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Single Source Shortest Path



Single Source Shortest Path
Given an (un)directed connected graph 𝐺 = (𝑉, 𝐸) with non-
negative edge weights 𝑐𝑒 ≥ 0 and a start vertex 𝑠.

Find length of shortest paths from 𝑠 to each vertex in 𝐺

Cost of path s-2-3-4-t
     =  9 + 23 + 6 + 6
     = 44.
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length of path = sum of edge weights in path



Single Source Shortest Path
Greedy Recipe:

•  Order the input in some way (the most ‘important’ element will be 
considered first)

• Go through the input according to the order
• Determine the strategy to construct best current partial solution in 

each step

For shortest path: How do we order the input? 
• Observation: suppose (𝑠, 𝑣1, 𝑣2, … , 𝑣𝑘, 𝑡) is a shortest path 

from 𝑠 to 𝑡, then (𝑠, 𝑣1, 𝑣2, … , 𝑣𝑘) is a shortest path from 𝑠 
to 𝑣𝑘.

• Idea: Instead of ordering the input, we order the output



Last Lecture
Observation: suppose (𝑠, 𝑣1, 𝑣2, … , 𝑣𝑘, 𝑡) is a shortest path 
from 𝑠 to 𝑡, then (𝑠, 𝑣1, 𝑣2, … , 𝑣𝑘) is a shortest path from 𝑠 to 
𝑣𝑘.

Goal: compute the shortest path from 𝑠 to 𝑡
Assumption: know the shortest paths from 𝑠 to all the other 
vertices except 𝑡

𝑑 𝑡 = min
𝑣∈𝑉∖{𝑡}

 (𝑑[𝑣]  + 𝑐 𝑣,𝑡 )

(𝑑[𝑣] denotes the length of the shortest path from 𝑠 to 𝑣, 
and 𝑐(𝑣,𝑡) denotes the weight of the edge (𝑣, 𝑡))

Question: How to remove the assumption?
Relaxation: If we know the shortest paths from 𝑠 
to all the other vertices with length smaller than 

𝑑[𝑡], it is sufficient. 
Conclusion: Compute shortest paths in the 
ascending order of shortest path lengths



Dijkstra(𝑮, 𝒄, 𝒔) {
   Initialize set of explored nodes 𝑺 ← {𝒔}

   // Maintain distance from 𝒔 to each vertices in 𝑺
   𝒅 𝒔 ← 𝟎

   while (𝑺 ≠ 𝑽)
   {
      Pick an edge (𝒖, 𝒗) such that 𝒖 ∈ 𝑺 and 𝒗 ∉ 𝑺 and 
                          𝒅[𝒖] + 𝒄(𝒖,𝒗) is as small as possible.
      
      Add 𝒗 to 𝑺 and define 𝒅[𝒗] = 𝒅[𝒖] + 𝒄(𝒖,𝒗).
             𝑷𝒂𝒓𝒆𝒏𝒕 𝒗 ← 𝒖.
   }

Dijkstra’s Algorithm



Dijkstra’s Algorithm: Example
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Dijkstra’s Algorithm outputs a tree.



Disjkstra’s Algorithm: Correctness
Theorem: For any 𝑢 ∈ 𝑆, the path 𝑃𝑢 on the tree in the shortest 
path from 𝑠 to 𝑢 on 𝐺. (For all 𝑢 ∈ 𝑆, 𝑑 𝑢 = dist(𝑠, 𝑢).)
Proof: Induction on 𝑆 = 𝑘.
Base Case: This is always true when 𝑆 = 𝑠 .
Inductive Step: Say 𝑣 is the 𝑘 + 1 𝑠𝑡 vertex that we add to S.
Let (𝑢, 𝑣) be last edge on 𝑃𝑣. 
If 𝑃𝑣 is not the shortest path, there is a shorter path 𝑃 to 𝑆.
Consider the first time that 𝑃 leaves 𝑆 with edge (𝑥, 𝑦). 
So, 𝑐 𝑃 ≥ 𝑑 𝑥 + 𝑐𝑥,𝑦 ≥ 𝑑 𝑢 + 𝑐𝑢,𝑣 = 𝑑 𝑣 = 𝑐 𝑃𝑣 .

A contradiction. S
v

y

u

s
x
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𝑃Due to the choice of 𝑣𝑃 is the shorter path.



Remarks on Dijkstra’s Algorithm
• Algorithm produces a tree of shortest paths to 𝑠 following 

Parent links (for undirected graph)
• Algorithm works on directed graph (with nonnegative weights)
• The algorithm fails with negative edge weights. 
• Why does it fail?
 



Implementing Dijkstra’s Algorithm
Priority Queue: Elements each with an associated key Operations

• Insert
• Find-min

– Return the element with the smallest key

• Delete-min
– Return the element with the smallest key and delete it from the data structure

• Decrease-key
– Decrease the key value of some element

Implementations
Arrays:   
• 𝑂(𝑛) time find/delete-min,  
• 𝑂(1) time insert/decrease key    
Binary Heaps:  
• 𝑂(log 𝑛) time insert/decrease-key/delete-min, 
• 𝑂(1) time find-min
Fibonacci heap:  
• 𝑂(1) time insert/decrease-key
• 𝑂(log 𝑛) delete-min
• O(1) time find-min

Read wiki!



