
CS 401

Minimum Spanning Tree / Midterm review

Xiaorui Sun

1

Midterm Exam

Midterm exam: March 6 (Thursday) 2pm-3:15pm this

classroom

Midterm review later this lecture

2

3

Minimum Spanning Tree

Spanning Tree

Given a connected undirected graph 𝐺 = 𝑉, 𝐸 .

We call 𝑇 is a spanning tree of 𝐺 if

All edges in 𝑇 are from 𝐸.

𝑇 includes all of the vertices of 𝐺.

4

𝑇

𝐺

Minimum Spanning Tree (MST)

Given a connected undirected graph 𝐺 = (𝑉, 𝐸) with real-

valued edge weights 𝑐𝑒 ≥ 0.

An MST 𝑇 is a spanning tree whose sum of edge weights is

minimized.

5

5

23

10

21

14

24

16

6

4

18
9

7

11
8

𝐺 = (𝑉, 𝐸)

5

6

4

9

7

11
8

𝑐 𝑇 = ෍

𝑒∈𝑇

𝑐𝑒 = 50

Kruskal’s Algorithm [1956]
Kruskal(G, c) {

 Sort edges weights so that 𝒄𝟏 ≤ 𝒄𝟐 ≤ ⋯ ≤ 𝒄𝒎.

 𝑻 ← ∅

 foreach (𝒖 ∈ 𝑽) make a set containing singleton {𝒖}

 for 𝒊 = 𝟏 to 𝒎
 Let 𝒖, 𝒗 = 𝒆𝒊

 if (𝒖 and 𝒗 are in different sets) {
 𝑻 ← 𝑻 ∪ {𝒆𝒊}
 merge the sets containing 𝒖 and 𝒗
 }

 return 𝑻
}

Kruskal

Sort edges weight.

Add edges whenever it
does not create cycle.

Cuts

In a graph 𝐺 = (𝑉, 𝐸), a cut is a bipartition of V into disjoint sets

𝑆, 𝑉 − 𝑆 for some 𝑆 ⊆ 𝑉. We denote it by (𝑆, 𝑉 − 𝑆).

An edge 𝑒 = {𝑢, 𝑣} is in the cut (𝑆, 𝑉 − 𝑆) if exactly one of 𝑢, 𝑣 is in

𝑆.

7

S V-S

u
v

x

S V-S

Properties of the OPT

Simplifying assumption: All edge costs 𝑐𝑒 are distinct.

Cut property: Let 𝑆 be any subset of nodes (called a cut), and let

𝑒 be the min cost edge with exactly one endpoint in 𝑆. Then every

MST contains 𝑒.

Cycle property. Let 𝐶 be any cycle, and let 𝑓 be the max cost

edge belonging to 𝐶. Then no MST contains 𝑓.

8

10

S

red edge is in the MST Green edge is not in the MST

5

7

2 3

5

4

7

V-S

Proof of Correctness (Kruskal)

Consider edges in ascending order of weight.

Case 1: adding 𝑒 to 𝑇 creates a cycle,

𝑒 is the maximum weight edge in that cycle.

cycle property show 𝑒 is not in any minimum spanning tree.

Case 2: 𝑒 = (𝑢, 𝑣) is the minimum weight edge in the cut 𝑆

where 𝑆 is the set of nodes in 𝑢’s connected component.

So, 𝑒 is in all minimum spanning tree.

v

u

Case 2

e
S

Case 1

𝑒

This proves MST is unique if weights are distinct.

Exercise: Some edges have the same weight?

What are the corresponding cut and cycle properties?

10

Summary

Greedy algorithm: ‘Best’ current partial solution at each

step

Design greedy algorithm:

How to order your input

Strategy for every step

Greedy Analysis Strategies

Greedy algorithm stays ahead

Structural

Exchange argument

11

Midterm Review

Midterm Exam

Midterm exam March 6 (Thursday) 2pm-3:15pm

• Location: LC C1

• Closed textbook exam

• You may use a sheet with notes on both sides, but not textbook and
any other paper materials

• You may use a calculator, but not any device with transmitting
functions, especially ones that can access the wireless or the Internet

Midterm Exam

True or false

• Only answer true or false, no justification

Short answer

• Answer questions, no justification

Algorithm design

• Graph algorithm

• Greedy algorithm

• Each problem have several questions, understand and answer

each question, no justification/correctness proof

Partial credits for partial/incorrect solutions

13

A midterm exam example will be released

later today

Topics

• Analysis of running time

• Graphs

• Greedy algorithms

14

Time Complexity

The time complexity of an algorithm associates a number

T(N), the “time” the algorithm takes on problem size N.

Mathematically, T is a function that maps positive integers

giving problem size to positive integers giving number of

simple operations

Worst Case Complexity: max # simple operations algorithm

takes on any input of size N

15

Analysis of running time

Given two positive functions f and g

f(N) is O(g(N)) iff there is a constant c0 and N0  0 s.t.,

0 f(N)  c⋅g(N) for all N  N0

f(N) is (g(N)) iff there is a constant c0 and N0  0 s.t.,

f(N)  c ⋅ g(N)  0 for all N  N0

f(N) is (g(N)) iff there are c00, c1>0 and N0  0 s.t.

 c0 ⋅ g(N)  f(N)  c1 ⋅ g(N) for all N  N0

• f(N) is (g(N)) iff f(N) is both O(g(N)) and (g(N)).

