CS 401

Master Theorem / Closest Points

Xiaorui Sun

Divide and Conquer

Divide: We reduce a problem to several subproblems.
Typically, each sub-problem is at most a constant c < 1 fraction of the size of the original problem

Conquer: Recursively solve each subproblem

Combine: Merge the solutions

Examples:

- Mergesort, Counting Inversions, Binary Search

Master Theorem

Master Theorem

Suppose $T(n)=a T\left(\frac{n}{b}\right)+c n^{k}$ for all $n>b$. Then, c: absolute constant

- If $a<b^{k}$ then $T(n)=\Theta\left(n^{k}\right)$
- If $a=b^{k}$ then $T(n)=\Theta\left(n^{k} \log n\right)$
- If $a>b^{k}$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$

Works even if it is $\left\lceil\frac{n}{b}\right\rceil$ instead of $\frac{n}{b}$.
We also need $a \geq 1, b>1, k \geq 0$ and $T(n)=O(1)$ for $n \leq b$.

Question

Consider the following recurrence. Which case of the master theorem?

$$
T(n)= \begin{cases}0 & \text { if } n \leq 1 \\ T\left(\left\lfloor\frac{n}{5}\right\rceil\right)+T\left(n-3\left\lceil\frac{n}{10}\right\rceil\right)+\frac{11}{5} n & \text { if } n>1\end{cases}
$$

- A. $T(n)=\Theta(n)$
- B. $T(n)=\Theta(n \log n)$
- C. $T(n)=\Theta\left(n^{2}\right)$
- D. Master theorem not applicable

$$
\begin{gathered}
\text { Suppose } T(n)=a T\left(\frac{n}{b}\right)+c n^{k} \text { for } \\
\text { all } n>b . \\
T(n)= \begin{cases}\Theta\left(n^{k}\right) & \text { if } a<b^{k} \\
\Theta\left(n^{k} \log n\right) & \text { if } a=b^{k} \\
\Theta\left(n^{\log _{b} a}\right) & \text { if } a>b^{k}\end{cases}
\end{gathered}
$$

How to use master theorem?

For a divide and conquer algorithm

- a: number of subproblems
- b: ratio of problem size / subproblem size
- c. n^{k} : running time of divide and combine step

We have recurrence $T(n)=a T\left(\frac{n}{b}\right)+c n^{k}$ for all $n>b$.

Example: Mergesort have two subproblems of half size of the original problem, and the cost of divide and combine step is $O(n)$, so $T(n)=2 T(n / 2)+c n$, which implies $T(n)=$ $\Theta(n \log n)$

Understand Master Theorem

Problem size $T(n)=a T(n / b)+c n^{k} \quad$ \# probs cost

| n | | | | | | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |c^{1}

$$
T(n)=\sum_{i=0}^{d=\log _{b} n} a^{i} c\left(\frac{n}{b^{i}}\right)^{k}
$$

Understand Master Theorem

Suppose $T(n)=a T\left(\frac{n}{b}\right)+c n^{k}$ for all $n>b$. Then,

- If $a<b^{k}$ then $T(n)=\Theta\left(n^{k}\right)$
\# of problems increases slower than the decreases of cost. Top term dominates.
- If $a=b^{k}$ then $T(n)=\Theta\left(n^{k} \log n\right)$
- If $a>b^{k}$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
\# of problems increases faster than the decreases of cost Bottom term dominates.

$$
T(n)=\sum_{i=0}^{d=\log _{b} n} a^{i} c\left(\frac{n}{b^{i}}\right)^{k}
$$

A Useful Identity

Theorem: $1+x+x^{2}+\cdots+x^{d}=\frac{x^{d+1}-1}{x-1}$
Proof: Let $S=1+x+x^{2}+\cdots+x^{d}$
Then, $x S=x+x^{2}+\cdots+x^{d+1}$
So, $x S-S=x^{d+1}-1$
i.e., $S(x-1)=x^{d+1}-1$

Therefore, $S=\frac{x^{d+1}-1}{x-1}$
Corollary:

$$
1+x+x^{2}+\cdots+x^{d}= \begin{cases}O_{x}(1) & \text { if } x<1 \\ d+1 & \text { if } x=1 \\ O_{x}\left(x^{d+1}\right) & \text { if } x>1\end{cases}
$$

Solve: $T(n)=a T\left(\frac{n}{b}\right)+c n^{k}$

Corollary:

$$
1+x+x^{2}+\cdots+x^{d}= \begin{cases}\Theta_{x}(1) & \text { if } x<1 \\ \Theta(d) & \text { if } x=1 \\ \Theta_{x}\left(x^{d+1}\right) & \text { if } x>1\end{cases}
$$

Going back, we have

$$
T(n)=\sum_{i=0}^{d=\log _{b} n} a^{i} c\left(\frac{n}{b^{i}}\right)^{k}=c n^{k} \sum_{i=0}^{d=\log _{b} n}\left(\frac{a}{b^{k}}\right)^{i}
$$

Hence, we have

$$
T(n)=\Theta\left(n^{k}\right) \begin{cases}1 & \text { if } a<b^{k} \\ \log _{b} n & \text { if } a=b^{k} \\ \left(\frac{a}{b^{k}}\right)^{\log _{b} n} & \text { if } a>b^{k}\end{cases}
$$

Solve: $T(n)=a T\left(\frac{n}{b}\right)+c n^{k}$

$$
T(n)=\Theta\left(n^{k}\right) \begin{cases}1 & \text { if } a<b^{k} \\ \log _{b} n & \text { if } a=b^{k} \\ \left(\frac{a}{b^{k}}\right)^{\log _{b} n} & \text { if } a>b^{k}\end{cases}
$$

