CS 401

Divide and Conquer

Xiaorul Sun

Divide and Conquer

Divide: We reduce a problem to several subproblems.

Typically, each sub-problem is at most a constant ¢ < 1 fraction of the
size of the original problem

Conquer: Recursively solve each
subproblem

Combine: Merge the solutions

Example:
* Mergesort

Counting Inversions

Counting Inversions

Music site tries to match your song preferences with others.
* You rank n songs.
» Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
« Myrank: 1,2, ..., n.

 Yourrank: a;, a,, ..., a,.

« Songsiandjinverted if i <j, but a; > a;.

Inversions
3-2,4-2

Brute force: check all ®(n?) pairs i and j.

Counting Inversions: Divide-and-Conguer

Divide-and-conquer.

Divide: separate list into two pieces.
Conqguer: recursively count inversions in each half.

Combine: count inversions where a; and a; are in different halves,
and return sum of three quantities.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).
DODDEE OOENEE o oo
5 blue-blue inversions 8 green-green inversions
9 blue-green inversions Combine: 277

5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Enumerate all blue-green

Total=5+8+9=22 pairs takes O(n?) time

Counting Inversions: Combine

Combine: count blue-green inversions
« Assume each half is sorted.
« Count inversions where a; and g are in different halves.

3 17 o ¢ ia o 2 i Lo 17 23 5
6 3 2 2 0 O
13 blue-green inversions: 6 +3+2+2+0+0

2 3 7 10 11 14 16 17 18 19 23 25 Count: O(n)

Combine: 0(n(logn)?)

/ time
 Sort two halves.

« Count inversions where a; and g are in different halves.

Counting Inversions: Combine

Combine: count blue-green inversions

« Assume each half is sorted.

« Count inversions where a; and g are in different halves.
« Merge two sorted halves into sorted whole.

to maintain sorted invariant

IEEDDE BEDEED
6 3 2 2 0 0
13 blue-green inversions: 6 +3+2+2+0+0 Count: O(n)

2 3 7 10 11 14 16 17 18 19 23 25 Merge: O(n)

T(n) £ T(én/20)+T(én/2l])+O(n) P T(n)=0(nlogn)

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Lesson

Sometimes, it is useful to redefine the problem to make the
recursion work

In the counting inversions problem
« The combine step becomes easier if two halves are sorted

« So, we redefine the problem (as well as the subproblems) as
finding the number of inversions and sorting the input

Master Theorem

Master Theorem

Suppose T(n) =aT (%) + cn® foralln > b. Then,

c: absolute constant

» If a < b* then T(n) = 6(nk)
e Ifa=>b*thenT(n) = @(nklog n)

« If a > b* then T(n) = 6(n'°8»4)
Works even if it is m instead of %.
Wealsoneeda=>1,b>1,k=>0and T(n) =0(1) forn < b.

Question

Consider the following recurrence. Which case of the master
theorem?

(0 ifn <1

T(n) =+

r([E]) + (n-3[) +5n ifn>1
Master Theorem
Suppose T(n) = aT (g) + cnk for

\

* A T(n) =06(n) alln > b.

« B.T(n) =0(nlogn) (0(n*) ifa < b*

e C. T(Tl) — @(le) T(n) = {0(n*logn) ifa= bk
L O(n'°8» 2) ifa > b¥

D. Master theorem not applicable

Akra—Bazzi theorem
Wiki!

How to use master theorem?

For a divide and conguer algorithm

a: number of subproblems
b: ratio of problem size / subproblem size
c-nX: running time of divide and combine step

We have recurrence T(n) = aT (%) + cn® foralln > b.

Example: Mergesort have two subproblems of half size of
the original problem, and the cost of divide and combine
step is O(n), so T(n) =2 T(n/ 2) + ¢ n, which implies T(n) =
O(n log n)

Understand Master Theorem

Problem size T(n) = aT(n/b) + cn* #probs cost

I 0 aLies 1 cnk
2 ..O .. Q‘/. k
2 a a-c(n/b)
S R
p— & - ¢ @ - . 2 2\ Kk
I o ¢ o o o o’ a“-c(n/b*)
h@ :: "‘o‘ :: E "‘0‘
o - e o o

S, S, k

o o o e o o gl at: C(Tl/bk)

Understand Master Theorem

Suppose T(n) =aT (%) + cn® foralln > b. Then,

of problems increases slower
than the decreases of cost.
Top term dominates.

» If a < b* then T(n) = 6(nk)
e Ifa=b*thenT(n) = @(nklog n)

of problems increases faster
than the decreases of cost
Bottom term dominates.

e Ifa>b*thenT(n) = @(nlogba)

	Slide 1: CS 401
	Slide 2: Divide and Conquer
	Slide 3
	Slide 4: Counting Inversions
	Slide 5
	Slide 6: Counting Inversions: Combine
	Slide 7: Counting Inversions: Combine
	Slide 8: Counting Inversions: Implementation
	Slide 9: Lesson
	Slide 10: Master Theorem
	Slide 11: Master Theorem
	Slide 12: Question
	Slide 13: How to use master theorem?
	Slide 14: Understand Master Theorem
	Slide 15: Understand Master Theorem