16

Properties

Reflexivity. f is O(f).

Constants. If f is O(g) and c > 0, then c⋅f is O(g).

Products. If f1 is O(g1) and f2 is O(g2), then f1⋅f2 is

O(g1⋅g2).

Sums. If f1 is O(g1) and f2 is O(g2), then f1 + f2 is

O(max {g1, g2}).

Transitivity. If f is O(g) and g is O(h), then f is O(h)

17

Asymptotic Bounds for common fns

Polynomials:

 𝑎0 + 𝑎1𝑛 + ⋯ + 𝑎𝑑𝑛𝑑 is 𝑂 𝑛𝑑

Logarithms:

 log𝑎 𝑛 = 𝑂(log𝑏 𝑛) for all constants 𝑎, 𝑏 > 0

Logarithms: log grows slower than every polynomial

 For all 𝑘 > 0, log 𝑛 = 𝑂(𝑛𝑘)
𝑛 log 𝑛 = 𝑂 𝑛1.01

For two functions 𝑓 and 𝑔, if log 𝑓 is 𝑂(log 𝑔), but log 𝑔 is

not 𝑂(log 𝑓) then 𝑓 is 𝑂(𝑔). 18

Exercise

Suppose 𝑓 𝑛 = 𝑛!, 𝑔 𝑛 = 2𝑛

Is 𝑓 = 𝑂 𝑔 , 𝑓 = Ω 𝑔 or 𝑓 = Θ(𝑔)?

Solution 1: Plot the two functions

Since n! is consistently larger than 2𝑛, 𝑓 = Ω 𝑔 19

Exercise

Suppose 𝑓 𝑛 = 𝑛!, 𝑔 𝑛 = 2𝑛

Is 𝑓 = 𝑂 𝑔 , 𝑓 = Ω 𝑔 or 𝑓 = Θ(𝑔)?

Solution 2: Consider

𝑓 𝑛

𝑔 𝑛
=

1

2

2

2
…

𝑛

2
≥

𝑛

4
…

𝑛

2
≥

𝑛

4

𝑛/2

Solution 3: Take log.

• log 𝑓 𝑛 = log 1 + log 2 + ⋯ + log 𝑛 = Θ(𝑛 log 𝑛)

• log 𝑔 𝑛 = 𝑛 log 2 = Θ(𝑛)

• So, log 𝑓 𝑛 = Ω(log 𝑔(𝑛)) and log 𝑓 𝑛 is not

O(log 𝑔(𝑛)), hence 𝑓 𝑛 = Ω(𝑔 𝑛)
20

𝑛 terms 𝑛/2 terms

If f= Ω(g) and f is not O(g),

then 2f = Ω (2g)

Undirected Graphs G=(V,E)

Notation. G = (V, E)

• V = nodes (or vertices)

• E = edges between pairs of nodes

• Captures pairwise relationship between objects

• Graph size parameters: n = |V|, m = |E|

V = {1, 2, 3, 4, 5 ,6, 7, 8}

E = {(1,2), (1,3), (2,3), (2,4), (2,5), (3,5), (3,7),

aaaa(3,8), (4,5), (5,6), (7,8)}

m=11, n=8

No self-loop, no multiedge

Terminology

Path: A sequence of vertices

s.t. each vertex is connected

to the next vertex with an edge

Cycle: Path of length > 2 that has

the same start and end

Tree: A connected graph with no cycles

22

3

4

5

6

2
10

1

2 5

1

34 6

Terminology

Degree of a vertex: # edges that touch that vertex

deg(6)=3

Connected: Graph is connected if there is a path between

every two vertices

Connected component: Maximal set of connected vertices

23

3

4

5

6

7
2

10

1

Graph representation

Adjacency matrix. n-by-n matrix with Auv = 1 if (u, v) is an
edge.

Space proportional to n2.

Checking if (u, v) is an edge takes (1) time.

Identifying all edges takes (n2) time.

Graph representation

Adjacency list. Node indexed array of lists.

Space proportional to m+n.

Checking if (u, v) is an edge takes (deg(u)) time.

Identifying all edges takes (m+n) time.

Graph Traversal

Walk (via edges) from a fixed starting vertex 𝑠 to all vertices

reachable from 𝑠.

Breadth First Search (BFS): Order nodes in successive

layers based on distance from 𝑠

Depth First Search (DFS): More natural approach for

exploring a maze;

26

27

BFS

BFS Tree gives shortest

paths from 1 to all vertices

0

1

2

3

4
All edges connect same

or adjacent levels

BFS

Properties:

• Edges into then-undiscovered vertices define a tree –
the “Breadth First spanning tree” of 𝐺

• Level 𝑖 in the tree are exactly all vertices 𝑣 s.t., the
shortest path (in 𝐺) from the root 𝑠 to 𝑣 is of length 𝑖

• All nontree edges join vertices on the same or adjacent
levels of the tree

Applications:

• Find connected components

• Single source shortest part on unweighted undirected
graph

• Testing bipartiteness

28

29

DFS Edge code:

Tree edge

Back edge

DFS

Properties:

• Edges into then-undiscovered vertices define a “DFS

tree” of 𝐺
• All nontree edges {𝑥, 𝑦}, one of 𝑥 or 𝑦 is an ancestor of

the other in the DFS tree.

