
CS 401

Divide and Conquer

Xiaorui Sun

1

Stuff

Midterm grade will be released this afternoon

A course questionnaire sent to you this morning

• Let me know if you have any suggestions/concerns

Master Theorem

Master Theorem

Suppose 𝑇 𝑛 = 𝑎 𝑇
𝑛

𝑏
+ 𝑐𝑛𝑘 for all 𝑛 > 𝑏. Then,

• If 𝑎 < 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛𝑘

• If 𝑎 = 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛𝑘log 𝑛

• If 𝑎 > 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛log𝑏𝑎

Works even if it is
𝑛

𝑏
 instead of

𝑛

𝑏
.

We also need 𝑎 ≥ 1, 𝑏 > 1 , 𝑘 ≥ 0 and 𝑇 𝑛 = 𝑂(1) for 𝑛 ≤ 𝑏.

c: absolute constant

Question

Consider the following recurrence. Which case of the master

theorem applies?

• A. 𝑇 𝑛 = Θ 𝑛log2 3 = 𝑂(𝑛1.585)

• B. 𝑇 𝑛 = Θ 𝑛log 𝑛

• C. 𝑇 𝑛 = Θ 𝑛

• D. Master theorem not applicable

𝑇 𝑛 = ൞
Θ 1 if 𝑛 = 1

3𝑇(𝑛/2) + Θ(𝑛) if 𝑛 > 1

Master Theorem

Suppose 𝑇 𝑛 = 𝑎 𝑇
𝑛

𝑏
+ 𝑐𝑛𝑘 for

all 𝑛 > 𝑏.

𝑇 𝑛 =

Θ 𝑛𝑘 if 𝑎 < 𝑏𝑘

Θ 𝑛𝑘 log 𝑛 if 𝑎 = 𝑏𝑘

Θ(𝑛log𝑏 𝑎) if 𝑎 > 𝑏𝑘

Question

Consider the following recurrence. Which case of the master

theorem?

• A. 𝑇 𝑛 = Θ 𝑛

• B. 𝑇 𝑛 = Θ 𝑛log 𝑛

• C. 𝑇 𝑛 = Θ 𝑛2

• D. Master theorem not applicable

𝑇 𝑛 =

0 if 𝑛 ≤ 1

𝑇
𝑛

5
+ 𝑇 𝑛 − 3

𝑛

10
+

11

5
𝑛 if 𝑛 > 1

Akra–Bazzi theorem

Wiki!

Master Theorem

Suppose 𝑇 𝑛 = 𝑎 𝑇
𝑛

𝑏
+ 𝑐𝑛𝑘 for

all 𝑛 > 𝑏.

𝑇 𝑛 =

Θ 𝑛𝑘 if 𝑎 < 𝑏𝑘

Θ 𝑛𝑘 log 𝑛 if 𝑎 = 𝑏𝑘

Θ(𝑛log𝑏 𝑎) if 𝑎 > 𝑏𝑘

How to use master theorem?

For a divide and conquer algorithm

• a: number of subproblems

• b: ratio of problem size / subproblem size

• c⋅nk: running time of divide and combine step

We have recurrence 𝑇 𝑛 = 𝑎 𝑇
𝑛

𝑏
+ 𝑐𝑛𝑘 for all 𝑛 > 𝑏.

Example: Mergesort have two subproblems of half size of

the original problem, and the cost of divide and combine

step is O(n), so T(n) = 2 T(n / 2) + c n, which implies T(n) =

Θ(n log n)

Understand Master Theorem

𝑇 𝑛 = 𝑎𝑇(𝑛/𝑏) + 𝑐𝑛𝑘

𝑎
𝑛

Problem size

𝑛/𝑏

𝑛/𝑏2

𝑏

1

probs

𝑎2

𝑎

1

𝑎𝑑

cost

𝑐𝑛𝑘

𝑎 ⋅ 𝑐 𝑛/𝑏 𝑘

𝑎2 ⋅ 𝑐 𝑛/𝑏2 𝑘

𝑎𝑘 ⋅ 𝑐 𝑛/𝑏𝑘 𝑘

𝑇 𝑛 =
𝑖=0

𝑑=log𝑏 𝑛

𝑎𝑖𝑐
𝑛

𝑏𝑖

𝑘

Understand Master Theorem

Suppose 𝑇 𝑛 = 𝑎 𝑇
𝑛

𝑏
+ 𝑐𝑛𝑘 for all 𝑛 > 𝑏. Then,

• If 𝑎 < 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛𝑘

• If 𝑎 = 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛𝑘log 𝑛

• If 𝑎 > 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛log𝑏𝑎

of problems increases slower

than the decreases of cost.

