

Dynamic Programming

Xiaorui Sun

Stuff

Homework 3 is due today 11:59pm

Weighted Interval Scheduling

Weighted Interval Scheduling

- Job *j* starts at s(j) and finishes at f(j) and has weight w_j
 - •Two jobs compatible if they don't overlap.
 - •Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling: Review

Recall: Greedy algorithm works if all weights are 1:

- Consider jobs in ascending order of finishing time
- Add job to a subset if it is compatible with prev added jobs.

Observation: Greedy ALG fails spectacularly if arbitrary weights are allowed:

Weighted Job Scheduling by Induction

Suppose 1, ..., *n* are all jobs. Let us use induction:

IH: Suppose we can compute the optimum job scheduling for a set of jobs of size < n.

IS: Goal: For any n jobs we can compute OPT. Case 1: Job n is not in OPT.

-- Then, just return OPT of 1, ..., n-1.

Case 2: Job n is in OPT.

Take best of the two

-- Then, delete all jobs not compatible with n and recurse.

Optimal substructure: Optimal solution of a problem can be obtained from optimal solutions of smaller (overlapping) sub-problems

Weighted Job Scheduling by Induction

Suppose $1, \ldots, n$ ar

IH: Suppose

jobs of size

This idea works for any Optimization problem.

For NP-hard problems there is no ordering to reduce # subproblems

IS: Goal: For any n_{τ} Case 1: Job n is not in OF r_{τ}

-- Then, just return OPT of 1, ..., n - 1.

Case 2: Job n is in OPT.

-- Then, delete all jobs not compatible with n and recurse.

Q: Are we done? A: No, How many subproblems are there? Potentially 2^n all possible subsets of jobs.

Take best of the two

Sorting to Reduce Subproblems

Sorting Idea: Label jobs by finishing time $f(1) \le \dots \le f(n)$ IS: For jobs 1, ..., *n* we want to compute OPT

Case 1: Suppose OPT has job *n*.

- So, all jobs *i* that are not compatible with *n* are not OPT
- Let p(n) =largest index i < n such that job i is compatible with n.
- Then, we just need to find OPT of 1, ..., p(n)

Sorting to reduce Subproblems

Sorting Idea: Label jobs by finishing time $f(1) \le \dots \le f(n)$ IS: For jobs 1, ..., *n* we want to compute OPT

Case 1: Suppose OPT has job *n*.

- So, all jobs *i* that are not compatible with *n* are not OPT
- Let p(n) =largest index i < n such that job i is compatible with n.
- Then, we just need to find OPT of 1, ..., p(n)

Case 2: OPT does not select job n.

• Then, OPT is just the OPT of 1, ..., n-1

Take best of the two

Q: Have we made any progress?

A: Yes! This time every subproblem is of the form 1, ..., i for some i

So, at most n possible subproblems.

Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time $f(1) \le \dots \le f(n)$ Def OPT(j) denote the weight of OPT solution of $1, \dots, j$

To solve OPT(j): Case 1: OPT(j) has job *j*.

- So, all jobs *i* that are not compatible with *j* are not OPT(j).
- Let p(j) =largest index i < j such that job i is compatible with j.
- So $OPT(j) = OPT(p(j)) + w_j$.

Case 2: OPT(j) does not select job j.

• Then, OPT(j) = OPT(j-1).

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max\left(w_j + OPT(p(j)), OPT(j-1)\right) & \text{o.w.} \end{cases}$$

Algorithm

```
Input: n, s(1), \ldots, s(n) and f(1), \ldots, f(n) and w_1, \ldots, w_n.
Sort jobs by finish times so that f(1) \leq f(2) \leq \cdots f(n).
Compute p(1), p(2), \ldots, p(n)
OPT(j) {
    if ( j = 0 )
        return 0
    else
        return max (w_j + OPT(p(j)), OPT(j-1)).
}
```

Recursive Algorithm Fails

Even though we have only n subproblems, we do not store the solution to the subproblems

 \succ So, we may re-solve the same problem many many times.

Ex. Number of recursive calls for family of "layered" instances grows exponentially

Algorithm with Memoization

Memorization. Compute and Store the solution of each sub-problem in a cache the first time that you face it. lookup as needed.

```
Input: n, s(1), ..., s(n) and f(1), ..., f(n) and w_1, ..., w_n.
Sort jobs by finish times so that f(1) \leq f(2) \leq \cdots f(n).
Compute p(1), p(2), ..., p(n)
for j = 1 to n
   M[j] = empty
M[0] = 0
OPT(i) {
   if (M[j] is empty)
       M[j] = max(w_i + OPT(p(j)), OPT(j-1)).
   return M[j]
}
```

In practice, you may get stack overflow if $n \gg 10^6$ (depends on the language).

13

Bottom up Dynamic Programming

You can also avoid recursion

recursion may be easier conceptually when you use induction

Output M[n]

Claim: M[j] is value of OPT(j)

Dynamic Programming

- Optimal substructure: Optimal solution of a problem can be obtained from optimal solutions of smaller (overlapping) sub-problems.
- Useful when the same subproblems show up again and again in the solution.
- Memorization: Compute and Store the solution of each sub-problem in a cache the first time that you face it. lookup as needed.