30

Directed Graphs

31

1

2
10

9

8

3

4

5

6

7

11
12

13

No self-loop, no multiedge

(8, 10) and (10, 8) are different edges

Directed Acyclic Graphs (DAG)

Def: A DAG is a directed acyclic graph, i.e.,

one that contains no directed cycles.

Def: A topological order of a directed graph G = (V, E) is an
ordering of its nodes as 𝑣1, 𝑣2, … , 𝑣𝑛 so that for every edge
(𝑣𝑖 , 𝑣𝑗) we have 𝑖 < 𝑗.

32
a DAG

2 3

6 5 4

7 1

a topological ordering of that DAG–

all edges left-to-right

1 2 3 4 5 6 7

Single Source Shortest Path

Given an (un)directed connected graph 𝐺 = (𝑉, 𝐸) with non-

negative edge weights 𝑐𝑒 ≥ 0 and a start vertex 𝑠.

Find length of shortest paths from 𝑠 to each vertex in 𝐺

Dijkstra’s algorithm

Cost of path s-2-3-4-t
 = 9 + 23 + 6 + 6
 = 44.

s

3

t

2

6

7

4

5

23

18

2

9

14

15 5

30

20

44

16

11

6

19

6

length of path = sum of edge weights in path

Spanning Tree

Given a connected undirected graph 𝐺 = 𝑉, 𝐸 .

We call 𝑇 is a spanning tree of 𝐺 if

All edges in 𝑇 are from 𝐸.

𝑇 includes all of the vertices of 𝐺.

Kruskal’s algorithm
34

𝑇

𝐺

Homework 1 Problem 3

• Run BFS with an arbitrary vertex v as the start vertex,

and let T be the BFS tree

• If there is no off-tree edge, then there is no cycle of the

graph

• If there is an off-tree edge, then the graph must contain a

cycle.

• How do we find the cycle? Find the cycle contains the off-tree

edge

• Let (x, y) be the off-tree edge. Find the path from x to y in T. The

path and with edge (x, y) form a cycle.

• DFS also works 35

36

Greedy Algorithms

‘Best’ current partial solution at each step

• Solution is built in small steps

• Decisions on how to build the solution are made to

maximize some criterion without looking to the future

• Want the ‘best’ current partial solution as if the

current step were the last step

How to define each step?

What is the strategy of each step?

Interval Scheduling

Interval Scheduling

•Job j starts at 𝑠(𝑗) and finishes at 𝑓(𝑗).

•Two jobs compatible if they don’t overlap.

•Goal: find maximum subset of mutually compatible jobs.

37

Time

0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

Interval Scheduling

Every step we consider a single job

In each step, we decide if the job will be in the solution set

• Strategy: if the job is compatible with the current solution set, put it

into the solution set

How do we order jobs?

• Sort in the ascending order of the finish times

38

Homework 2 Problem 3

Each step we buy two (remaining) candies and get another

for free

• Since we want to buy all the candies, we maximize the

cost of free candy

• So we buy the most expensive two, and get the third

expensive one for free

Algorithm: Sort candies by descending order of cost, for the

remaining candies, by the first two and get the third for free39

	Slide 1: CS 401
	Slide 2: Midterm Exam
	Slide 3
	Slide 4: Spanning Tree
	Slide 5: Minimum Spanning Tree (MST)
	Slide 6: Kruskal’s Algorithm [1956]
	Slide 7: Cuts
	Slide 8: Properties of the OPT
	Slide 9: Proof of Correctness (Kruskal)
	Slide 10: Summary
	Slide 11
	Slide 12: Midterm Exam
	Slide 13: Midterm Exam
	Slide 14: Topics
	Slide 15: Time Complexity
	Slide 16: Analysis of running time
	Slide 17: Properties
	Slide 18: Asymptotic Bounds for common fns
	Slide 19: Exercise
	Slide 20: Exercise
	Slide 21: Undirected Graphs G=(V,E)
	Slide 22: Terminology
	Slide 23: Terminology
	Slide 24: Graph representation
	Slide 25: Graph representation
	Slide 26: Graph Traversal
	Slide 27: BFS
	Slide 28: BFS
	Slide 29: DFS
	Slide 30: DFS
	Slide 31: Directed Graphs
	Slide 32: Directed Acyclic Graphs (DAG)
	Slide 33: Single Source Shortest Path
	Slide 34: Spanning Tree
	Slide 35: Homework 1 Problem 3
	Slide 36: Greedy Algorithms
	Slide 37: Interval Scheduling
	Slide 38: Interval Scheduling
	Slide 39: Homework 2 Problem 3

