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Single Source Shortest Path

Given an (un)directed connected graph G = (V, E) with non-
negative edge weights ¢, = 0 and a start vertex s.

Find length of shortest paths from s to each vertex in G
T

length of path = sum of edge weights in path
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Single Source Shortest Path

Greedy Recipe:
* Order the input in some way (the most ‘important’ element will be
considered first)
« Go through the input according to the order
« Determine the strategy to construct best current partial solution in
each step

For shortest path: How do we order the input?

* QObservation: suppose (s, vy, v,, ..., U, t) IS a shortest path
from s to t, then (s, v, vy, ..., V) IS @ shortest path from s
to Vg -

» |dea: Instead of ordering the input, we order the output



Question: How to remove the assumption?
Relaxation: If we know the shortest paths from s
to all the other vertices with length smaller than

d[t], it is sufficient.
Conclusion: Compute shortest paths in the
ascending order of shortest path lengths

Goal: compute the shortest path from s to t

Assumption: know the shortest paths from s to all the other
vertices except t

dit] = min (d[v] + cwp)

(d[v] denotes the length of the shortest path from s to v,
and c., ) denotes the weight of the edge (v, t))



Dijkstra’s Algorithm

Dijkstra(G,c,s) {
Initialize set of explored nodes S « {s}

// Maintain distance from s to each vertices in §
d(s] <0

while (S #V)

{
Pick an edge (u,v) such that u€$ and v¢ S and

dlu] + ¢y is as small as possible.

Add v to S and define d[v]=d[u]+ ¢y -
Parent(v) <« u.
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Dijkstra’s Algorithm: Example
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[ Dijkstra’s Algorithm outputs a tree. ]




Disjkstra’s Algorithm: Correctness

Theorem: For any u € S, the path B, on the tree in the shortest
path from stou on G. (Forall u € S,d(u) = dist(s,u).)

Proof: Induction on |S| = k.

Base Case: This is always true when S = {s}.

Inductive Step: Say v is the (k + 1)t vertex that we add to S.
Let (u, v) be last edge on P,.

If P, is not the shortest path, there is a shorter path P to S.
Consider the first time that P leaves S with edge (x, y).

So,c(P) 2d(x) + ¢,y =d) + ¢y, = dw) =c(P).

M

P is the shorter path. Due to the choice of v

A contradiction.




Remarks on Dijkstra’s Algorithm

Algorithm produces a tree of shortest paths to s following
Parent links (for undirected graph)

Algorithm works on directed graph (with nonnegative weights)
The algorithm fails with negative edge weights.
Why does it fail?




Implementing Dijkstra’s Algorithm

Priority Queue: Elements each with an associated key Operations
* Insert

* Find-min
— Return the element with the smallest key

* Delete-min
— Return the element with the smallest key and delete it from the data structure

* Decrease-key
— Decrease the key value of some element
Implementations

Arrays:

* 0(n) time find/delete-min,

* 0(1) time insert/decrease key

Binary Heaps:

* O(logn) time insert/decrease-key/delete-min,
¢ 0(1) time find-min
Fibonacci heap: —
« 0(1) time insert/decrease-key [ Read W'k'!]
* O(logn) delete-min

* O(1) time find-min




Dijkstra (G,c,s) {
Initialize set of explored nodes S « {s}

. _ _ O(n) of insert,
// Maintain distance from s to each vertices in § :
d[s] — 0 eachin 0(1)

Insert all neighbors v of s into a priority queue with value c(,,.

while (S #V)

{
Pick an edge (u,v) such that u€S and v¢ S and

dlu] + ¢ is as small as possible.

O (n) of delete min
each in O(logn)

v < delete min element from Q

Add v to S and define d[v] = d[u] + ¢y, -
Parent(v) <« u.

foreach (edge e = (v,w) incident to v) O(m) of decrease/insert key,
if (wég S) each runsin 0(1)

if (w is not in the Q)
Insert w into Q with value d[v] + ¢y,

else (the key of w > d[v] + cyu))
Decrease key of v to d[v]+cpy).
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Spanning Tree

Given a connected undirected graph ¢ = (V,E).

We call T is a spanning tree of G if
 Alledgesin T are from E.
e T includes all of the vertices of G.

T
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Minimum Spanning Tree (MST)

Given a connected undirected graph ¢ = (V, E) with real-
valued edge weights c, = 0.
An MST T is a spanning tree whose sum of edge weights is

/
\u \ \s / .

G = (V,E) C(T)=2ce=50

eeT
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Kruskal's Algorithm [1956]

Kruskal (G, c) {

Sort edges weights so that ¢;<c¢; <:--<¢,,.
T<0o

foreach (u€V) make a set containing singleton {u}

for i=1 tom
Let (u,v) = ¢
if (u and v are in different sets) {
T < TU{e;}
merge the sets containing u and v

}

return T

Kruskal
O O O
(o) &
o
o @
o . ° 5 Sort edges weight.
o o Add edges whenever it
5 7 does not create cycle.
00 [®)

0O
O



Cuts 5~$./. }/ <

In a graph ¢ = (V,E), a cutis a bipartition of V into disjoint sets
S,V —Sforsome S € V.We denote it by (S,V —5).

An edge e = {u,v}isinthe cut (§,V —S) if exactly one of u, v isin
S.
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Properties of the OPT

Simplifying assumption: All edge costs c, are distinct.

Cut property: Let S be any subset of nodes (called a cut), and let
e be the min cost edge with exactly one endpointin S. Then every

MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost
edge belonging to €. Then no MST contains f.

7

5

red edge is in the MST Green edge is not in the MST
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Proof of Correctness (Kruskal)

Consider edges in ascending order of weight.

Case 1: adding e to T creates a cycle,

e is the maximum weight edge in that cycle.

cycle property show e is not in any minimum spanning tree.

Case 2: e = (u,v) is the minimum weight edge in the cut S
where S is the set of nodes in u’s connected component.

S0, e is in all minimum spanning tree.

<‘

Case 1 Case 2

This proves MST is unique if weights are distinct.




Summary

Greedy algorithm: ‘Best’ current partial solution at each
step

Design greedy algorithm:
How to order your input
Strategy for every step

Greedy Analysis Strategies
Greedy algorithm stays ahead
Structural
Exchange argument
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