick an edge (𝒖, 𝒗) such that 𝒖 ∈ 𝑺 and 𝒗 ∉ 𝑺 and
 𝒅[𝒖] + 𝒄(𝒖,𝒗) is as small as possible.
 v ¬ delete min element from 𝑸

 Add 𝒗 to 𝑺 and define 𝒅[𝒗] = 𝒅[𝒖] + 𝒄(𝒖,𝒗).
 𝑷𝒂𝒓𝒆𝒏𝒕 𝒗 ← 𝒖.

 foreach (edge 𝒆 = (𝒗,𝒘) incident to 𝒗)
 if (𝒘 ∉ 	𝑺)
 if (𝒘 is not in the 𝑸)
 Insert 𝒘 into 𝑸 with value 𝒅 𝒗 + 𝒄(𝒗,𝒘)
 else (the key of 𝒘 > 𝒅 𝒗 + 𝒄(𝒗,𝒘))
 Decrease key of 𝒗 to 𝒅[𝒗] + 𝒄(𝒗,𝒘).
}

𝑂(𝑛) of delete min,
each in 𝑂(log 𝑛)

𝑂(𝑛) of insert,
each in 𝑂(1)

𝑂(𝑚) of decrease/insert key,
each runs in 𝑂(1)

