
CS 401

Closest Points

Xiaorui Sun

1

Divide and Conquer

Divide: We reduce a problem to several subproblems.

Typically, each sub-problem is

 at most a constant c < 1 fraction of

 the size of the original problem

Conquer: Recursively solve each

 subproblem

Combine: Merge the solutions

Examples:

• Mergesort, Counting Inversions, Binary Search
Lo

g
n

 le
ve

ls

n

n/2n/2

n/4

Finding the Closest Pair of Points

Closest Pair of Points

Given 𝑛 points, find the closest pair.

Brute force: Check all n
2

 pairwise distances

1-dim case: 11, 2, 4, 19, 4.8, 7, 8.2, 16, 11.5, 13, 1

find the closest pair

Fact: Closest pair is adjacent in ordered list

So, first sort, then scan adjacent pairs.

Time 𝑂(𝑛 log 𝑛) to sort, if needed, Plus 𝑂(𝑛) to scan adjacent
pairs

1 2 4 4.8 7 8.2 11 11.5 13 16 19

Closest Pair of Points (2-dim)

Given 𝑛 points in the plane, find a pair with smallest

Euclidean distance between them.

Idea: make use of 1-dim algorithm (but not in a simple way)

No single direction along which one

can sort points to guarantee success!

Divide & Conquer

Divide: draw vertical line 𝐿 with ≈ 𝑛/2 points on each side.

Conquer: find closest pair on each side, recursively.

Combine to find closest pair overall

Return best solutions

12

21
8

L

How ?

Key Observation

Suppose 𝛿 is the minimum distance of all pairs in left/right of 𝐿.

𝛿 = min 12,21 = 12.

Key Observation: suffices to consider points within 𝛿 of line 𝐿.

Almost the one-D problem again: Sort points in 2𝛿-strip by their 𝑦

coordinate.

12

21

L

=12

7

1

2

3

4
5

6

Almost 1D Problem

Partition each side of 𝐿 into
𝛿

2
×

𝛿

2
 squares

Claim: No two points lie in the same
𝛿

2
×

𝛿

2
 box.

Proof: Such points would be within

𝛿

2

2
+

𝛿

2

2
= 𝛿

1

2
≈ 0.7𝛿 < 𝛿

Let 𝑠𝑖 have the 𝑖𝑡ℎ smallest 𝑦-coordinate

among points in the 2𝛿-width-strip.

Claim: If 𝑖 − 𝑗 > 11, then the distance

between 𝑠𝑖 and 𝑠𝑗 is > 𝛿.

Proof: only 11 boxes within 𝛿 of 𝑦(𝑠𝑖).

29

30

31

28

26

25

½

½

49

i

j

27

29

Closest Pair (2 dimension)
Closest-Pair(𝒑𝟏, 𝒑𝟐, ⋯ , 𝒑𝒏) {

 if(𝒏 ≤ 𝟐) return distance(𝒑𝟏, 𝒑𝟐)

 Compute separation line 𝑳 such that half the points
 are on one side and half on the other side.

 𝜹𝟏 = Closest-Pair(left half)

 𝜹𝟐 = Closest-Pair(right half)

 𝜹 = min(𝜹𝟏, 𝜹𝟐)

 Delete all points further than from separation line L

 Sort remaining points p[1]…p[m] by y-coordinate.

 for 𝒊 = 𝟏, 𝟐, ⋯ , 𝒎
 for k = 𝟏, 𝟐, ⋯ , 𝟏𝟏
 if 𝒊 + 𝒌 ≤ 𝒎
 = min(, distance(p[i], p[i+k]));

 return .

}

𝑂(𝑛 log 𝑛)

𝑂(𝑛)

𝑂(1)

𝑂(𝑛 log 𝑛)

𝑂(𝑛)

Closest Pair Analysis

Running time?

𝑇 𝑛 ≤ ቐ
1 if 𝑛 ≤ 2

2𝑇
𝑛

2
+ 𝑂(𝑛 log 𝑛) o. w.

⇒ 𝑇 𝑛 = O(𝑛log2 𝑛)

Can we do better?

Closest Pair (2 dimension) Improved
Closest-Pair(𝒑𝟏, 𝒑𝟐, ⋯ , 𝒑𝒏) {

 if(𝒏 ≤ 𝟐) return distance(𝒑𝟏, 𝒑𝟐)

 Compute separation line 𝑳 such that half the points
 are on one side and half on the other side.

 (𝜹𝟏, 𝑸𝟏) = Closest-Pair(left half)

 (𝜹𝟐, 𝑸𝟐) = Closest-Pair(right half)

 𝜹 = min(𝜹𝟏, 𝜹𝟐)

 𝑸𝒔𝒐𝒓𝒕𝒆𝒅 = merge(𝑸𝟏, 𝑸𝟐) (merge sort it by y-coordinate)

 Let 𝑺 be points (ordered as 𝑸𝒔𝒐𝒓𝒕𝒆𝒅) that is 𝜹 from line L.

 for 𝒊 = 𝟏, 𝟐, ⋯ , 𝒎
 for k = 𝟏, 𝟐, ⋯ , 𝟏𝟏
 if 𝒊 + 𝒌 ≤ 𝒎
 = min(, distance(S[i], S[i+k]));

 return and 𝑸𝒔𝒐𝒓𝒕𝒆𝒅.

} 𝑇 𝑛 ≤ ቐ
1 if 𝑛 = 1

2𝑇
𝑛

2
+ 𝑂 𝑛 o. w.

⇒ 𝑇 𝑛 = 𝑂(𝑛 log 𝑛)

Input sorted by

y-coordinate

Assume: input sorted by x-coordinate

(O(n log n) overhead initially)

𝑂(1)

𝑂(𝑛)
𝑂(1)

𝑂(𝑛)

𝑂(𝑛)

Summary

Closest pair in 2-dimension: Given 𝑛 points in the plane, find

a pair with smallest Euclidean distance between them.

Brute Force: Check all pairs of points in Θ(𝑛2) time.

Divide and Conquer:

• Divide: draw vertical line 𝐿 with ≈ 𝑛/2 points on each side.

• Conquer: find closest pair on each side, recursively.

• Combine to find closest pair overall

Exercise: Remove the assumption of “no two points have same 𝑥
coordinate”?

	Slide 1: CS 401
	Slide 2: Divide and Conquer
	Slide 3: Finding the Closest Pair of Points
	Slide 4: Closest Pair of Points
	Slide 5: Closest Pair of Points (2-dim)
	Slide 6: Divide & Conquer
	Slide 7: Key Observation
	Slide 8: Almost 1D Problem
	Slide 9: Closest Pair (2 dimension)
	Slide 10: Closest Pair Analysis
	Slide 11: Closest Pair (2 dimension) Improved
	Slide 12: Summary

