
CS 401: Computer

Algorithm I

Divide and Conquer

Xiaorui Sun

1

Stuff

In-class midterm exam: March 6 (Thursday) 2pm-3:15pm
• Location: LC C1

• Midterm review Feb 27 class

Homework 2 is due today 11:59pm

3

Divide and Conquer

Divide and Conquer

Divide: We reduce a problem to several subproblems.

Typically, each sub-problem is

 at most a constant c < 1 fraction of

 the size of the original problem

Conquer: Recursively solve each

 subproblem

Combine: Merge the solutions

Examples:

• Mergesort, Binary Search, Strassen’s Algorithm,
Lo

g
n

 le
ve

ls

n

n/2n/2

n/4

Subproblem

sizes

Mergesort

Sorting. Given n elements, rearrange in ascending order.

6

Obvious sorting applications.

List files in a directory.

Organize a playlist.

List names in address book.

Display Google PageRank
results.

Problems become easier once

sorted.

Find the median.
Greedy algorithms.

Find the closest pair.

Binary search in a database.

Identify statistical outliers.

Find duplicates in a mailing list.

Non-obvious sorting applications.

Data compression.

Computer graphics.

Interval scheduling.

Computational biology.
Minimum spanning tree.

Supply chain management.

Simulate a system of particles.

Book recommendations on

Amazon.
Load balancing on a parallel

computer.

. . .

Sorting

7

Mergesort

Mergesort

• Divide array into two halves.

• Recursively sort each half.

• Merge two halves to make sorted whole.

merge

sort

divide

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

O(n)

2T(n/2)

O(1)

8

Merging

Merging: Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?

• Linear number of comparisons.

• Use auxiliary array.

A G L O R H I M S T

A G H I

Merge.

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.

9

auxiliary array

A G L O R H I M S T

Merging

A G H I

10

auxiliary array

smallest smallest

A G L O R H I M S T

Merging

Merge.

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.

A

11

auxiliary array

smallest smallest

A G L O R H I M S T

A

Merging

Merge.

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.

G

12

auxiliary array

smallest smallest

A G L O R H I M S T

A G

Merging

Merge.

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.

H

13

auxiliary array

smallest smallest

A G L O R H I M S T

A G H

Merging

Merge.

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.

I

14

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I

Merging

Merge.

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.

L

15

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L

Merging

Merge.

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.

M

16

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L M

Merging

Merge.

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.

O

17

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L M O

Merging

Merge.

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.

R

18

auxiliary array

first half
exhausted smallest

A G L O R H I M S T

A G H I L M O R

Merging

Merge.

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.

S

19

auxiliary array

first half
exhausted smallest

A G L O R H I M S T

A G H I L M O R S

Merging

Merge.

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.

T

20

auxiliary array

first half
exhausted

second half
exhausted

A G L O R H I M S T

A G H I L M O R S T

Merging

Merge.

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.

21

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of

size n.

Mergesort recurrence.

Solution. T(n) = O(n log2 n).

Why?

We will discuss the solution of

recurrence functions later

22

Summary

Divide-and-Conquer

• Divide: Divide problem in to subproblems.

• Subproblem is at most a constant fraction of the original problem.

• Conquer: Recursively solve each subproblem.

• Combine: Merge solutions of subproblems to the solution of

the original problem

Mergesort

• Divide array into two halves.

• Merge two halves to make sorted whole.

Counting inversions

24

Music site tries to match your song preferences with others.

• You rank n songs.

• Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

• My rank: 1, 2, …, n.

• Your rank: a1, a2, …, an.

• Songs i and j inverted if i < j, but ai > aj.

You

Me

1 43 2 5

1 32 4 5

Songs

Counting Inversions

Inversions

3-2, 4-2

Brute force: check all (n2) pairs i and j.

25

Applications

Applications

• Voting theory.

• Collaborative filtering.

• Measuring the "sortedness" of an array.

• Genomic distance between two gene sequences.

• Sensitivity analysis of Google's ranking function.

• Rank aggregation for meta-searching on the Web.

• Nonparametric statistics (e.g., Kendall's Tau distance).

26

Counting Inversions: Divide-and-Conquer

4 8 10 21 5 12 11 3 76 9

Divide-and-conquer.

27

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

Divide: O(1).

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

• Divide: separate list into two pieces.

28

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide: O(1).

Conquer: 2T(n / 2)

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

Divide-and-conquer.

• Divide: separate list into two pieces.

• Conquer: recursively count inversions in each half.

Counting Inversions: Divide-and-Conquer

29

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide: O(1).

Conquer: 2T(n / 2)

Combine: ???9 blue-green inversions

5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

Divide-and-conquer.

• Divide: separate list into two pieces.

• Conquer: recursively count inversions in each half.

• Combine: count inversions where ai and aj are in different halves,

and return sum of three quantities.

Counting Inversions: Divide-and-Conquer

Enumerate all blue-green

pairs takes O(n2) time

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Counting Inversions: Combine
Combine: count blue-green inversions

• Assume each half is sorted.

• Count inversions where ai and aj are in different halves.

Combine:

• Sort two halves.

• Count inversions where ai and aj are in different halves.

Count: O(n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

6 3 2 2 0 0

𝑂 𝑛 log 𝑛 2

time

31

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Counting Inversions: Combine
Combine: count blue-green inversions

• Assume each half is sorted.

• Count inversions where ai and aj are in different halves.

• Merge two sorted halves into sorted whole.

Count: O(n)

Merge: O(n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

T(n) £ T n /2ë û() + T n /2é ù() + O(n) Þ T(n) = O(n log n)

6 3 2 2 0 0

to maintain sorted invariant

32

Counting Inversions: Implementation
Pre-condition. [Merge-and-Count] A and B are sorted.

Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {

 if list L has one element

 return 0 and the list L

 Divide the list into two halves A and B

 (rA, A)  Sort-and-Count(A)

 (rB, B)  Sort-and-Count(B)

 (r, L)  Merge-and-Count(A, B)

 return r = rA + rB + r and the sorted list L

}

33

Lesson
Sometimes, it is useful to redefine the problem to make the

recursion work

In the counting inversions problem

• The merge step becomes easier if two halves are sorted

• So, we redefine the problem (as well as the subproblems) as

finding the number of inversions and sorting the input

	Slide 1: CS 401: Computer Algorithm I
	Slide 2: Stuff
	Slide 3: Divide and Conquer
	Slide 4: Divide and Conquer
	Slide 5
	Slide 6: Sorting
	Slide 7: Mergesort
	Slide 8: Merging
	Slide 9: Merging
	Slide 10: Merging
	Slide 11: Merging
	Slide 12: Merging
	Slide 13: Merging
	Slide 14: Merging
	Slide 15: Merging
	Slide 16: Merging
	Slide 17: Merging
	Slide 18: Merging
	Slide 19: Merging
	Slide 20: Merging
	Slide 21: A Useful Recurrence Relation
	Slide 22: Summary
	Slide 23
	Slide 24: Counting Inversions
	Slide 25: Applications
	Slide 26: Counting Inversions: Divide-and-Conquer
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Counting Inversions: Combine
	Slide 31: Counting Inversions: Combine
	Slide 32: Counting Inversions: Implementation
	Slide 33: Lesson