For $a<b^{k}$, we simply have $T(n)=\Theta\left(n^{k}\right)$.
For $a=b^{k}$, we have $T(n)=\Theta\left(n^{k} \log _{b} n\right)=\Theta\left(n^{k} \log n\right)$.
For $a>b^{k}$, we have $T(n)=\Theta\left(n^{k}\left(\frac{a}{b^{k}}\right)^{\log _{b} n}\right)=\Theta\left(n^{\log _{b} a}\right)$.

$$
\begin{aligned}
& b^{k \log _{b} n} \\
& =\left(b^{\log _{b} n}\right)^{k} \\
& =n^{k}
\end{aligned}
$$

$$
\begin{aligned}
& a^{\log _{b} n} \\
& =\left(b^{\log _{b} a}\right)^{\log _{b} n} \\
& =\left(b^{\log _{b} n}\right)^{\log _{b} a} \\
& =n^{\log _{b} a}
\end{aligned}
$$

Finding the Closest Pair of Points

Closest Pair of Points (1-dim)

Given n points, find the closest pair.

Brute force: Check all (${ }_{2}^{n}$) pairwise distances

1-dim case: II, 2, 4, I9, 4.8, 7, 8.2, I6, II.5, I3, I
find the closest pair

Fact: Closest pair is adjacent in ordered list
So, first sort, then scan adjacent pairs.
Time $O(n \log n)$ to sort, if needed, Plus $O(n)$ to scan adjacent pairs

Closest Pair of Points (2-dim)

Given n points in the plane, find a pair with smallest Euclidean distance between them.

Idea: make use of 1-dim algorithm (but not in a simple way)

Divide \& Conquer

Divide: draw vertical line L with $\approx n / 2$ points on each side.
Conquer: find closest pair on each side, recursively.
Combine to find closest pair overall

Return best solutions

Key Observation

Suppose δ is the minimum distance of all pairs in left/right of L.

$$
\delta=\min (12,21)=12
$$

Key Observation: suffices to consider points within δ of line L.
Almost the one-D problem again: Sort points in 2δ-strip by their y coordinate.

Almost 1D Problem

Partition each side of L into $\frac{\delta}{2} \times \frac{\delta}{2}$ squares
Claim: No two points lie in the same $\frac{\delta}{2} \times \frac{\delta}{2}$ box.
Proof: Such points would be within

$$
\sqrt{\left(\frac{\delta}{2}\right)^{2}+\left(\frac{\delta}{2}\right)^{2}}=\delta \sqrt{\frac{1}{2}} \approx 0.7 \delta<\delta
$$

Let s_{i} have the $i^{\text {th }}$ smallest y-coordinate among points in the 2δ-width-strip.

Claim: If $|i-j|>11$, then the distance between s_{i} and s_{j} is $>\delta$.
Proof: only 11 boxes within δ of $y\left(s_{i}\right)$.

Closest Pair (2 dimension)

```
Closest-Pair ( }\mp@subsup{p}{1}{},\mp@subsup{p}{2}{},\cdots,\mp@subsup{p}{n}{}) 
    if(n\leq2) return distance ( }\mp@subsup{p}{1}{},\mp@subsup{p}{2}{}
    Compute separation line L such that half the points
    are on one side and half on the other side.
    \delta
    \delta
    \delta}=\operatorname{min}(\mp@subsup{\delta}{1}{},\mp@subsup{\boldsymbol{\delta}}{2}{}
    Delete all points further than \delta from separation line L O(n)
    Sort remaining points p[1]...p[m] by y-coordinate.
    for i=1,2,\cdots,m
        for k = 1,2,\cdots,11
            if i+k\leqm
                \delta = min(\delta, distance(p[i], p[i+k]));
    return \delta.
}
```


Closest Pair Analysis

Running time?

$$
T(n) \leq\left\{\begin{array}{lr}
1 & \text { if } n \leq 2 \\
2 T\left(\frac{n}{2}\right)+O(n \log n) \quad \text { o.w. }
\end{array} \Rightarrow T(n)=O\left(n \log ^{2} n\right)\right.
$$

Can we do better?

Closest Pair (2 dimension) Improved

Closest-Pair $\left(p_{1}, p_{2}, \cdots, p_{n}\right)$ Assume: input sorted by x-coordinate ($\mathrm{O}(\mathrm{n} \log \mathrm{n}$) overhead initially)

Compute separation line L such that half the points are on one side and half on the other side.
$\left(\delta_{1}, Q_{1}\right)=$ Closest-Pair(left half)
$\left(\delta_{2}, Q_{2}\right)=$ Closest-Pair(right half)
$\delta \quad=\min \left(\delta_{1}, \boldsymbol{\delta}_{2}\right)$
$Q_{\text {sorted }}=$ merge $\left(Q_{1}, Q_{2}\right) \quad$ (merge sort it by y-coordinate)
Let S be points (ordered as $\boldsymbol{Q}_{\text {sorted }}$) that is δ from line L. $O(n)$
for $i=1,2, \cdots, m$

$$
\text { for } k=1,2, \cdots, 11
$$

if $i+k \leq m$
$\delta=\min (\delta, \operatorname{distance}(S[i], S[i+k])) ;$

Summary

Closest pair in 2-dimension: Given n points in the plane, find a pair with smallest Euclidean distance between them.

Brute Force: Check all pairs of points in $\Theta\left(n^{2}\right)$ time.

Divde and Conquer:

- Divide: draw vertical line L with $\approx n / 2$ points on each side.
- Conquer: find closest pair on each side, recursively.
- Combine to find closest pair overall

Exercise: Remove the assumption of "no two points have same x coordinate"?

