CS 401: Computer Algorithm I

Single Source Shortest Path / Minimum Spanning Tree
 Xiaorui Sun

Single Source Shortest Path

Given an (un)directed connected graph $G=(V, E)$ with nonnegative edge weights $c_{e} \geq 0$ and a start vertex s.

Find length of shortest paths from s to each vertex in G \dagger
length of path = sum of edge weights in path

Cost of path s-2-3-4-t
$=9+23+6+6$
$=44$.

Question: How to remove the assumption? Relaxation: If we know the shortest paths from s
Ob to all the other vertices with length smaller than
v_{k}. Conclusion: Compute shortest paths in the ascending order of shortest path lengths
Goal: compute the shortest path from s to t
Assumption: know the shortest paths from s to all the other vertices except t

$$
d[t]=\min _{v \in V \backslash\{t\}} d[v]+c_{(v, t)}
$$

($d[v]$ denotes the length of the shortest path from s to v, and $c_{(v, t)}$ denotes the weight of the edge $\left.(v, t)\right)$

Dijkstra's Algorithm

Dijkstra($\boldsymbol{G}, \boldsymbol{c}, \boldsymbol{s}$) \{
Initialize set of explored nodes $S \leftarrow\{s\}$
// Maintain distance from s to each vertices in S $d[s] \leftarrow 0$

```
while (S\not=V)
```

\{

Pick an edge (u, v) such that $u \in S$ and $v \notin S$ and $d[u]+c_{(u, v)}$ is as small as possible.

Add v to S and define $d[v]=d[u]+c_{(u, v)}$. $\operatorname{Parent}(v) \leftarrow u$.
\}

Dijkstra's Algorithm: Example

Disjkstra's Algorithm: Correctness

Theorem: For any $u \in S$, the path P_{u} on the tree in the shortest path from s to u on G. (For all $u \in S, d(u)=\operatorname{dist}(s, u)$.) Proof: Induction on $|S|=k$.
Base Case: This is always true when $S=\{s\}$.
Inductive Step: Say v is the $(k+1)^{s t}$ vertex that we add to S.
Let (u, v) be last edge on P_{v}.
If P_{v} is not the shortest path, there is a shorter path P to S.
Consider the first time that P leaves S with edge (x, y).
So, $c(P) \geq d(x)+c_{x, y} \geq d(u)+c_{u, v}=d(v)=c\left(P_{v}\right)$.
P is the shorter path.
Due to the choice of v

A contradiction.

Implementing Dijkstra's Algorithm

Priority Queue: Elements each with an associated key Operations

- Insert
- Find-min
- Return the element with the smallest key
- Delete-min
- Return the element with the smallest key and delete it from the data structure
- Decrease-key
- Decrease the key value of some element

Implementations
Arrays:

```
O(n}\mp@subsup{n}{}{2}+m)\mathrm{ time
```

- $O(n)$ time find/delete-min,
- O (1) time insert/decrease key

Binary Heaps:

- $O(\log n)$ time insert/decrease-key/delete-min
$O(m \log n)$ time Fast enough usually
- $O(1)$ time find-min

Fibonacci heap:

- $O(1)$ time insert/decrease-key
- $O(\log n)$ delete-min
- O(1) time find-min

Read wiki!
$O(m+n \log n)$ time Even faster theoretically

```
Dijkstra(G,C,S) {
    Initialize set of explored nodes S}\leftarrow{s
```

 // Maintain distance from \(S\) to each vertices in \(S\)
 \(d[s] \leftarrow 0\)
 $O(n)$ of insert, each in $O(1)$
Insert all neighbors v of s into a priority queue with value $c_{(s, v)}$.
while $(S \neq V)$
\{
Pick an edge (u, v) such that $u \in S$ and $v \notin S$ and
$d[u]+c_{(u, v)}$ is as small as possible.
$\mathbf{v} \leftarrow$ delete min element from \boldsymbol{Q}
$O(n)$ of delete min, each in $O(\log n)$
Add v to S and define $d[v]=d[u]+c_{(u, v)}$.
$\operatorname{Parent}(v) \leftarrow u$.
foreach (edge $e=(v, w)$ incident to v) if (w $\neq S$) if (w is not in the Q)

Insert w into Q with value $d[v]+c_{(v, w)}$
else (the key of $w>d[v]+c_{(v, w)}$)
Decrease key of v to $d[v]+c_{(v, w)}$.

