
CS 401

Master Theorem / Closest Points
Xiaorui Sun

1



Divide and Conquer 
Divide: We reduce a problem to several subproblems.
   Typically, each sub-problem is at most a constant c < 1 fraction of the 

size of the original problem

Conquer: Recursively solve each 
  subproblem

Combine: Merge the solutions

Examples:
• Mergesort, Counting Inversions, Binary Search 



Master Theorem



Master Theorem
Suppose 𝑇 𝑛 = 𝑎	𝑇 !

" + 𝑐𝑛#  for all 𝑛 > 𝑏. Then,

• If 𝑎 < 𝑏# then 𝑇 𝑛 = Θ 𝑛#

• If 𝑎 = 𝑏# then 𝑇 𝑛 = Θ 𝑛#log	𝑛

• If 𝑎 > 𝑏# then 𝑇 𝑛 = Θ 𝑛$%&!'

Works even if it is !
"

 instead of !
"
.

We also need 𝑎 ≥ 1, 𝑏 > 1	, 𝑘 ≥ 0 and 𝑇 𝑛 = 𝑂(1) for 𝑛 ≤ 𝑏.

c: absolute constant



Question
Consider the following recurrence. Which case of the master 
theorem?

• A. 𝑇 𝑛 = Θ 𝑛
• B. 𝑇 𝑛 = Θ 𝑛log	𝑛
• C. 𝑇 𝑛 = Θ 𝑛(

• D. Master theorem not applicable

𝑇 𝑛 =

0	 if	𝑛 ≤ 1

𝑇
𝑛
5

+ 	𝑇 𝑛 − 3
𝑛
10

+
11
5
𝑛 if	𝑛 > 1

	

Akra–Bazzi theorem
Wiki!

Master Theorem
Suppose 𝑇 𝑛 = 𝑎	𝑇 !

"
+ 𝑐𝑛#  for 

all 𝑛 > 𝑏. 

𝑇 𝑛 =
Θ 𝑛# 	 if	𝑎 < 𝑏#

Θ 𝑛# log 𝑛 	 if	𝑎 = 𝑏#

Θ(𝑛$%&! ')	 if	𝑎 > 𝑏#



How to use master theorem?
For a divide and conquer algorithm
• a: number of subproblems
• b: ratio of problem size / subproblem size
• c⋅nk: running time of divide and combine step

We have recurrence 𝑇 𝑛 = 𝑎	𝑇 !
" + 𝑐𝑛#  for all 𝑛 > 𝑏. 

Example: Mergesort have two subproblems of half size of 
the original problem, and the cost of divide and combine 
step is O(n), so T(n) = 2 T(n / 2) + c n, which implies T(n) = 
Θ(n log n)



Understand Master Theorem

𝑇 𝑛 = 𝑎𝑇(𝑛/𝑏) + 𝑐𝑛#

𝑎𝑛
Problem size

𝑛/𝑏

𝑛/𝑏0

𝑏

1

𝑑
=
lo
g !
𝑛	

# probs

𝑎2

𝑎

1

𝑎𝑑

cost
𝑐𝑛1

𝑎 ⋅ 𝑐 𝑛/𝑏 1

𝑎0 ⋅ 𝑐 𝑛/𝑏0 1

𝑎1 ⋅ 𝑐 𝑛/𝑏1
1

𝑇 𝑛 =$
!"#

$"%&'( (
𝑎!𝑐

𝑛
𝑏!

)



Understand Master Theorem
Suppose 𝑇 𝑛 = 𝑎	𝑇 !

" + 𝑐𝑛#  for all 𝑛 > 𝑏. Then,

• If 𝑎 < 𝑏# then 𝑇 𝑛 = Θ 𝑛#

• If 𝑎 = 𝑏# then 𝑇 𝑛 = Θ 𝑛#log	𝑛

• If 𝑎 > 𝑏# then 𝑇 𝑛 = Θ 𝑛$%&!'

# of problems increases slower
than the decreases of cost.

Top term dominates.

# of problems increases faster
than the decreases of cost

Bottom term dominates.

𝑇 𝑛 =$
!"#

$"%&'( (
𝑎!𝑐

𝑛
𝑏!

)



A Useful Identity

Theorem: 1 + 𝑥 + 𝑥( +⋯+ 𝑥< = ="#$>?
=>?

