
CS 401: Computer
Algorithm I

Divide and Conquer
Xiaorui Sun

1

2

Divide and Conquer

Divide and Conquer
Divide: We reduce a problem to several subproblems.
Typically, each sub-problem is
 at most a constant c < 1 fraction of
 the size of the original problem

Conquer: Recursively solve each
 subproblem
Combine: Merge the solutions

Examples:
• Mergesort, Binary Search, Strassen’s Algorithm,

Lo
g

n
le

ve
ls

n

n/2n/2

n/4

Mergesort

Sorting. Given n elements, rearrange in ascending order.

5

Obvious sorting applications.
List files in a directory.
Organize a playlist.
List names in address book.
Display Google PageRank
results.

Problems become easier once
sorted.

Find the median.
Greedy algorithms.
Find the closest pair.
Binary search in a database.
Identify statistical outliers.
Find duplicates in a mailing list.

Non-obvious sorting applications.
Data compression.
Computer graphics.
Interval scheduling.
Computational biology.
Minimum spanning tree.
Supply chain management.
Simulate a system of particles.
Book recommendations on
Amazon.
Load balancing on a parallel
computer.
. . .

Sorting

6

Mergesort
Mergesort
• Divide array into two halves.
• Recursively sort each half.
• Merge two halves to make sorted whole.

merge

sort

divide

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

O(n)

2T(n/2)

O(1)

7

Merging
Merging: Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?
• Linear number of comparisons.
• Use auxiliary array.

A G L O R H I M S T

A G H I

Merge.
! Keep track of smallest element in each sorted half.
! Insert smallest of two elements into auxiliary array.
! Repeat until done.

8

auxiliary array

A G L O R H I M S T

Merging

A G H I

9

auxiliary array

smallest smallest

A G L O R H I M S T

Merging

Merge.
! Keep track of smallest element in each sorted half.
! Insert smallest of two elements into auxiliary array.
! Repeat until done.

A

10

auxiliary array

smallest smallest

A G L O R H I M S T

A

Merging

Merge.
! Keep track of smallest element in each sorted half.
! Insert smallest of two elements into auxiliary array.
! Repeat until done.

G

11

auxiliary array

smallest smallest

A G L O R H I M S T

A G

Merging

Merge.
! Keep track of smallest element in each sorted half.
! Insert smallest of two elements into auxiliary array.
! Repeat until done.

H

12

auxiliary array

smallest smallest

A G L O R H I M S T

A G H

Merging

Merge.
! Keep track of smallest element in each sorted half.
! Insert smallest of two elements into auxiliary array.
! Repeat until done.

I

13

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I

Merging

Merge.
! Keep track of smallest element in each sorted half.
! Insert smallest of two elements into auxiliary array.
! Repeat until done.

L

14

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L

Merging

Merge.
! Keep track of smallest element in each sorted half.
! Insert smallest of two elements into auxiliary array.
! Repeat until done.

M

15

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L M

Merging

Merge.
! Keep track of smallest element in each sorted half.
! Insert smallest of two elements into auxiliary array.
! Repeat until done.

O

16

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L M O

Merging

Merge.
! Keep track of smallest element in each sorted half.
! Insert smallest of two elements into auxiliary array.
! Repeat until done.

R

17

auxiliary array

first half
exhausted smallest

A G L O R H I M S T

A G H I L M O R

Merging

Merge.
! Keep track of smallest element in each sorted half.
! Insert smallest of two elements into auxiliary array.
! Repeat until done.

S

18

auxiliary array

first half
exhausted smallest

A G L O R H I M S T

A G H I L M O R S

Merging

Merge.
! Keep track of smallest element in each sorted half.
! Insert smallest of two elements into auxiliary array.
! Repeat until done.

T

19

auxiliary array

first half
exhausted

second half
exhausted

A G L O R H I M S T

A G H I L M O R S T

Merging

Merge.
! Keep track of smallest element in each sorted half.
! Insert smallest of two elements into auxiliary array.
! Repeat until done.

20

A Useful Recurrence Relation
Def. T(n) = number of comparisons to mergesort an input of
size n.

Mergesort recurrence.

Solution. T(n) = O(n log2 n).

€

T(n) ≤

 0 if n =1
T n /2# $()
solve left half
! " # $ #

+ T n /2% &()
solve right half
! " # $ #

+ n
merging
% otherwise

'

(
)

*
)

Why?
We will discuss the solution of
recurrence functions later

21

Summary
Divide-and-Conquer
• Divide: Divide problem in to subproblems.

• Subproblem is at most a constant fraction of the original problem.

• Conquer: Recursively solve each subproblem.
• Combine: Merge solutions of subproblems to the solution of

the original problem

Mergesort
• Divide array into two halves.
• Merge two halves to make sorted whole.

Counting inversions

23

Music site tries to match your song preferences with others.
• You rank n songs.
• Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
• My rank: 1, 2, …, n.
• Your rank: a1, a2, …, an.
• Songs i and j inverted if i < j, but ai > aj.

You

Me

1 43 2 5

1 32 4 5

Songs

Counting Inversions

Inversions
3-2, 4-2

Brute force: check all Q(n2) pairs i and j.

24

Applications
Applications
• Voting theory.
• Collaborative filtering.
• Measuring the "sortedness" of an array.
• Genomic distance between two gene sequences.
• Sensitivity analysis of Google's ranking function.
• Rank aggregation for meta-searching on the Web.
• Nonparametric statistics (e.g., Kendall's Tau distance).

25

Counting Inversions: Divide-and-Conquer

4 8 10 21 5 12 11 3 76 9

Divide-and-conquer.

26

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

Divide: O(1).

Counting Inversions: Divide-and-Conquer
Divide-and-conquer.
• Divide: separate list into two pieces.

27

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide: O(1).

Conquer: 2T(n / 2)

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

Divide-and-conquer.
• Divide: separate list into two pieces.
• Conquer: recursively count inversions in each half.

Counting Inversions: Divide-and-Conquer

28

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide: O(1).

Conquer: 2T(n / 2)

Combine: ???9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

Divide-and-conquer.
• Divide: separate list into two pieces.
• Conquer: recursively count inversions in each half.
• Combine: count inversions where ai and aj are in different halves,

and return sum of three quantities.

Counting Inversions: Divide-and-Conquer

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Counting Inversions: Combine
Combine: count blue-green inversions
• Assume each half is sorted.
• Count inversions where ai and aj are in different halves.

Combine:
• Sort two halves.
• Count inversions where ai and aj are in different halves.

Count: O(n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

6 3 2 2 0 0

𝑂 𝑛 log 𝑛 !
time

30

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Counting Inversions: Combine
Combine: count blue-green inversions
• Assume each half is sorted.
• Count inversions where ai and aj are in different halves.
• Merge two sorted halves into sorted whole.

Count: O(n)

Merge: O(n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

€

T(n) ≤ T n /2# $() + T n /2% &() + O(n) ⇒ T(n) = O(n log n)

6 3 2 2 0 0

to maintain sorted invariant

31

Counting Inversions: Implementation
Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
 if list L has one element
 return 0 and the list L

 Divide the list into two halves A and B
 (rA, A) ¬ Sort-and-Count(A)
 (rB, B) ¬ Sort-and-Count(B)
 (r, L) ¬ Merge-and-Count(A, B)

 return r = rA + rB + r and the sorted list L
}

32

Lesson
Sometimes, it is useful to redefine the problem to make the
recursion work

In the counting inversions problem
• The merge step becomes easier if two halves are sorted
• So, we redefine the problem (as well as the subproblems) as

finding the number of inversions and sorting the input

