CS 401

Dynamic Programming

Xiaorui Sun

Stuff

Homework 3 is due this Friday March 29 11:59pm

- Submission is now open (at Gradescope)

Course survey

- https://forms.gle/4gUVgQQhDGaFR2ge8
- Anonymous survey
- Collect the feedback regarding lectures/homework/midterm exam
- Is the homework/exam too easy or too hard?
- Your feedback will be used to adjust the difficulty of the rest homework and final exam

Weighted Interval Scheduling

Weighted Interval Scheduling

- Job j starts at $s(j)$ and finishes at $f(j)$ and has weight w_{j}
-Two jobs compatible if they don't overlap.
-Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling: Review

Recall: Greedy algorithm works if all weights are 1:

- Consider jobs in ascending order of finishing time
- Add job to a subset if it is compatible with prev added jobs.

Observation: Greedy ALG fails spectacularly if arbitrary weights are allowed:

by finish

by weight

Weighted Job Scheduling by Induction

Suppose $1, \ldots, n$ ard This idea works for any
IH : Suppose Optimization problem.
jobs of size For NP-hard problems there is no ordering to reduce \# subproblems
IS: Goal: For anyrus
Case 1: Job n is not in OT,
-- Then, just return OPT of $1, \ldots, n-1$.
Case 2: Job n is in OPT.
Take best of the two
-- Then, delete all jobs not compatible with n and recurse.
Q: Are we done?
A: No, How many subproblems are there?
Potentially 2^{n} all possible subsets of jobs.

Sorting to Reduce Subproblems

Sorting Idea: Label jobs by finishing time $f(1) \leq \cdots \leq f(n)$ IS: For jobs $1, \ldots, n$ we want to compute OPT

Case 1: Suppose OPT has job n.

- So, all jobs i that are not compatible with n are not OPT
- Let $p(n)=$ largest index $i<n$ such that job i is compatible with n.
- Then, we just need to find OPT of $1, \ldots, p(n)$

Sorting to reduce Subproblems

Sorting Idea: Label jobs by finishing time $f(1) \leq \cdots \leq f(n)$
IS: For jobs $1, \ldots, n$ we want to compute OPT

Case 1: Suppose OPT has job n.

- So, all jobs i that are not compatible with n are not OPT
- Let $p(n)=$ largest index $i<n$ such that job i is compatible with n.
- Then, we just need to find OPT of $1, \ldots, p(n)$

Case 2: OPT does not select job n.
Take best of the two

- Then, OPT is just the OPT of $1, \ldots, n-1$

Q: Have we made any progress?
A: Yes! This time every subproblem is of the form $1, \ldots, i$ for some i So, at most n possible subproblems.

Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time $f(1) \leq \cdots \leq f(n)$ Def $O P T(j)$ denote the weight of OPT solution of $1, \ldots, j$

To solve $O P T(j)$:
The most important part of a correct DP; It fixes IH
Case 1: OPT(j) has job j.

- So, all jobs i that are not compatible with j are not $O P T(j)$.
- Let $p(j)=$ largest index $i<j$ such that job i is compatible with j.
- So $O P T(j)=O P T(p(j))+w_{j}$.

Case 2: OPT(j) does not select job j.

- Then, $O P T(j)=O P T(j-1)$.

$$
O P T(j)=\left\{\begin{array}{lc}
0 & \text { if } j=0 \\
\max \left(w_{j}+O P T(p(j)), O P T(j-1)\right) & \text { o.w. }
\end{array}\right.
$$

Algorithm

```
Input: }n,s(1),\ldots,s(n)\mathrm{ and }f(1),\ldots,f(n)\mathrm{ and }\mp@subsup{w}{1}{},\ldots,\mp@subsup{w}{n}{}
Sort jobs by finish times so that f(1)\leqf(2)\leq\cdotsf(n).
Compute p(1),p(2),\ldots,p(n)
OPT(j) {
    if (j=0 )
        return 0
    else
        return max (w, OPT}(\boldsymbol{p}(j)),OPT(j-1))
}
```


Recursive Algorithm Fails

Even though we have only n subproblems, we do not store the solution to the subproblems
$>$ So, we may re-solve the same problem many many times.
Ex. Number of recursive calls for family of "layered" instances grows exponentially

$p(1)=0, p(j)=j-2$

Algorithm with Memoization

Memorization. Compute and Store the solution of each sub-problem in a cache the first time that you face it. lookup as needed.

```
Input: n, s(1),\ldots,s(n) and f(1),\ldots,f(n) and wi,\ldots,wn.
Sort jobs by finish times so that f(1) \leqf(2)\leq\cdotsf(n).
Compute p(1),p(2),\ldots,p(n)
for j = 1 to n
    M[j] = empty
M[0] = 0
OPT(j) {
    if (M[j] is empty)
        M[j] = max (wj +OPT}(p(j)),OPT(j-1))
    return M[j]
}
```

In practice, you may get stack overflow if $n \gg 10^{6}$ (depends on the language).

Bottom up Dynamic Programming

You can also avoid recursion

- recursion may be easier conceptually when you use induction

```
Input: \(n, s(1), \ldots, s(n)\) and \(f(1), \ldots, f(n)\) and \(w_{1}, \ldots, w_{n}\).
Sort jobs by finish times so that \(\boldsymbol{f}(\mathbf{1}) \leq \boldsymbol{f}(\mathbf{2}) \leq \cdots \boldsymbol{f}(\boldsymbol{n})\). \(\quad \mathrm{O}(\mathrm{n} \log \mathrm{n})\)
Compute \(\boldsymbol{p}(\mathbf{1}), \boldsymbol{p}(\mathbf{2}), \ldots, \boldsymbol{p}(\boldsymbol{n})\)
Binary search
\(O(n \log n)\)
\(\mathrm{M}[0]=0\)
for \(\mathrm{j}=1\) to n
    \(M[j]=\max \left(w_{j}+M[p(j)], M[j-1]\right)\).

Output M[n]

Claim: \(M[j]\) is value of \(O P T(j)\)

Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n)\).
\(p(j)=\) largest index \(i<j\) such that job \(i\) is compatible with \(j\).


Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n)\).
\(p(j)=\) largest index \(i<j\) such that job \(i\) is compatible with \(j\).


Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n)\).
\(p(j)=\) largest index \(i<j\) such that job \(i\) is compatible with \(j\).


Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n)\).
\(p(j)=\) largest index \(i<j\) such that job \(i\) is compatible with \(j\).


Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n)\).
\(p(j)=\) largest index \(i<j\) such that job \(i\) is compatible with \(j\).


Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n)\).
\(p(j)=\) largest index \(i<j\) such that job \(i\) is compatible with \(j\).


Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n)\).
\(p(j)=\) largest index \(i<j\) such that job \(i\) is compatible with \(j\).


Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n)\).
\(p(j)=\) largest index \(i<j\) such that job \(i\) is compatible with \(j\).


Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n)\).
\(p(j)=\) largest index \(i<j\) such that job \(i\) is compatible with \(j\).


Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n)\). \(p(j)=\) largest index \(i<j\) such that job \(i\) is compatible with \(j\).


\section*{Dynamic Programming}
- Optimal substructure: Optimal solution of a problem can be obtained from optimal solutions of smaller (overlapping) sub-problems
- Useful when the same subproblems show up again and again in the solution.```

