CS 401

Dynamic Programming

Xiaorui Sun

Stuff

Homework 3 is due this Friday March 29 11:59pm
« Submission is now open (at Gradescope)

Course survey

« https://forms.gle/4gUVgQQhDGaFR2ge8

* Anonymous survey

» Collect the feedback regarding lectures/homework/midterm exam
* |s the homework/exam too easy or too hard?

* Your feedback will be used to adjust the difficulty of the rest
homework and final exam

https://forms.gle/4gUVgQQhDGaFR2ge8

Weighted Interval Scheduling

Weighted Interval Scheduling

- Job j starts at s(j) and finishes at f(j) and has weight w;
*Two jobs compatible if they don’t overlap.
*Goal: find maximum weight subset of mutually compatible jobs.

Time

Unweighted Interval Scheduling: Review

Recall: Greedy algorithm works if all weights are 1:

« Consider jobs in ascending order of finishing time

« Add job to a subset if it is compatible with prev added jobs.
Observation: Greedy ALG fails spectacularly if arbitrary weights are

allowed:

weight = 1000

weight = 1

weight = 1000

weight = 999

by finish

Time

v

10

aio

11

by weight

Time

v

10

11 5

Weighted Job Scheduling by Induction

Suppose 1, ...,na

This idea works for any
Optimization problem.

IH: Supposg
jobs of size %

For NP-hard problems there is no
ordering to reduce # subproblems

|S: Goal: For any
Case 1: Job n is not in OPT=
-- Then, just return OPT of 1, ...,n — 1.

Take best of the two

Case 2: Job nis in OPT.
-- Then, delete all jobs not compatible with n and recurse.

— .
Q: Are we done? n—1 n—4
A: No, How many subproblems are there? 7 \ / \

Potentially 2" all possible subsets of jobs. "~ "~7 n=5> 176
6

Sorting to Reduce Subproblems

Sorting Idea: Label jobs by finishing time f(1) < --- < f(n)
IS: For jobs 1, ...,n we want to compute OPT

Case 1: Suppose OPT has job n.

« S0, all jobs i that are not compatible with n are not OPT

« Letp(n) =largestindex i < n such that job i is compatible with n.
« Then, we just need to find OPT of 1, ...,p(n)

p(n)
p(n) +1

Sorting to reduce Subproblems

Sorting Idea: Label jobs by finishing time f(1) < --- < f(n)
IS: For jobs 1, ...,n we want to compute OPT

Case 1: Suppose OPT has job n.

« S0, all jobs i that are not compatible with n are not OPT
 Letp(n) = largestindex i < n such that job i is compatible with n.
« Then, we just need to find OPT of 1, ...,p(n)

Case 2: OPT does not select job n. > Take best of the two
« Then, OPT is just the OPT of 1,...,n — 1

Q: Have we made any progress?
A: Yes! This time every subproblem is of the form 1, ..., i for some i
So, at most n possible subproblems.

Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time f(1) < --- < f(n)
Def OPT (j) denote the weight of OPT solution of 1, ..., j

To solve OPT()): The most important part of a correct DP; It fixes IH

Case 1: OPT(j) has job ;.

* S0, all jobs i that are not compatible with j are not OPT (j).
 Letp(j) = largestindex i < j such that job i is compatible with j.
+ So 0PT(j) = OPT(p(j)) + w;.

Case 2: OPT(j) does not select job ;.
« Then, OPT(j) = OPT(j — 1).

(o ifj =0
OPTU) =1 max (w; + 0PT(p()), 0PT(- 1)) o.w.

Algorithm

Input: n, s(1),..,s(n) and f(1),..,f(n) and wq,...,Wy,.
Sort jobs by finish times so that f(1) < f(2) <--f(n).

Compute p(1),p(2),..,p(n)

OPT(j)
if (j=0)
return 0

else

return max (w; + OPT(p(j)),OPT(j — 1)).

10

Recursive Algorithm Falls

Even though we have only n subproblems, we do not store the
solution to the subproblems

» S0, we may re-solve the same problem many many times.

Ex. Number of recursive calls for family of "layered" instances
grows exponentially

p(1) =0,p(j) =j—2

11

Algorithm with Memoization

Memorization. Compute and Store the solution of each sub-problem
in a cache the first time that you face it. lookup as needed.

Input: n, s(1),..,s(n) and f(1),..,f(n) and wy,.., w,.
Sort jobs by finish times so that f(1) < f(2) <--f(n).

Compute p(1),p(2),..,p(n)

for =1 ton

M[]j] = empty
M[0] = O

OPT(j) {
if (M[j] is empty)
M[j] = max (w; + OPT(p(j)),OPT(j — 1)).
return M[]j]
}

In practice, you may get stack overflow if n > 10° (depends on the language). 12

Bottom up Dynamic Programming

You can also avoid recursion
* recursion may be easier conceptually when you use induction

Input: n, s(1),..,s(m) and f(1),..,f(n) and wy,.., w,.