Proof: Let 𝑆 = 1 + 𝑥 + 𝑥( +⋯+ 𝑥<

Then, 𝑥𝑆 = 𝑥 + 𝑥( +⋯+ 𝑥<@?

So,  𝑥𝑆 − 𝑆 = 𝑥<@? − 1
i.e., 𝑆 𝑥 − 1 = 𝑥<@? − 1 

Therefore, 𝑆 = ="#$>?
=>?

Corollary:

1 + 𝑥 + 𝑥( +⋯+ 𝑥< = >
𝑂= 1 	 if	 𝑥 < 1
𝑑 + 1	 if	 𝑥 = 1
𝑂= 𝑥<@? 	 if	 𝑥 > 1

𝑂! means the hidden 
constant depends on 𝑥



Solve: 𝑇 𝑛 = 𝑎𝑇 !
"
+ 𝑐𝑛#

Corollary:

1 + 𝑥 + 𝑥( +⋯+ 𝑥< = >
Θ= 1 	 if	 𝑥 < 1
Θ 𝑑 	 if	 𝑥 = 1
Θ= 𝑥<@? 	 if	 𝑥 > 1

Going back, we have

𝑇 𝑛 =B
ABC

<B$%&! !
𝑎A𝑐

𝑛
𝑏A

#
= 𝑐𝑛#B

ABC

<B$%&! ! 𝑎
𝑏#

A

Hence, we have

𝑇 𝑛 = Θ 𝑛#
1	 if	𝑎 < 𝑏#
log" 𝑛 	 if	𝑎 = 𝑏#

𝑎
𝑏#

$%&! !
if	𝑎 > 𝑏#

	



Solve: 𝑇 𝑛 = 𝑎𝑇 !
"
+ 𝑐𝑛#

𝑇 𝑛 = Θ 𝑛#
1	 if	𝑎 < 𝑏#
log" 𝑛 	 if	𝑎 = 𝑏#

𝑎
𝑏#

$%&! !
if	𝑎 > 𝑏#

For 𝑎 < 𝑏#, we simply have 𝑇 𝑛 = Θ 𝑛# .
For 𝑎 = 𝑏#, we have 𝑇 𝑛 = Θ 𝑛# log" 𝑛 = Θ(𝑛# log 𝑛).

For 𝑎 > 𝑏#, we have 𝑇 𝑛 = Θ 𝑛# '
"%

$%&! !
= Θ(𝑛$%&! ').

𝑎$%&! !
= (𝑏$%&! ')$%&! !
= (𝑏$%&! !)$%&! '

 = 𝑛$%&! '

𝑏# $%&! !

 = 𝑏$%&! ! #

  = 𝑛#



Finding the Closest Pair of Points



Closest Pair of Points (1-dim)
Given 𝑛 points, find the closest pair.  

Brute force: Check all !
"  pairwise distances

1-dim case: 11, 2, 4, 19, 4.8, 7, 8.2, 16, 11.5, 13, 1 

find the closest pair

Fact: Closest pair is adjacent in ordered list
So, first sort, then scan adjacent pairs.

Time 𝑂(𝑛	log	𝑛) to sort, if needed, Plus 𝑂(𝑛) to scan adjacent 
pairs

1 2 4 4.8 7 8.2 11 11.5 13 16 19



Closest Pair of Points (2-dim)
Given 𝑛 points in the plane, find a pair with smallest 
Euclidean distance between them.

Idea: make use of 1-dim algorithm (but not in a simple way)

No single direction along which one 
can sort points to guarantee success! 



Divide & Conquer
Divide: draw vertical line 𝐿 with ≈ 𝑛/2 points on each side.

Conquer:  find closest pair on each side, recursively.
Combine to find closest pair overall

Return best solutions

12

21
8

L

How ?



Key Observation
Suppose 𝛿 is the minimum distance of all pairs in left/right of 𝐿.

𝛿 = min 12,21 = 12.
Key Observation: suffices to consider points within 𝛿 of line 𝐿.
Almost the one-D problem again: Sort points in 2𝛿-strip by their 𝑦 

coordinate. 

12

21

L

d=12

7

1

2

3

4
5

6



Almost 1D Problem
Partition each side of 𝐿 into "

#
× "
#
 squares

Claim: No two points lie in the same "
#
× "
#
 box.

