
CS 401

Dynamic Programming

Xiaorui Sun

1

Stuff

Homework 3 is due today 11:59pm

2

Weighted Interval Scheduling

Weighted Interval Scheduling

• Job 𝑗 starts at 𝑠(𝑗) and finishes at 𝑓 𝑗 and has weight 𝑤𝑗

•Two jobs compatible if they don’t overlap.

•Goal: find maximum weight subset of mutually compatible jobs.

4

Time

0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

Unweighted Interval Scheduling: Review

Recall: Greedy algorithm works if all weights are 1:

• Consider jobs in ascending order of finishing time

• Add job to a subset if it is compatible with prev added jobs.

Observation: Greedy ALG fails spectacularly if arbitrary weights are

allowed:

5

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 1000

weight = 1

by finish

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a1

weight = 1000

weight = 999 a2 a3 a4 a5 a6 a7 a8 a9 a10

by weight

Suppose 1, … , 𝑛 are all jobs. Let us use induction:

IH: Suppose we can compute the optimum job scheduling for a set of

jobs of size < 𝑛.

IS: Goal: For any 𝑛 jobs we can compute OPT.

Case 1: Job 𝑛 is not in OPT.

-- Then, just return OPT of 1, … , 𝑛 − 1.

Case 2: Job 𝑛 is in OPT.

-- Then, delete all jobs not compatible with n and recurse.

Weighted Job Scheduling by Induction

Optimal substructure: Optimal solution of a problem

can be obtained from optimal solutions of smaller

(overlapping) sub-problems

Take best of the two

Suppose 1, … , 𝑛 are all jobs. Let us use induction:

IH: Suppose we can compute the optimum job scheduling for a set of

jobs of size < 𝑛.

IS: Goal: For any 𝑛 jobs we can compute OPT.

Case 1: Job 𝑛 is not in OPT.

-- Then, just return OPT of 1, … , 𝑛 − 1.

Case 2: Job 𝑛 is in OPT.

-- Then, delete all jobs not compatible with n and recurse.

Q: Are we done?

A: No, How many subproblems are there?

Potentially 2𝑛 all possible subsets of jobs.

This idea works for any

Optimization problem.

For NP-hard problems there is no

ordering to reduce # subproblems

Weighted Job Scheduling by Induction

7

Take best of the two

𝑛

𝑛 − 1 𝑛 − 4

𝑛 − 2 𝑛 − 7 𝑛 − 5 𝑛 − 6

Sorting to Reduce Subproblems

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

IS: For jobs 1, … , 𝑛 we want to compute OPT

Case 1: Suppose OPT has job 𝑛.

• So, all jobs 𝑖 that are not compatible with 𝑛 are not OPT

• Let 𝑝 𝑛 = largest index 𝑖 < 𝑛 such that job 𝑖 is compatible with 𝑛.

• Then, we just need to find OPT of 1, … , 𝑝(𝑛)

8
𝑛

𝑛 − 1

𝑛 − 2

𝑝(𝑛) + 1

𝑝(𝑛)

1

Sorting to reduce Subproblems

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

IS: For jobs 1, … , 𝑛 we want to compute OPT

Case 1: Suppose OPT has job 𝑛.

• So, all jobs 𝑖 that are not compatible with 𝑛 are not OPT

• Let 𝑝(𝑛) = largest index 𝑖 < 𝑛 such that job 𝑖 is compatible with 𝑛.

• Then, we just need to find OPT of 1, … , 𝑝(𝑛)

Case 2: OPT does not select job 𝑛.

• Then, OPT is just the OPT of 1, … , 𝑛 − 1

Q: Have we made any progress?

A: Yes! This time every subproblem is of the form 1, … , 𝑖 for some 𝑖

So, at most 𝑛 possible subproblems.

9

Take best of the two

Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

Def 𝑂𝑃𝑇(𝑗) denote the weight of OPT solution of 1, … , 𝑗

To solve 𝑂𝑃𝑇(𝑗):

Case 1: 𝑂𝑃𝑇(𝑗) has job 𝑗.

• So, all jobs 𝑖 that are not compatible with 𝑗 are not 𝑂𝑃𝑇(𝑗).

• Let 𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

• So 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇 𝑝 𝑗 + 𝑤𝑗.

Case 2: 𝑂𝑃𝑇(𝑗) does not select job 𝑗.

• Then, 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇(𝑗 − 1).

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o. w.

