

Closest Points

Xiaorui Sun

Divide and Conquer

Divide: We reduce a problem to several subproblems.

Typically, each sub-problem is at most a constant c < 1 fraction of the size of the original problem

Conquer: Recursively solve each subproblem Combine: Merge the solutions

Examples:

• Mergesort, Counting Inversions, Binary Search

Finding the Closest Pair of Points

Closest Pair of Points

Given *n* points, find the closest pair.

Brute force: Check all (ⁿ₂) pairwise distances

1-dim case: 11, 2, 4, 19, 4.8, 7, 8.2, 16, 11.5, 13, 1 find the closest pair

Fact: Closest pair is adjacent in ordered list

So, first sort, then scan adjacent pairs.

Time $O(n \log n)$ to sort, if needed, Plus O(n) to scan adjacent pairs

Closest Pair of Points (2-dim)

Given n points in the plane, find a pair with smallest Euclidean distance between them.

Idea: make use of 1-dim algorithm (but not in a simple way)

Divide & Conquer

Divide: draw vertical line L with $\approx n/2$ points on each side. Conquer: find closest pair on each side, recursively. Combine to find closest pair overall \leftarrow How ? Return best solutions

Key Observation

Suppose δ is the minimum distance of all pairs in left/right of *L*. $\delta = \min(12,21) = 12.$

Key Observation: suffices to consider points within δ of line *L*. Almost the one-D problem again: Sort points in 2δ -strip by their *y* coordinate.

Almost 1D Problem

Partition each side of *L* into $\frac{\delta}{2} \times \frac{\delta}{2}$ squares

Claim: No two points lie in the same $\frac{\delta}{2} \times \frac{\delta}{2}$ box. Proof: Such points would be within

$$\sqrt{\left(\frac{\delta}{2}\right)^2 + \left(\frac{\delta}{2}\right)^2} = \delta \sqrt{\frac{1}{2}} \approx 0.7\delta < \delta$$

Let s_i have the i^{th} smallest y-coordinate among points in the 2δ -width-strip.

Claim: If |i - j| > 11, then the distance between s_i and s_j is $> \delta$. Proof: only 11 boxes within δ of $y(s_i)$.

Closest Pair (2 dimension)

```
Closest-Pair (p_1, p_2, \cdots, p_n) {
if (n \le 2) return distance (p_1, p_2)
```

Compute separation line L such that half the points are on one side and half on the other side. $O(n \log n)$

 δ_1 = Closest-Pair(left half) δ_2 = Closest-Pair(right half) δ = min(δ_1, δ_2)

Delete all points further than δ from separation line L O(n)

0(1)

O(n)

Sort remaining points $p[1]_{m}p[m]$ by y-coordinate. $O(n \log n)$

```
for i = 1, 2, \dots, m
for k = 1, 2, \dots, 11
if i + k \le m
\delta = \min(\delta, distance(p[i], p[i+k]));
```

return δ .

}

Closest Pair Analysis

Running time?

$$T(n) \leq \begin{cases} 1 & \text{if } n \leq 2\\ 2T\left(\frac{n}{2}\right) + O(n\log n) & \text{o.w.} \end{cases} \Rightarrow T(n) = O(n\log^2 n)$$

Can we do better?

Closest Pair (2 dimension) Improved

Summary

Closest pair in 2-dimension: Given n points in the plane, find a pair with smallest Euclidean distance between them.

Brute Force: Check all pairs of points in $\Theta(n^2)$ time.

Divide and Conquer:

- Divide: draw vertical line L with $\approx n/2$ points on each side.
- Conquer: find closest pair on each side, recursively.
- Combine to find closest pair overall

Exercise: Remove the assumption of "no two points have same x coordinate"?