Proof:  Such points would be within

*
+

+
+ *

+

+
= 𝛿 ,

+
≈ 0.7𝛿 < 𝛿

Let 𝑠$ have the 𝑖%& smallest 𝑦-coordinate 
among points in the 2𝛿-width-strip.

Claim:  If 𝑖 − 𝑗 > 11, then the distance 
between 𝑠$ and 𝑠' is > 𝛿.
Proof: only 11 boxes within 𝛿 of 𝑦(𝑠$). 

d

29
30

31

28

26

25

d

½d

½d

49

i

j

27

29

>
𝛿



Closest Pair (2 dimension)
Closest-Pair(𝒑𝟏, 𝒑𝟐, ⋯ , 𝒑𝒏) {
   if(𝒏 ≤ 𝟐) return distance(𝒑𝟏, 𝒑𝟐)

   Compute separation line 𝑳 such that half the points
   are on one side and half on the other side.

   𝜹𝟏 = Closest-Pair(left half)
   𝜹𝟐 = Closest-Pair(right half)
   𝜹  = min(𝜹𝟏, 𝜹𝟐)

   Delete all points further than d from separation line L

   Sort remaining points p[1]…p[m] by y-coordinate.

   for 𝒊 = 𝟏, 𝟐,⋯ ,𝒎
      for k = 𝟏, 𝟐,⋯ , 𝟏𝟏
      if 𝒊 + 𝒌 ≤ 𝒎
           d = min(d, distance(p[i], p[i+k]));
    
   return d.
}

𝑂(𝑛 log 𝑛)

𝑂(𝑛)

𝑂(1)

𝑂(𝑛 log 𝑛)

𝑂(𝑛)



Closest Pair Analysis
Running time?

𝑇 𝑛 ≤ E
1	 if	 𝑛 ≤ 2
2𝑇

𝑛
2
+ 𝑂(𝑛 log 𝑛) 	 o. w. ⇒ 𝑇 𝑛 = O(𝑛log(	𝑛)

Can we do better?



Closest Pair (2 dimension) Improved
Closest-Pair(𝒑𝟏, 𝒑𝟐, ⋯ , 𝒑𝒏) {
   if(𝒏 ≤ 𝟐) return distance(𝒑𝟏, 𝒑𝟐)

   Compute separation line 𝑳 such that half the points
   are on one side and half on the other side.

  (𝜹𝟏, 𝑸𝟏) = Closest-Pair(left half)
  (𝜹𝟐, 𝑸𝟐) = Closest-Pair(right half)
   𝜹     = min(𝜹𝟏, 𝜹𝟐)
      𝑸𝒔𝒐𝒓𝒕𝒆𝒅 = merge(𝑸𝟏, 𝑸𝟐)  (merge sort it by y-coordinate)

   Let 𝑺 be points (ordered as 𝑸𝒔𝒐𝒓𝒕𝒆𝒅) that is 𝜹 from line L.

   for 𝒊 = 𝟏, 𝟐,⋯ ,𝒎
      for k = 𝟏, 𝟐,⋯ , 𝟏𝟏
      if 𝒊 + 𝒌 ≤ 𝒎
           d = min(d, distance(S[i], S[i+k]));
    
   return d and 𝑸𝒔𝒐𝒓𝒕𝒆𝒅.
} 𝑇 𝑛 ≤ E

1	 if	 𝑛 = 1
2𝑇

𝑛
2
+ 𝑂 𝑛 	 o.w.

⇒ 𝑇 𝑛 = 𝑂(𝑛	log	𝑛)
Input sorted by 

y-coordinate

Assume: input sorted by x-coordinate
(O(n log n) overhead initially)

𝑂(1)

𝑂(𝑛)
𝑂(1)

𝑂(𝑛)

𝑂(𝑛)



Summary
Closest pair in 2-dimension: Given 𝑛 points in the plane, find 
a pair with smallest Euclidean distance between them.

Brute Force: Check all pairs of points in Θ(𝑛() time.

Divde and Conquer: 

• Divide: draw vertical line 𝐿 with ≈ 𝑛/2 points on each side.

• Conquer:  find closest pair on each side, recursively.
• Combine to find closest pair overall

Exercise: Remove the assumption of “no two points have same 𝑥 
coordinate”?