10

The most important part of a correct DP; It fixes IH

Algorithm

11

Input: 𝒏, 𝒔 𝟏 , … , 𝒔(𝒏) and 𝒇 𝟏 , … , 𝒇(𝒏) and 𝒘𝟏, … , 𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯ 𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

𝑶𝑷𝑻(𝒋) {
 if (𝒋 = 𝟎)
 return 𝟎
 else

 return 𝒎𝒂𝒙 (𝒘𝒋 + 𝑶𝑷𝑻 𝒑 𝒋 , 𝑶𝑷𝑻 𝒋 − 𝟏).

}

Recursive Algorithm Fails

Even though we have only 𝑛 subproblems, we do not store the

solution to the subproblems

➢So, we may re-solve the same problem many many times.

Ex. Number of recursive calls for family of "layered" instances

grows exponentially

12

3

4

5

1

2

𝑝 1 = 0, 𝑝 𝑗 = 𝑗 − 2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

Algorithm with Memoization

13

Input: 𝒏, 𝒔 𝟏 , … , 𝒔(𝒏) and 𝒇 𝟏 , … , 𝒇(𝒏) and 𝒘𝟏, … , 𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯ 𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

for j = 1 to n

 M[j] = empty

M[0] = 0

𝑶𝑷𝑻(𝒋) {
 if (M[j] is empty)

 M[j] = 𝒎𝒂𝒙 (𝒘𝒋 + 𝑶𝑷𝑻 𝒑 𝒋 , 𝑶𝑷𝑻 𝒋 − 𝟏).

 return M[j]

}

Memorization. Compute and Store the solution of each sub-problem

in a cache the first time that you face it. lookup as needed.

In practice, you may get stack overflow if 𝑛 ≫ 106 (depends on the language).

Bottom up Dynamic Programming

14

Input: 𝒏, 𝒔 𝟏 , … , 𝒔(𝒏) and 𝒇 𝟏 , … , 𝒇(𝒏) and 𝒘𝟏, … , 𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯ 𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

M[0] = 0

for j = 1 to n

 M[j] = 𝒎𝒂𝒙 (𝒘𝒋 + 𝑴 𝒑 𝒋 , 𝑴 𝒋 − 𝟏).

Output M[n]

You can also avoid recursion

• recursion may be easier conceptually when you use induction

Claim: 𝑀[𝑗] is value of 𝑂𝑃𝑇(𝑗)

Binary search

O(n log n)

O(n)

O(n log n)

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

0

0

OPT(j)p(j)𝑤𝑗j

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o. w.

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

0

0

p(j)𝑤𝑗j

3

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o. w.

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

0

0

p(j)𝑤𝑗j

3

 4

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o. w.

548

327

236

045

134

013

042

031

0

0

p(j)𝑤𝑗j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o. w.

548

327

236

045

134

013

042

031

0

0

p(j)𝑤𝑗j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

6

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o. w.

548

327

236

045

134

013

042

031

0

0

p(j)𝑤𝑗j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

6

 6

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o. w.

548

327

236

045

134

013

042

031

0

0

p(j)𝑤𝑗j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

6

 6

 7

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o. w.

548

327

236

045

134

013

042

031

0

0

p(j)𝑤𝑗j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

6

 6

 77

 7

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o. w.

548

327

236

045

134

013

042

031

0

0

p(j)𝑤𝑗j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

6

 6

 7

 7

 10

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o. w.

548

327

236

045

134

013

042

031

0

0

p(j)𝑤𝑗j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

6

 6

 7

 7

 10

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o. w.

• Optimal substructure: Optimal solution of a problem can
be obtained from optimal solutions of smaller
(overlapping) sub-problems.

• Useful when the same subproblems show up again and
again in the solution.

• Memorization: Compute and Store the solution of each
sub-problem in a cache the first time that you face it.
lookup as needed.

Dynamic Programming

	Slide 1: CS 401
	Slide 2: Stuff
	Slide 3: Weighted Interval Scheduling
	Slide 4: Weighted Interval Scheduling
	Slide 5: Unweighted Interval Scheduling: Review
	Slide 6: Weighted Job Scheduling by Induction
	Slide 7: Weighted Job Scheduling by Induction
	Slide 8: Sorting to Reduce Subproblems
	Slide 9: Sorting to reduce Subproblems
	Slide 10: Weighted Job Scheduling by Induction
	Slide 11: Algorithm
	Slide 12: Recursive Algorithm Fails
	Slide 13: Algorithm with Memoization
	Slide 14: Bottom up Dynamic Programming
	Slide 15: Example
	Slide 16: Example
	Slide 17: Example
	Slide 18: Example
	Slide 19: Example
	Slide 20: Example
	Slide 21: Example
	Slide 22: Example
	Slide 23: Example
	Slide 24: Example
	Slide 25: Dynamic Programming

