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Divide and Conquer 

Divide: We reduce a problem to several subproblems.

Typically, each sub-problem is 

   at most a constant c < 1 fraction of 

   the size of the original problem

Conquer: Recursively solve each 

  subproblem

Combine: Merge the solutions

Examples:

• Mergesort, Counting Inversions, Binary Search
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Finding the Closest Pair of Points



Closest Pair of Points

Given 𝑛 points, find the closest pair.  

Brute force: Check all n
2

 pairwise distances

1-dim case: 11, 2, 4, 19, 4.8, 7, 8.2, 16, 11.5, 13, 1 

find the closest pair

Fact: Closest pair is adjacent in ordered list

So, first sort, then scan adjacent pairs.

Time 𝑂(𝑛 log 𝑛) to sort, if needed, Plus 𝑂(𝑛) to scan adjacent 
pairs

1 2 4 4.8 7 8.2 11 11.5 13 16 19



Closest Pair of Points (2-dim)

Given 𝑛 points in the plane, find a pair with smallest 

Euclidean distance between them.

Idea: make use of 1-dim algorithm (but not in a simple way)

No single direction along which one 

can sort points to guarantee success! 



Divide & Conquer

Divide: draw vertical line 𝐿 with ≈ 𝑛/2 points on each side.

Conquer:  find closest pair on each side, recursively.

Combine to find closest pair overall

Return best solutions
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Key Observation

Suppose 𝛿 is the minimum distance of all pairs in left/right of 𝐿.

𝛿 = min 12,21 = 12.

Key Observation: suffices to consider points within 𝛿 of line 𝐿.

Almost the one-D problem again: Sort points in 2𝛿-strip by their 𝑦 

coordinate. 
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Almost 1D Problem

Partition each side of 𝐿 into 
𝛿

2
×

𝛿

2
 squares

Claim: No two points lie in the same 
𝛿

2
×

𝛿

2
 box.

Proof:  Such points would be within

𝛿

2

2
+

𝛿

2

2
= 𝛿

1

2
≈ 0.7𝛿 < 𝛿

Let 𝑠𝑖 have the 𝑖𝑡ℎ smallest 𝑦-coordinate 

among points in the 2𝛿-width-strip.

Claim:  If 𝑖 − 𝑗 > 11, then the distance 

between 𝑠𝑖 and 𝑠𝑗 is > 𝛿.

Proof: only 11 boxes within 𝛿 of 𝑦(𝑠𝑖). 
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Closest Pair (2 dimension)
Closest-Pair(𝒑𝟏, 𝒑𝟐, ⋯ , 𝒑𝒏) {

   if(𝒏 ≤ 𝟐) return distance(𝒑𝟏, 𝒑𝟐)

   Compute separation line 𝑳 such that half the points
   are on one side and half on the other side.

   𝜹𝟏 = Closest-Pair(left half)

   𝜹𝟐 = Closest-Pair(right half)

   𝜹  = min(𝜹𝟏, 𝜹𝟐)

   Delete all points further than  from separation line L

   Sort remaining points p[1]…p[m] by y-coordinate.

   for 𝒊 = 𝟏, 𝟐, ⋯ , 𝒎
      for k = 𝟏, 𝟐, ⋯ , 𝟏𝟏
      if 𝒊 + 𝒌 ≤ 𝒎
            = min(, distance(p[i], p[i+k]));

    

   return .

}

𝑂(𝑛 log 𝑛)

𝑂(𝑛)

𝑂(1)

𝑂(𝑛 log 𝑛)

𝑂(𝑛)



Closest Pair Analysis

Running time?

𝑇 𝑛 ≤ ቐ
1 if 𝑛 ≤ 2

2𝑇
𝑛

2
+ 𝑂(𝑛 log 𝑛) o. w.

⇒ 𝑇 𝑛 = O(𝑛log2 𝑛)

Can we do better?



Closest Pair (2 dimension) Improved
Closest-Pair(𝒑𝟏, 𝒑𝟐, ⋯ , 𝒑𝒏) {

   if(𝒏 ≤ 𝟐) return distance(𝒑𝟏, 𝒑𝟐)

   Compute separation line 𝑳 such that half the points
   are on one side and half on the other side.

  (𝜹𝟏, 𝑸𝟏) = Closest-Pair(left half)

  (𝜹𝟐, 𝑸𝟐) = Closest-Pair(right half)

   𝜹     = min(𝜹𝟏, 𝜹𝟐)

      𝑸𝒔𝒐𝒓𝒕𝒆𝒅 = merge(𝑸𝟏, 𝑸𝟐)  (merge sort it by y-coordinate)

   Let 𝑺 be points (ordered as 𝑸𝒔𝒐𝒓𝒕𝒆𝒅) that is 𝜹 from line L.

   for 𝒊 = 𝟏, 𝟐, ⋯ , 𝒎
      for k = 𝟏, 𝟐, ⋯ , 𝟏𝟏
      if 𝒊 + 𝒌 ≤ 𝒎
            = min(, distance(S[i], S[i+k]));

    

   return  and 𝑸𝒔𝒐𝒓𝒕𝒆𝒅.

} 𝑇 𝑛 ≤ ቐ
1 if 𝑛 = 1

2𝑇
𝑛

2
+ 𝑂 𝑛 o. w.

⇒ 𝑇 𝑛 = 𝑂(𝑛 log 𝑛)

Input sorted by 

y-coordinate

Assume: input sorted by x-coordinate

(O(n log n) overhead initially)

𝑂(1)

𝑂(𝑛)
𝑂(1)

𝑂(𝑛)

𝑂(𝑛)



Summary

Closest pair in 2-dimension: Given 𝑛 points in the plane, find 

a pair with smallest Euclidean distance between them.

Brute Force: Check all pairs of points in Θ(𝑛2) time.

Divide and Conquer: 

• Divide: draw vertical line 𝐿 with ≈ 𝑛/2 points on each side.

• Conquer:  find closest pair on each side, recursively.

• Combine to find closest pair overall

Exercise: Remove the assumption of “no two points have same 𝑥 
coordinate”?
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