CS 401

Closest Points

Xiaorul Sun

Divide and Conqguer

Divide: We reduce a problem to several subproblems.
Typically, each sub-problem is
at most a constant ¢ < 1 fraction of
the size of the original problem

n

n/2 n/2

Conquer: Recursively solve each
subproblem @ /4
Combine: Merge the solutions :

Log n levels

Examples:
* Mergesort, Counting Inversions, Binary Search

Finding the Closest Pair of Points

Closest Pair of Points

Given n points, find the closest pair.

Brute force: Check all (3) pairwise distances

1-dim case: 11, 2, 4, 19, 4.8, 7, 8.2, 16, 11.5, 13, 1
find the closest pair

—
O—O—O—O0——0—0 O-0—0 . o
1 2 4 4.8 7 8.2 11115 13 16 19

Fact: Closest pair is adjacent in ordered list
So, first sort, then scan adjacent pairs.

Time O(n log n) to sort, if needed, Plus O(n) to scan adjacent
pairs

Closest Pair of Points (2-dim)

Given n points in the plane, find a pair with smallest
Euclidean distance between them.

ldea: make use of 1-dim algorithm (but not in a simple way)

®
No single direction along which one
can sort points to guarantee success!

Divide & Conquer

Divide: draw vertical line L with = n/2 points on each side.

Conquer: find closest pair on each side, recursively.

Combine to find closest pair overall - How ?
Return best solutions
o |_ ® o o
o o o
° ° ®)
- 8
) o / 21
([e ([
o
iz/o e : ° ° o
([([L ®
® ([

Key Observation

Suppose § is the minimum distance of all pairs in left/right of L.

d = min(12,21) = 12.
Key Observation: suffices to consider points within § of line L.
Almost the one-D problem again: Sort points in 2§-strip by their y

coordinate.
o |_ ® o (]
o e o
(]
o ° O
(]
o/
o O 21 .
(] (]
(]
12
./. ® e ® ® -
]] e o
O o

Almost 1D Problem

Partition each side of L into g X g squares

Claim: No two points lie in the same‘—; ><12S box.

Proof: Such points would be within
S\2 = [(6)? 1
\/(5) +(3) =6)5~075<5

Let s; have the it" smallest y-coordinate
among points in the 2§-width-strip.

Claim: If [i — j| > 11, then the distance
between s; and s; is > 6.
Proof: only 11 boxes within § of y(s;).

720

720

Closest Pair (2 dimension)

Closest-Pair (py,P2) Pn) {
if (n < 2) return distance (py,p;)

Compute separation line L such that half the points
are on one side and half on the other side. (7(nlog1{)

01 Closest-Pair(left half)
0, = Closest-Pair(right half)

0 = min(d¢,05) 0(1)

Delete all points further than 8 from separation line L ()(n)
Sort remaining points p[l]..p[m] by y-coordinate. (?(nlog1i)
for i=1,2,---'m
for k = 1,2,---,11
if i+k<m 0O(n)
0 = min (0, distance(p[i], pl[i+k]));

return 9.

Closest Pair Analysis

Running time?
(1 if n<2

\ZT (g) + O(nlogn) o.w.

T(n) <A = T(n) = 0(nlog? n)

Can we do better?

Closest Pair (2 dimension) Improved

Closest-Pair (py,Pz2,) Pn) <=
if(n<2) return distance (p1,P2)

Assume: input sorted by x-coordinate
(O(n log n) overhead initially)

Compute separation line L such that half the points

are on one side and half on the other side. 0(1)
(61,01) = Closest-Pair(left half)
(6,,Q0,) = Closest-Pair(right half)
5 = min (8y,8,) 0(1)
Qsortea = merge (Q4,Q,) (merge sort it by y-coordinate) 0(71)

Let S be points (ordered as Qg ,,teq) that is 6 from line L. 0(71)

for i=1,2,::-,m
for k = 1,2,---,11
if i+k<m O(n)
6 = min (6, distance(S[i], S[i+k])):

return & and Q, ted - (1 if n=1

} n
\ T =12r(0)+o0m ow.

Input sorted by \ 2

y-coordinate

= T(n) = 0(nlogn)

Summary

Closest pair in 2-dimension: Given n points in the plane, find
a pair with smallest Euclidean distance between them.

Brute Force: Check all pairs of points in 8(n?) time.

Divide and Conquer:

e Divide: draw vertical line L with = n/2 points on each side.
e Conqguer: find closest pair on each side, recursively.

e Combine to find closest pair overall

Exercise: Remove the assumption of “no two points have same x
coordinate”?

	Slide 1: CS 401
	Slide 2: Divide and Conquer
	Slide 3: Finding the Closest Pair of Points
	Slide 4: Closest Pair of Points
	Slide 5: Closest Pair of Points (2-dim)
	Slide 6: Divide & Conquer
	Slide 7: Key Observation
	Slide 8: Almost 1D Problem
	Slide 9: Closest Pair (2 dimension)
	Slide 10: Closest Pair Analysis
	Slide 11: Closest Pair (2 dimension) Improved
	Slide 12: Summary

