
CS 401

Divide and Conquer

Xiaorui Sun

1

Divide and Conquer

Divide: We reduce a problem to several subproblems.

 Typically, each sub-problem is at most a constant c < 1 fraction of the

size of the original problem

Conquer: Recursively solve each

 subproblem

Combine: Merge the solutions

Example:

• Mergesort

Counting inversions

4

Music site tries to match your song preferences with others.

• You rank n songs.

• Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

• My rank: 1, 2, …, n.

• Your rank: a1, a2, …, an.

• Songs i and j inverted if i < j, but ai > aj.

You

Me

1 43 2 5

1 32 4 5

Songs

Counting Inversions

Inversions

3-2, 4-2

Brute force: check all (n2) pairs i and j.

5

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide: O(1).

Conquer: 2T(n / 2)

Combine: ???9 blue-green inversions

5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

Divide-and-conquer.

• Divide: separate list into two pieces.

• Conquer: recursively count inversions in each half.

• Combine: count inversions where ai and aj are in different halves,

and return sum of three quantities.

Counting Inversions: Divide-and-Conquer

Enumerate all blue-green

pairs takes O(n2) time

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Counting Inversions: Combine
Combine: count blue-green inversions

• Assume each half is sorted.

• Count inversions where ai and aj are in different halves.

Combine:

• Sort two halves.

• Count inversions where ai and aj are in different halves.

Count: O(n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

6 3 2 2 0 0

𝑂 𝑛 log 𝑛 2

time

7

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Counting Inversions: Combine
Combine: count blue-green inversions

• Assume each half is sorted.

• Count inversions where ai and aj are in different halves.

• Merge two sorted halves into sorted whole.

Count: O(n)

Merge: O(n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

T(n) £ T n /2ë û() + T n /2é ù() + O(n) Þ T(n) = O(n log n)

6 3 2 2 0 0

to maintain sorted invariant

8

Counting Inversions: Implementation
Pre-condition. [Merge-and-Count] A and B are sorted.

Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {

 if list L has one element

 return 0 and the list L

 Divide the list into two halves A and B

 (rA, A)  Sort-and-Count(A)

 (rB, B)  Sort-and-Count(B)

 (r, L)  Merge-and-Count(A, B)

 return r = rA + rB + r and the sorted list L

}

9

Lesson
Sometimes, it is useful to redefine the problem to make the

recursion work

In the counting inversions problem

• The combine step becomes easier if two halves are sorted

• So, we redefine the problem (as well as the subproblems) as

finding the number of inversions and sorting the input

Master Theorem

Master Theorem

Suppose 𝑇 𝑛 = 𝑎 𝑇
𝑛

𝑏
+ 𝑐𝑛𝑘 for all 𝑛 > 𝑏. Then,

• If 𝑎 < 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛𝑘

• If 𝑎 = 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛𝑘log 𝑛

• If 𝑎 > 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛log𝑏𝑎

Works even if it is
𝑛

𝑏
 instead of

𝑛

𝑏
.

We also need 𝑎 ≥ 1, 𝑏 > 1 , 𝑘 ≥ 0 and 𝑇 𝑛 = 𝑂(1) for 𝑛 ≤ 𝑏.

c: absolute constant

Question

Consider the following recurrence. Which case of the master

theorem?

• A. 𝑇 𝑛 = Θ 𝑛

• B. 𝑇 𝑛 = Θ 𝑛log 𝑛

• C. 𝑇 𝑛 = Θ 𝑛2

• D. Master theorem not applicable

𝑇 𝑛 =

0 if 𝑛 ≤ 1

𝑇
𝑛

5
+ 𝑇 𝑛 − 3

𝑛

10
+

11

5
𝑛 if 𝑛 > 1

Akra–Bazzi theorem

Wiki!

Master Theorem

Suppose 𝑇 𝑛 = 𝑎 𝑇
𝑛

𝑏
+ 𝑐𝑛𝑘 for

all 𝑛 > 𝑏.

𝑇 𝑛 =

Θ 𝑛𝑘 if 𝑎 < 𝑏𝑘

Θ 𝑛𝑘 log 𝑛 if 𝑎 = 𝑏𝑘

Θ(𝑛log𝑏 𝑎) if 𝑎 > 𝑏𝑘

How to use master theorem?

For a divide and conquer algorithm

• a: number of subproblems

• b: ratio of problem size / subproblem size

• c⋅nk: running time of divide and combine step

We have recurrence 𝑇 𝑛 = 𝑎 𝑇
𝑛

𝑏
+ 𝑐𝑛𝑘 for all 𝑛 > 𝑏.

Example: Mergesort have two subproblems of half size of

the original problem, and the cost of divide and combine

step is O(n), so T(n) = 2 T(n / 2) + c n, which implies T(n) =

Θ(n log n)

Understand Master Theorem

𝑇 𝑛 = 𝑎𝑇(𝑛/𝑏) + 𝑐𝑛𝑘

𝑎
𝑛

Problem size

𝑛/𝑏

𝑛/𝑏2

𝑏

1

probs

𝑎2

𝑎

1

𝑎𝑑

cost

𝑐𝑛𝑘

𝑎 ⋅ 𝑐 𝑛/𝑏 𝑘

𝑎2 ⋅ 𝑐 𝑛/𝑏2 𝑘

𝑎𝑘 ⋅ 𝑐 𝑛/𝑏𝑘 𝑘

𝑇 𝑛 = ෍
𝑖=0

𝑑=log𝑏 𝑛

𝑎𝑖𝑐
𝑛

𝑏𝑖

𝑘

Understand Master Theorem

Suppose 𝑇 𝑛 = 𝑎 𝑇
𝑛

𝑏
+ 𝑐𝑛𝑘 for all 𝑛 > 𝑏. Then,

• If 𝑎 < 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛𝑘

• If 𝑎 = 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛𝑘log 𝑛

• If 𝑎 > 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛log𝑏𝑎

of problems increases slower

than the decreases of cost.

Top term dominates.

of problems increases faster

than the decreases of cost

Bottom term dominates.

𝑇 𝑛 = ෍
𝑖=0

𝑑=log𝑏 𝑛

𝑎𝑖𝑐
𝑛

𝑏𝑖

𝑘

	Slide 1: CS 401
	Slide 2: Divide and Conquer
	Slide 3
	Slide 4: Counting Inversions
	Slide 5
	Slide 6: Counting Inversions: Combine
	Slide 7: Counting Inversions: Combine
	Slide 8: Counting Inversions: Implementation
	Slide 9: Lesson
	Slide 10: Master Theorem
	Slide 11: Master Theorem
	Slide 12: Question
	Slide 13: How to use master theorem?
	Slide 14: Understand Master Theorem
	Slide 15: Understand Master Theorem

