

Divide and Conquer

Xiaorui Sun

Divide and Conquer

Divide: We reduce a problem to several subproblems.

Typically, each sub-problem is at most a constant c < 1 fraction of the size of the original problem

Conquer: Recursively solve each subproblem

Combine: Merge the solutions

Example:

• Mergesort

Counting inversions

Counting Inversions

Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., n.
- Your rank: a₁, a₂, ..., a_n.
- Songs i and j inverted if i < j, but $a_i > a_j$.

Brute force: check all $\Theta(n^2)$ pairs i and j.

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where a_i and a_j are in different halves, and return sum of three quantities.

9 blue-green inversions Combine: ??? 5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

> Enumerate all blue-green pairs takes O(n²) time

Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- Count inversions where a_i and a_i are in different halves.

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

 $O(n(\log n)^2)$

time

Combine:

- Sort two halves.
- Count inversions where a_i and a_i are in different halves.

Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- Count inversions where a_i and a_i are in different halves.
- Merge two sorted halves into sorted whole.

to maintain sorted invariant

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0 Count: O(n)

2	3	7	10	11	14	16	17	18	19	23	25	Merge: O(n)
---	---	---	----	----	----	----	----	----	----	----	----	-------------

 $T(n) \in T(\ddot{e}n/2\dot{u}) + T(\acute{e}n/2\dot{u}) + O(n) \quad \vartriangleright \quad T(n) = O(n\log n)$

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted. Post-condition. [Sort-and-Count] L is sorted.

```
Sort-and-Count(L) {
    if list L has one element
        return 0 and the list L
    Divide the list into two halves A and B
    (r_A, A) \leftarrow Sort-and-Count(A)
    (r_B, B) \leftarrow Sort-and-Count(B)
    (r, L) \leftarrow Merge-and-Count(A, B)
    return r = r_A + r_B + r and the sorted list L
}
```

Lesson

Sometimes, it is useful to redefine the problem to make the recursion work

In the counting inversions problem

- The combine step becomes easier if two halves are sorted
- So, we redefine the problem (as well as the subproblems) as finding the number of inversions and sorting the input

Master Theorem

Master Theorem

Suppose $T(n) = a T\left(\frac{n}{b}\right) + cn^k$ for all n > b. Then, c: absolute constant

• If $a < b^k$ then $T(n) = \Theta(n^k)$

• If
$$a = b^k$$
 then $T(n) = \Theta(n^k \log n)$

• If $a > b^k$ then $T(n) = \Theta(n^{\log_b a})$ Works even if it is $\left[\frac{n}{b}\right]$ instead of $\frac{n}{b}$. We also need $a \ge 1, b > 1$, $k \ge 0$ and T(n) = O(1) for $n \le b$.

Question

Consider the following recurrence. Which case of the master theorem?

$$T(n) = \begin{cases} 0 & \text{if } n \leq 1 \\ T\left(\left\lfloor\frac{n}{5}\right\rfloor\right) + T\left(n - 3\left\lceil\frac{n}{10}\right\rceil\right) + \frac{11}{5}n & \text{if } n > 1 \\ \text{Master Theorem} \\ \text{Suppose } T(n) = a T\left(\frac{n}{b}\right) + cn^k \text{ for } \\ \text{all } n > b. \\ T(n) = \Theta(n\log n) \\ T(n) = \Theta(n^2) & T(n) = \begin{cases} \Theta(n^k) & \text{if } a < b^k \\ \Theta(n^k\log n) & \text{if } a > b^k \\ \Theta(n^{\log_b a}) & \text{if } a > b^k \end{cases}$$

• D. Master theorem not applicable

• A.

• C.

Β.

Akra–Bazzi theorem Wiki!

How to use master theorem?

For a divide and conquer algorithm

- a: number of subproblems
- b: ratio of problem size / subproblem size
- $c \cdot n^k$: running time of divide and combine step

We have recurrence $T(n) = a T\left(\frac{n}{b}\right) + cn^k$ for all n > b.

Example: Mergesort have two subproblems of half size of the original problem, and the cost of divide and combine step is O(n), so T(n) = 2 T(n / 2) + c n, which implies T(n) = $\Theta(n \log n)$

Understand Master Theorem

$$T(n) = \sum_{i=0}^{d = \log_b n} a^i c \left(\frac{n}{b^i}\right)^k$$

Understand Master Theorem

Suppose
$$T(n) = a T\left(\frac{n}{b}\right) + cn^k$$
 for all $n > b$. Then,

• If
$$a < b^k$$
 then $T(n) = \Theta(n^k)$

• If
$$a = b^k$$
 then $T(n) = \Theta(n^k \log n)$

of problems increases slower than the decreases of cost. Top term dominates.

- If $a > b^k$ then $T(n) = \Theta(n^{\log_b a})$
- # of problems increases faster than the decreases of cost Bottom term dominates.

$$T(n) = \sum_{i=0}^{d = \log_b n} a^i c \left(\frac{n}{b^i}\right)^k$$