Dijkstra(𝑮, 𝒄, 𝒔) {
   Initialize set of explored nodes 𝑺 ← {𝒔}

   // Maintain distance from 𝒔 to each vertices in 𝑺
   𝒅 𝒔 ← 𝟎
   Insert all neighbors 𝒗 of s into a priority queue with value 𝒄(𝒔,𝒗). 

   while (𝑺 ≠ 𝑽)
   {
      Pick an edge (𝒖, 𝒗) such that 𝒖 ∈ 𝑺 and 𝒗 ∉ 𝑺 and 
             𝒅[𝒖] + 𝒄(𝒖,𝒗) is as small as possible.
      v  delete min element from 𝑸

      Add 𝒗 to 𝑺 and define 𝒅[𝒗] = 𝒅[𝒖] + 𝒄(𝒖,𝒗).
             𝑷𝒂𝒓𝒆𝒏𝒕 𝒗 ← 𝒖.

      foreach (edge 𝒆 = (𝒗, 𝒘) incident to 𝒗)
          if (𝒘 ∉  𝑺)
             if (𝒘 is not in the 𝑸)
                Insert 𝒘 into 𝑸 with value 𝒅 𝒗 + 𝒄(𝒗,𝒘)

             else (the key of 𝒘 > 𝒅 𝒗 + 𝒄(𝒗,𝒘))
                Decrease key of 𝒗 to 𝒅[𝒗] + 𝒄(𝒗,𝒘).
}

𝑂(𝑛) of delete min,
each in 𝑂(log 𝑛)

𝑂(𝑛) of insert,
each in 𝑂(1)

𝑂(𝑚) of decrease/insert key, 
each runs in 𝑂(1)
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Minimum Spanning Tree



Spanning Tree

Given a connected undirected graph 𝐺 = 𝑉, 𝐸 .
We call 𝑇 is a spanning tree of 𝐺 if
• All edges in 𝑇 are from 𝐸.
• 𝑇 includes all of the vertices of 𝐺.
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Minimum Spanning Tree (MST)

Given a connected undirected graph 𝐺 =  (𝑉, 𝐸) with real-
valued edge weights 𝑐𝑒 ≥ 0. 
An MST 𝑇 is a spanning tree whose sum of edge weights is 
minimized.

33

5

23

10 
21

14

24

16

6

4

18
9

7

11
8

𝐺 =  (𝑉, 𝐸)

5

6

4

9

7

11
8

𝑐 𝑇 = ෍
𝑒∈𝑇

𝑐𝑒 = 50



Kruskal’s Algorithm [1956]
Kruskal(G, c) {
   Sort edges weights so that 𝒄𝟏 ≤ 𝒄𝟐 ≤ ⋯ ≤ 𝒄𝒎.
   𝑻 ← ∅

   foreach (𝒖 ∈ 𝑽) make a set containing singleton {𝒖}

   for 𝒊 = 𝟏 to 𝒎
      Let 𝒖, 𝒗 = 𝒆𝒊
      if (𝒖 and 𝒗 are in different sets) {
         𝑻 ←  𝑻 ∪ {𝒆𝒊}
         merge the sets containing 𝒖 and 𝒗
      }
   return 𝑻
}

Kruskal

Sort edges weight.
Add edges whenever it 
does not create cycle.



Cuts

In a graph 𝐺 = (𝑉, 𝐸), a cut is a bipartition of V into disjoint sets 
𝑆, 𝑉 − 𝑆 for some 𝑆 ⊆ 𝑉. We denote it by (𝑆, 𝑉 − 𝑆).

An edge 𝑒 = {𝑢, 𝑣} is in the cut (𝑆, 𝑉 − 𝑆) if exactly one of 𝑢, 𝑣 is in 
𝑆.
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Properties of the OPT
Simplifying assumption: All edge costs 𝑐𝑒 are distinct.

Cut property:  Let 𝑆 be any subset of nodes (called a cut), and let 
𝑒 be the min cost edge with exactly one endpoint in 𝑆. Then every 
MST contains 𝑒.

Cycle property.  Let 𝐶 be any cycle, and let 𝑓 be the max cost 
edge belonging to 𝐶.  Then no MST contains 𝑓.
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Proof of Correctness (Kruskal)
Consider edges in ascending order of weight.
Case 1: adding 𝑒 to 𝑇 creates a cycle, 
𝑒 is the maximum weight edge in that cycle.
cycle property show 𝑒 is not in any minimum spanning tree.
Case 2:  𝑒 = (𝑢, 𝑣) is the minimum weight edge in the cut 𝑆 
where 𝑆 is the set of nodes in 𝑢’s connected component.
So, 𝑒 is in all minimum spanning tree. 
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This proves MST is unique if weights are distinct.
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Summary
• Greedy algorithm: ‘Best’ current partial solution at each 

step

• Design greedy algorithm:
How to order your input
Strategy for every step

• Greedy Analysis Strategies
Greedy algorithm stays ahead
Structural
Exchange argument
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