CS 401: Computer
Algorithm |

Divide and Conquer

Xiaorul Sun

Stuff

In-class midterm exam: March 6 (Thursday) 2pm-3:15pm
Location: LC C1

Midterm review Feb 27 class

Homework 2 is due today 11:59pm

Divide and Conquer

Divide and Conqguer

Subproblem
Divide: We reduce a problem to several subproblems. S1269
Typically, each sub-problem is n‘/
at most a constant ¢ < 1 fraction of "
the size of the original problem @
@ n/2 n/2
-
Conquer: Recursively solve each éﬂ !

subproblem @ /4
Combine: Merge the solutions :

Examples:
* Mergesort, Binary Search, Strassen’s Algorithm,

Mergesort

Sorting

Sorting. Given n elements, rearrange in ascending order.

Obvious sorting applications.
List files in a directory.
Organize a playlist.

List names in address book.
Display Google PageRank
results.

Problems become easier once
sorted.
Find the median.
Greedy algorithms.
Find the closest pair.
Binary search in a database.
|dentify statistical outliers.

Find duplicates in a mailing list.

Non-obvious sorting applications.

Data compression.
Computer graphics.

Interval scheduling.
Computational biology.
Minimum spanning tree.
Supply chain management.
Simulate a system of particles.
Book recommendations on
Amazon.

Load balancing on a parallel
computer.

Mergesort

Mergesort

« Divide array into two halves.

* Recursively sort each half.

« Merge two halves to make sorted whole.

Jon von Neumann (1945)

A L G O R I T H M S divide O(1)

A G L O R H I M S T sort 2T(n/2)

A G H I L M O R s T merge O(n)

Merging
Merging: Combine two pre-sorted lists into a sorted whole.
How to merge efficiently?

* Linear number of comparisons.
« Use auxiliary array.

Merging

Merge.
. Keep track of smallest element in each sorted half.
. Insert smallest of two elements into auxiliary array.
. Repeat until done.

A|G H I auxiliary array

Merge.

. Keep track of smallest element in each sorted half.
. Insert smallest of two elements into auxiliary array.
. Repeat until done.

smallest

:

A

G

Merging

smallest

: g

H I

auxiliary array

10

Merging

Merge.
. Keep track of smallest element in each sorted half.

. Insert smallest of two elements into auxiliary array.

. Repeat until done.

smallest smallest
A G| L| O R H I M| S

EN ¢

auxiliary array

1

Merging

Merge.
. Keep track of smallest element in each sorted half.
. Insert smallest of two elements into auxiliary array.
. Repeat until done.

smallest smallest
A G| L| O R H I M S | T

A |G n auxiliary array

Merging

Merge.
. Keep track of smallest element in each sorted half.
. Insert smallest of two elements into auxiliary array.
. Repeat until done.

smallest smallest
A G| L| O R H I M S | T

A G| H auxiliary array

Merging

Merge.
. Keep track of smallest element in each sorted half.

. Insert smallest of two elements into auxiliary array.

. Repeat until done.

smallest smallest
A G| L| O R H I M| S

auxiliary array

14

Merge.

. Keep track of smallest element in each sorted half.
. Insert smallest of two elements into auxiliary array.

. Repeat until done.

smallest

:

Merging

A G| L O

R

smallest

: g

M

auxiliary array

15

Merging

Merge.
. Keep track of smallest element in each sorted half.
. Insert smallest of two elements into auxiliary array.
. Repeat until done.

smallest smallest
A G| L| O R H I M S | T

A|G/ H I | L M n auxiliary array

Merge.

Merging

. Keep track of smallest element in each sorted half.

. Insert smallest of two elements into auxiliary array.

. Repeat until done.

smallest smallest
A G| L | O| R H| I M| S
aAlg|H|I|L|M]|oI[EN

auxiliary array

17

Merge.

Merging

. Keep track of smallest element in each sorted half.

. Insert smallest of two elements into auxiliary array.

. Repeat until done.

first half
exhausted

. g

A G| L | O R

smallest

: g

H I M

S| T

AL < I

auxiliary array

18

Merge.

Merging

. Keep track of smallest element in each sorted half.

. Insert smallest of two elements into auxiliary array.

. Repeat until done.

first half

exhausted smallest
A G|L | O|R H| I S| T
A|G|H L|M|O s N

auxiliary array

19

Merging

Merge.
. Keep track of smallest element in each sorted half.
. Insert smallest of two elements into auxiliary array.
. Repeat until done.

first half second half
exhausted exhausted
A G| L| O R H I M S | T

AG/ H I L M O R|S | T auxiliary array

20

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of
size n.

Mergesort recurrence.