Top term dominates.

of problems increases faster

than the decreases of cost

Bottom term dominates.

𝑇 𝑛 =
𝑖=0

𝑑=log𝑏 𝑛

𝑎𝑖𝑐
𝑛

𝑏𝑖

𝑘

Binary Search

Search Algorithms

Search: Given an element and an array, is the element in the
array?

Search for 96: Yes

Search for 11: No

Naïve algorithm: Sequential search

• O(n) running time

Can we do better?

961472 97 33 5193 6 8410 45 95 256453

Let us try divide and conquer

Divide and conquer

• Divide: separate list into two pieces.

• Conquer: recursively find the required element in each half.

• Combine: return yes if any subproblem returns yes,
otherwise, no

961472 97 33 5193 6 8410 45 95 256453 Divide: O(1).

Conquer: 2T(n / 2)961472 97 33 5193 6 8410 45 95 256453

Combine: O(1)

T(n) = 2T(n/2) + O(1)

Search for 96: No Yes ⟹ Yes
Search for 11: No No ⟹ No

Let us try divide and conquer

Divide and conquer

• Divide: separate list into two pieces.

• Conquer: recursively find the required element in each half.

• Combine: return yes if any subproblem returns yes,
otherwise, no

961472 97 33 5193 6 8410 45 95 256453 Divide: O(1).

Conquer: 2T(n / 2)961472 97 33 5193 6 8410 45 95 256453

Combine: O(1)

Overall: O(n)Not better than sequential search

If no additional condition, O(n) is the best to hope

Search for 96: No Yes ⟹ Yes
Search for 11: No No ⟹ No

Let us try divide and conquer

Assume the array is sorted

• Divide: separate list into two pieces.

• Conquer: recursively find the required element in each half.

• Combine: return yes if any subproblem returns yes,
otherwise, no

961472 97 33 5193 6 8410 45 95 256453 Divide: O(1).

Conquer: T(n / 2)641413 25 33 5143 53 8472 93 95 97966

Search for 96: No need to recurse on the first half
• Largest number in the first half < 96
Search for 11: No need to recurse on the second half
• Smallest number in the second half > 11

641413 25 33 5143 53 8472 93 95 97966

Key point: avoid recursively solve both

O(1) time to decide which subproblem to solve!

Combine: O(1)

Binary Search

No

Invariant. Algorithm maintains A[low] key A[high].

Binary search. Given key and sorted array A[], find index i

such that A[i] = key, or report that no such index exists.

Invariant. Algorithm maintains A[low] key A[high].

Ex. Binary search for 33.

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

Binary Search

low high

Binary Search

Binary search. Given key and sorted array A[], find index i

such that A[i] = key, or report that no such index exists.

Invariant. Algorithm maintains A[low] key A[high].

Ex. Binary search for 33.

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

low highmid

Binary Search

Binary search. Given key and sorted array A[], find index i

such that A[i] = key, or report that no such index exists.

Invariant. Algorithm maintains A[low] key A[high].

Ex. Binary search for 33.

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

low high

Binary Search

Binary search. Given key and sorted array A[], find index i

such that A[i] = key, or report that no such index exists.

Invariant. Algorithm maintains A[low] key A[high].

Ex. Binary search for 33.

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

low mid high

Binary Search

Binary search. Given key and sorted array A[], find index i

such that A[i] = key, or report that no such index exists.

Invariant. Algorithm maintains A[low] key A[high].

Ex. Binary search for 33.

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

low high

Binary Search

Binary search. Given key and sorted array A[], find index i

such that A[i] = key, or report that no such index exists.

Invariant. Algorithm maintains A[low] key A[high].

Ex. Binary search for 33.