Minimum Spanning Tree

Spanning Tree

Given a connected undirected graph $G=(V, E)$.
We call T is a spanning tree of G if

- All edges in T are from E.
- T includes all of the vertices of G.

Minimum Spanning Tree (MST)

Given a connected undirected graph $G=(V, E)$ with realvalued edge weights $c_{e} \geq 0$.
An MST T is a spanning tree whose sum of edge weights is minimized.

$$
G=(V, E)
$$

$$
c(T)=\sum_{e \in T} c_{e}=50
$$

Kruskal's Algorithm [1956]

```
Kruskal (G, c) {
    Sort edges weights so that c}\mp@subsup{c}{1}{}\leq\mp@subsup{c}{2}{}\leq\cdots\leq\mp@subsup{c}{m}{}
    T}\leftarrow
    foreach (u\inV) make a set containing singleton {u}
    for i=1 to m
        Let (u,v) = 踉
        if (u and v are in different sets) {
                T}\leftarrowT\cup{\mp@subsup{e}{i}{}
                merge the sets containing u and v
        }
    return T
}
```


Cuts

In a graph $G=(V, E)$, a cut is a bipartition of V into disjoint sets $S, V-S$ for some $S \subseteq V$. We denote it by $(S, V-S)$.

An edge $e=\{u, v\}$ is in the cut $(S, V-S)$ if exactly one of u, v is in S.

Properties of the OPT

Simplifying assumption: All edge costs c_{e} are distinct.
Cut property: Let S be any subset of nodes (called a cut), and let e be the min cost edge with exactly one endpoint in S. Then every MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost edge belonging to C. Then no MST contains f.

red edge is in the MST

Green edge is not in the MST

Cut Property: Proof

Simplifying assumption: All edge costs c_{e} are distinct.
Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then any MST T^{*} contains e.
Proof. By contradiction
Suppose $e=\{u, v\}$ does not belong to T^{*}.
There is a path from u to v in $T^{*} \Rightarrow$ there exists another edge, say f, that leaves S.
Adding e to T^{*} creates a cycle C in T^{*}. (coz all tree has $n-1$ edges)
$T=T^{*} \cup\{e\}-\{f\}$ is also a spanning tree.
Since $c_{e}<c_{f}, c(T)<c\left(T^{*}\right)$.
This is a contradiction.

Cycle Property: Proof

Simplifying assumption: All edge costs c_{e} are distinct.
Cycle property: Let C be any cycle in G, and let f be the max cost edge belonging to C. Then the MST T^{*} does not contain f.

Proof. By contradiction
Suppose f belongs to T^{*}.

Every connected graph has a spanning tree.
Hence it has at least $n-1$ edges.

Deleting f from T^{*} cuts T^{*} into two connected components.
There exists another edge, say e, that is in the cycle and connects the components.
$T=T^{*} \cup\{e\}-\{f\}$ is also a spanning tree.
Since $c_{e}<c_{f}, c(T)<c\left(T^{*}\right)$.
This is a contradiction.

Proof of Correctness (Kruskal)

Consider edges in ascending order of weight.
Case 1: adding e to T creates a cycle,
e is the maximum weight edge in that cycle.
cycle property show e is not in any minimum spanning tree.
Case 2: $e=(u, v)$ is the minimum weight edge in the cut S where S is the set of nodes in u 's connected component. So, e is in all minimum spanning tree.

Case 1

This proves MST is unique if weights are distinct.

Summary

- Greedy algorithm: ‘Best’ current partial solution at each step
- Design greedy algorithm:

How to order your input
Strategy for every step

- Greedy Analysis Strategies

Greedy algorithm stays ahead
Structural
Exchange argument