0 if n=1
T(n) = \T(|'nv/2'|) + \T(|_nv/2J) + L otherwise
solve left half solve right half ~ ™MCreme

Solution. T(n) = O(n log, n).

™~ Why?

We will discuss the solution of
21 recurrence functions later

Summary

Divide-and-Conquer
« Divide: Divide problem in to subproblems.
« Subproblem is at most a constant fraction of the original problem.

« Conguer: Recursively solve each subproblem.

« Combine: Merge solutions of subproblems to the solution of
the original problem

Mergesort
« Divide array into two halves.
« Merge two halves to make sorted whole.

22

Counting Inversions

Counting Inversions

Music site tries to match your song preferences with others.
* You rank n songs.
» Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
« Myrank: 1,2, ..., n.

 Yourrank: a;, a,, ..., a,.

« Songsiandjinverted if i <j, but a; > a;.

Inversions
3-2,4-2

Brute force: check all ®(n?) pairs i and j.

24

Applications

Applications

« Voting theory.

« Collaborative filtering.

« Measuring the "sortedness" of an array.

« (Genomic distance between two gene sequences.
« Sensitivity analysis of Google's ranking function.

« Rank aggregation for meta-searching on the Web.
* Nonparametric statistics (e.g., Kendall's Tau distance).

25

Counting Inversions: Divide-and-Conqguer

Divide-and-conquer.

1 5 4 8 10 2 6 9 12 11 3 7

26

Counting Inversions: Divide-and-Conguer

Divide-and-conquer.
- Divide: separate list into two pieces.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).

(115418102 Q6 0 i2]i]3]7

27

Counting Inversions: Divide-and-Conguer

Divide-and-conquer.
« Divide: separate list into two pieces.
« Conquer: recursively count inversions in each half.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1),
DODDEE OOENEE o oo
5 blue-blue inversions 8 green-green inversions

5-4,5-2,4-2,8-2,10-2 6-3,9-3,9-7,12-3,12-7, 12-11,11-3, 11-7

28

Counting Inversions: Divide-and-Conguer

Divide-and-conquer.

29

Divide: separate list into two pieces.
Conqguer: recursively count inversions in each half.

Combine: count inversions where a; and a; are in different halves,
and return sum of three quantities.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).
DODDEE OOENEE o oo
5 blue-blue inversions 8 green-green inversions
9 blue-green inversions Combine: 277

5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Enumerate all blue-green

Total=5+8+9=22 pairs takes O(n?) time

Counting Inversions: Combine

Combine: count blue-green inversions
« Assume each half is sorted.
« Count inversions where a; and g are in different halves.

3 17 o ¢ ia o 2 i Lo 17 23 5
6 3 2 2 0 O
13 blue-green inversions: 6 +3+2+2+0+0

2 3 7 10 11 14 16 17 18 19 23 25 Count: O(n)

Combine: 0(n(logn)?)

/ time
 Sort two halves.

« Count inversions where a; and g are in different halves.

Counting Inversions: Combine

Combine: count blue-green inversions

« Assume each half is sorted.

« Count inversions where a; and g are in different halves.
« Merge two sorted halves into sorted whole.

to maintain sorted invariant

IEEDDE BEDEED
6 3 2 2 0 0
13 blue-green inversions: 6 +3+2+2+0+0 Count: O(n)

2 3 7 10 11 14 16 17 18 19 23 25 Merge: O(n)

T(n) £ T(én/20)+T(én/2l])+O(n) P T(n)=0(nlogn)

31

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

32

Lesson

Sometimes, it is useful to redefine the problem to make the
recursion work

In the counting inversions problem
« The merge step becomes easier if two halves are sorted

« So, we redefine the problem (as well as the subproblems) as
finding the number of inversions and sorting the input

33

	Slide 1: CS 401: Computer Algorithm I
	Slide 2: Stuff
	Slide 3: Divide and Conquer
	Slide 4: Divide and Conquer
	Slide 5
	Slide 6: Sorting
	Slide 7: Mergesort
	Slide 8: Merging
	Slide 9: Merging
	Slide 10: Merging
	Slide 11: Merging
	Slide 12: Merging
	Slide 13: Merging
	Slide 14: Merging
	Slide 15: Merging
	Slide 16: Merging
	Slide 17: Merging
	Slide 18: Merging
	Slide 19: Merging
	Slide 20: Merging
	Slide 21: A Useful Recurrence Relation
	Slide 22: Summary
	Slide 23
	Slide 24: Counting Inversions
	Slide 25: Applications
	Slide 26: Counting Inversions: Divide-and-Conquer
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Counting Inversions: Combine
	Slide 31: Counting Inversions: Combine
	Slide 32: Counting Inversions: Implementation
	Slide 33: Lesson