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

low highmid

Binary Search

Binary search. Given key and sorted array A[], find index i

such that A[i] = key, or report that no such index exists.

Invariant. Algorithm maintains A[low] key A[high].

Ex. Binary search for 33.

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

low

high

Binary Search

Binary search. Given key and sorted array A[], find index i

such that A[i] = key, or report that no such index exists.

Invariant. Algorithm maintains A[low] key A[high].

Ex. Binary search for 33.

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

low

high

mid

Binary Search

Binary search. Given key and sorted array A[], find index i

such that A[i] = key, or report that no such index exists.

Invariant. Algorithm maintains A[low] key A[high].

Ex. Binary search for 33.

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

low

high

mid

Binary Search

Binary search. Given key and sorted array A[], find index i

such that A[i] = key, or report that no such index exists.

Invariant. Algorithm maintains A[low] key A[high].

Ex. Binary search for 47.

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

low highmid

Binary Search

Binary search. Given key and sorted array A[], find index i

such that A[i] = key, or report that no such index exists.

Invariant. Algorithm maintains A[low] key A[high].

Ex. Binary search for 47.

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

low high

Binary Search

Binary search. Given key and sorted array A[], find index i

such that A[i] = key, or report that no such index exists.

Invariant. Algorithm maintains A[low] key A[high].

Ex. Binary search for 47.

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

low mid high

Binary Search

Binary search. Given key and sorted array A[], find index i

such that A[i] = key, or report that no such index exists.

Invariant. Algorithm maintains A[low] key A[high].

Ex. Binary search for 47.

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

low high

Binary Search

Binary search. Given key and sorted array A[], find index i

such that A[i] = key, or report that no such index exists.

Invariant. Algorithm maintains A[low] key A[high].

Ex. Binary search for 47.

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

low highmid

Binary Search

Binary search. Given key and sorted array A[], find index i

such that A[i] = key, or report that no such index exists.

Invariant. Algorithm maintains A[low] key A[high].

Ex. Binary search for 47.

821 3 4 65 7 109 11 12 14130

641413 25 5133 43 53 8472 93 95 97966

low

high

Binary Search

Binary search. Given key and sorted array A[], find index i

such that A[i] = key, or report that no such index exists.

Invariant. Algorithm maintains A[low] key A[high].

Ex. Binary search for 47.

821 3 4 65 7 109 11 12 14130

641413 25 5133 43 53 8472 93 95 97966

low

high

mid

Binary Search

Binary search. Given key and sorted array A[], find index i

such that A[i] = key, or report that no such index exists.

Invariant. Algorithm maintains A[low] key A[high].

Ex. Binary search for 47.

821 3 4 65 7 109 11 12 14130

641413 25 5133 43 53 8472 93 95 97966

high low

47 is not in the array

Binary Search

Binary search running time

𝑇 𝑛 = 𝑇
𝑛

2
+ 𝑂(1)

⟹ 𝑇(𝑛) = 𝑂(log 𝑛)

Lesson: Additional structure (sorted array) can break the usual
lower bound

	Slide 1: CS 401
	Slide 2: Stuff
	Slide 3: Master Theorem
	Slide 4: Master Theorem
	Slide 5: Question
	Slide 6: Question
	Slide 7: How to use master theorem?
	Slide 8: Understand Master Theorem
	Slide 9: Understand Master Theorem
	Slide 10: Binary Search
	Slide 11: Search Algorithms
	Slide 12: Let us try divide and conquer
	Slide 13: Let us try divide and conquer
	Slide 14: Let us try divide and conquer
	Slide 15: Binary Search
	Slide 16: Binary Search
	Slide 17: Binary Search
	Slide 18: Binary Search
	Slide 19: Binary Search
	Slide 20: Binary Search
	Slide 21: Binary Search
	Slide 22: Binary Search
	Slide 23: Binary Search
	Slide 24: Binary Search
	Slide 25: Binary Search
	Slide 26: Binary Search
	Slide 27: Binary Search
	Slide 28: Binary Search
	Slide 29: Binary Search
	Slide 30: Binary Search
	Slide 31: Binary Search
	Slide 32: Binary Search
	Slide 33: Binary Search

