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Divide and Conquer 

Divide: We reduce a problem to several subproblems.

   Typically, each sub-problem is at most a constant c < 1 fraction of the 

size of the original problem

Conquer: Recursively solve each 

  subproblem

Combine: Merge the solutions

Example:

• Mergesort



Counting inversions
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Music site tries to match your song preferences with others.

• You rank n songs.

• Music site consults database to find people with similar tastes.

Similarity metric:  number of inversions between two rankings.

• My rank:  1, 2, …, n.

• Your rank:  a1, a2, …, an.

• Songs i and j inverted if i < j, but ai > aj.

You

Me

1 43 2 5

1 32 4 5

Songs

Counting Inversions

Inversions

3-2, 4-2

Brute force:  check all (n2) pairs i and j.
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4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide:  O(1).

Conquer:  2T(n / 2)

Combine:  ???9 blue-green inversions

5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

Divide-and-conquer.

• Divide:  separate list into two pieces.

• Conquer: recursively count inversions in each half.

• Combine: count inversions where ai and aj are in different halves, 

and return sum of three quantities.

Counting Inversions:  Divide-and-Conquer

Enumerate all blue-green 

pairs takes O(n2) time



13 blue-green inversions:  6 + 3 + 2 + 2 + 0 + 0 

Counting Inversions:  Combine
Combine:  count blue-green inversions 

• Assume each half is sorted.

• Count inversions where ai and aj are in different halves. 

Combine:

• Sort two halves.

• Count inversions where ai and aj are in different halves. 

Count:  O(n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

6 3 2 2 0 0

𝑂 𝑛 log 𝑛 2  

time
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13 blue-green inversions:  6 + 3 + 2 + 2 + 0 + 0 

Counting Inversions:  Combine
Combine:  count blue-green inversions 

• Assume each half is sorted.

• Count inversions where ai and aj are in different halves. 

• Merge two sorted halves into sorted whole.

Count:  O(n)

Merge:  O(n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

  

  

T(n) £  T n /2ë û( ) + T n /2é ù( ) + O(n) Þ T(n) = O(n log n)

6 3 2 2 0 0

to maintain sorted invariant



8

Counting Inversions:  Implementation
Pre-condition. [Merge-and-Count]  A and B are sorted.

Post-condition.  [Sort-and-Count]  L is sorted.

Sort-and-Count(L) {

   if list L has one element

      return 0 and the list L

   

   Divide the list into two halves A and B

   (rA, A)  Sort-and-Count(A)

   (rB, B)  Sort-and-Count(B)

   (r, L)  Merge-and-Count(A, B)

   return r = rA + rB + r and the sorted list L

}
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Lesson
Sometimes, it is useful to redefine the problem to make the 

recursion work

In the counting inversions problem

• The combine step becomes easier if two halves are sorted

• So, we redefine the problem (as well as the subproblems) as 

finding the number of inversions and sorting the input



Master Theorem



Master Theorem

Suppose 𝑇 𝑛 = 𝑎 𝑇
𝑛

𝑏
+ 𝑐𝑛𝑘  for all 𝑛 > 𝑏. Then,

• If 𝑎 < 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛𝑘

• If 𝑎 = 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛𝑘log 𝑛

• If 𝑎 > 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛log𝑏𝑎

Works even if it is 
𝑛

𝑏
 instead of 

𝑛

𝑏
.

We also need 𝑎 ≥ 1, 𝑏 > 1 , 𝑘 ≥ 0 and 𝑇 𝑛 = 𝑂(1) for 𝑛 ≤ 𝑏.

c: absolute constant



Question

Consider the following recurrence. Which case of the master 

theorem?

• A. 𝑇 𝑛 = Θ 𝑛

• B. 𝑇 𝑛 = Θ 𝑛log 𝑛

• C. 𝑇 𝑛 = Θ 𝑛2

• D. Master theorem not applicable

𝑇 𝑛 =

0 if 𝑛 ≤ 1

𝑇
𝑛

5
+ 𝑇 𝑛 − 3

𝑛

10
+

11

5
𝑛 if 𝑛 > 1

Akra–Bazzi theorem

Wiki!

Master Theorem

Suppose 𝑇 𝑛 = 𝑎 𝑇
𝑛

𝑏
+ 𝑐𝑛𝑘  for 

all 𝑛 > 𝑏. 

𝑇 𝑛 =

Θ 𝑛𝑘 if 𝑎 < 𝑏𝑘

Θ 𝑛𝑘 log 𝑛 if 𝑎 = 𝑏𝑘

Θ(𝑛log𝑏 𝑎) if 𝑎 > 𝑏𝑘



How to use master theorem?

For a divide and conquer algorithm

• a: number of subproblems

• b: ratio of problem size / subproblem size

• c⋅nk: running time of divide and combine step

We have recurrence 𝑇 𝑛 = 𝑎 𝑇
𝑛

𝑏
+ 𝑐𝑛𝑘  for all 𝑛 > 𝑏. 

Example: Mergesort have two subproblems of half size of 

the original problem, and the cost of divide and combine 

step is O(n), so T(n) = 2 T(n / 2) + c n, which implies T(n) = 

Θ(n log n)



Understand Master Theorem

𝑇 𝑛 = 𝑎𝑇(𝑛/𝑏) + 𝑐𝑛𝑘

𝑎
𝑛

Problem size

𝑛/𝑏

𝑛/𝑏2

𝑏

1

# probs

𝑎2

𝑎

1

𝑎𝑑

cost

𝑐𝑛𝑘

𝑎 ⋅ 𝑐 𝑛/𝑏 𝑘

𝑎2 ⋅ 𝑐 𝑛/𝑏2 𝑘

𝑎𝑘 ⋅ 𝑐 𝑛/𝑏𝑘 𝑘

𝑇 𝑛 = ෍
𝑖=0

𝑑=log𝑏 𝑛

𝑎𝑖𝑐
𝑛

𝑏𝑖

𝑘



Understand Master Theorem

Suppose 𝑇 𝑛 = 𝑎 𝑇
𝑛

𝑏
+ 𝑐𝑛𝑘  for all 𝑛 > 𝑏. Then,

• If 𝑎 < 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛𝑘

• If 𝑎 = 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛𝑘log 𝑛

• If 𝑎 > 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛log𝑏𝑎

# of problems increases slower

than the decreases of cost.

Top term dominates.

# of problems increases faster

than the decreases of cost

Bottom term dominates.

𝑇 𝑛 = ෍
𝑖=0

𝑑=log𝑏 𝑛

𝑎𝑖𝑐
𝑛

𝑏𝑖

𝑘
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