CS 401

Divide and Conquer

Xiaorul Sun



Stuff

Midterm grade will be released this afternoon

A course guestionnaire sent to you this morning
« Let me know if you have any suggestions/concerns



Master Theorem



Master Theorem

Suppose T(n) =aT (%) + cn® foralln > b. Then,

c: absolute constant

» If a < b* then T(n) = 6(nk)
e Ifa=>b*thenT(n) = @(nklog n)

« If a > b* then T(n) = 6(n'°8»4)
Works even if it is m instead of %.
Wealsoneeda=>1,b>1,k=>0and T(n) =0(1) forn < b.



Question

Consider the following recurrence. Which case of the master
theorem applies?

(0(1) ifn =1
T(n) =+

k3T([n/2]) +0(n) ifn>1

Master Theorem
Suppose T(n) = aT (g) + cnk for

A. T(’n) = @(nlogz 3) — 0(n1.585)

alln > b.
« B.T(n) =0(nlogn) (0(n*) ifa < b¥
. — T(n) = {0(n*logn) ifa= bk
C.T(n) = 0(n) oo ey  ita > bt

D. Master theorem not applicable



Question

Consider the following recurrence. Which case of the master
theorem?

(0 ifn <1

T(n) =+

r([E]) + (n-3[) +5n ifn>1
Master Theorem
Suppose T(n) = aT (g) + cnk for

\

* A T(n) =06(n) alln > b.

« B.T(n) =0(nlogn) (0(n*) ifa < b*

e C. T(Tl) — @(le) T(n) = {0(n*logn) ifa= bk
L O(n'°8» 2)  ifa > b¥

D. Master theorem not applicable

Akra—Bazzi theorem
Wiki!



How to use master theorem?

For a divide and conguer algorithm

a: number of subproblems
b: ratio of problem size / subproblem size
c-nX: running time of divide and combine step

We have recurrence T(n) = aT (%) + cn® foralln > b.

Example: Mergesort have two subproblems of half size of
the original problem, and the cost of divide and combine
step is O(n), so T(n) =2 T(n/ 2) + ¢ n, which implies T(n) =
O(n log n)



Understand Master Theorem

Problem size T(n) = aT(n/b) + cn* #probs cost
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Understand Master Theorem

Suppose T(n) =aT (%) + cn® foralln > b. Then,

# of problems increases slower
than the decreases of cost.
Top term dominates.

» If a < b* then T(n) = 6(nk)
e Ifa=b*thenT(n) = @(nklog n)

# of problems increases faster
than the decreases of cost
Bottom term dominates.

e Ifa>b*thenT(n) = @(nlogba)



Binary Search



Search Algorithms

Search: Given an element and an array, is the element in the
array?

53 72 14 97 33 093 51 6 96 10 84 45 095 64 25

Search for 96: Yes
Search for 11: No

Naive algorithm: Sequential search
* O(Nn) running time

Can we do better?



Let us try divide and conquer

Divide and conquer
* Divide: separate list into two pieces.
* Conquer: recursively find the required element in each half.

 Combine: return yes if any subproblem returns yes,
otherwise, no

53 72 14 97 33 093 51 6 96 10 84 45 095 64 25 Divide: O(1).

DEDDNORN ORCnnaE -

Search for 96: No
Combine: O(1
Search for 11: No No == No ombine: O(1)

T(n) = 2T(n/2) + O(1)



Let us try divide and conquer

Divide and conquer
* Divide: separate list into two pieces.
* Conquer: recursively find the required element in each half.

 Combine: return yes if any subproblem returns yes,
otherwise, no

)3 51 6 96 10 84 45 095 64 25 Divide: O(1).

- DEOEROE - -

Combine: O(1)

No - No

Not better than sequential search Overall: O(n)

If no additional condition, O(n) is the best to hope



Let us try divide and conquer

Assume the array is sorted
* Divide: separate list into two pieces.

* Conquer: Key point: avoid recursively solve both

 Combine: return yes if any subproblem returns yes,
otherwise, no

6 13 14 25 33 43 51 53 64 72 84 093 95 96 97 Divide: O(1).

DEDEENEE DEDEnEE -

Search for 96: No need to recurse on the first half Combine: O(1)
e Largest number in the first half <96

Search for 11: No need to recurse on the second half

* Smallest number in the second half > 11

O(1) time to decide which subproblem to solve!



Binary Search

Invariant. Algorithm maintains A[1ow] < key < A[high].

BinarySearch(A, low, high, key)

if high < low:
return No
mid « | low + bEtlon |
if key = Almid]:
return mid
else if key < A[mid]:
return BinarySearch(A, low, mid — 1, key)
else:
return BinarySearch(A, mid + 1, high, key)




Binary Search

Binary search. Given key and sorted array 211, find index i
such that a[i] = key, or report that no such index exists.

Invariant. Algorithm maintains A{1ow] <key < A[high].

Ex. Binary search for 33.

high
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Binary search. Given key and sorted array (1, find index i
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Binary Search

Binary search. Given key and sorted array (1, find index i
such that a[i] = key, or report that no such index exists.

Invariant. Algorithm maintains A{1ow] <key < A[high].

Ex. Binary search for 47.

P

high low

47 is not in the array



Binary Search

Binary search running time

n
T(n) =T (E) +0(1)
= T(n) = 0(logn)

Lesson: Additional structure (sorted array) can break the usual
lower bound
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