Sort jobs by finish times so that f(1) < f(2) < f(n). O(n log n)
Compute p(1),p(2),..,p(n) < Binary search O(n log n)
M[O0] = O
for j =1 ton

M[3]1 = max (w; +Mlp()], M[j — 1]). o(n)

Output M[n]

Claim: M[j] is value of OPT (j)
13

OPT(j) =

Example

0
{ max (Wj + OPT(p())), OPT(j — 1)) 0. W.

Label jobs by finishing time: f(1) < --- < f(n).
p(j) = largest index i < j such that job i is compatible with j.

ifj =0

i | w | eG) [oPTG)
0 0
| 3 0
2 4 0
3 | 0
4 3 |
5 4 0
6 3 2
7 2 3
" 8 4 5

OPT(j) =

Example

0
{ max (Wj + OPT(p())), OPT(j — 1)) 0. W.

Label jobs by finishing time: f(1) < --- < f(n).
p(j) = largest index i < j such that job i is compatible with j.

ifj =0

i | w | eG) [oPTG)
0 0
| 3 0 3
2 4 0
3 | 0
4 3 |
5 4 0
6 3 2
7 2 3
" 8 4 5

ifj =0

0

Example

Label jobs by finishing time: f(1) < --- < f(n).
p(j) = largest index i < j such that job i is compatible with j.

;
2| 4| 0 | 4
3
31 1 | O
4
4 | 3 | |1
o)
51 4] 0
6
6 | 3 | 2
7
8 ‘723
o 1 2 3 4 5 6 7 8 9 10 1 |lsgl| 4] 5
Time

ifj =0

0

Example

Label jobs by finishing time: f(1) < --- < f(n).
p(j) = largest index i < j such that job i is compatible with j.

;
—
3 1 | 0 | 4
4
4 | 3 | |1
o)
51 4] 0
6
6 | 3 | 2
7
8 ‘723
o 1 2 3 4 5 6 7 8 9 10 1 |lsgl| 4] 5
Time

ifj =0

0

Example

Label jobs by finishing time: f(1) < --- < f(n).
p(j) = largest index i < j such that job i is compatible with j.

i | w | pi) oPTo)

;
3:.
4
4 | 3 | | | 6
o)
51 4] 0
6
6 | 3 | 2
7
8 ‘723
o 1 2 3 4 5 6 7 8 9 10 1 |lsgl| 4] 5
Time

OPT(j) =

Example

0
{ max (w; + OPT(p()), OPT(j — 1))

Label jobs by finishing time: f(1) < --- < f(n).

p(j) = largest index i < j such that job i is compatible with ;.

| j |Wj | P() |OPT(11

ifj =0

0. W.

I 3 0 3
2 4 0 4
3 | 0 4
BRI
5 4 0 6
6 3 2
7 2 3
] 8 4 5

ifj =0

0

Example

Label jobs by finishing time: f(1) < --- < f(n).
p(j) = largest index i < j such that job i is compatible with j.

i |w | pG) [oPTG)

3 0 0
r
;
3:.
4
5
:
6 | 3| 2 | 7
7
s REAEIE
o 1 2 3 4 5 6 7 8 9 10 1 |lsgl| 4] 5

OPT(j) =

Example

0
{ max (Wj + OPT(p())), OPT(j — 1)) 0. W.

Label jobs by finishing time: f(1) < --- < f(n).
p(j) = largest index i < j such that job i is compatible with j.

ifj =0

i 1w | pG) [oPTG)
0 0
| 3 0 3
2 4 0 4
4 3 | 6
5 4 0 6
7 2 3 7
18| 4| s

OPT(j) =

Example

0
{ max (Wj + OPT(p())), OPT(j — 1)) 0. W.

Label jobs by finishing time: f(1) < --- < f(n).
p(j) = largest index i < j such that job i is compatible with j.

ifj =0

i | w | p0) [oPTa)
0 0
| 3 0 3
2 4 0 4
3 | 0 4

ifj =0

0

Example

Label jobs by finishing time: f(1) < --- < f(n).
p(j) = largest index i < j such that job i is compatible with j.

i |w | pG) [oPTG)

R ° °
| 3 0 3
2
2 | 4| 0 | 4
3
- 31| 0| 4
4 3 | 6
5
5 4 0 6
6

Dynamic Programming

* Optimal substructure: Optimal solution of a problem can
be obtained from optimal solutions of smaller
(overlapping) sub-problems

« Useful when the same subproblems show up again and
again in the solution.

