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Stuff

Homework 3 is due today 11:59pm
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Weighted Interval Scheduling



Weighted Interval Scheduling

• Job 𝑗 starts at 𝑠(𝑗) and finishes at 𝑓 𝑗  and has weight 𝑤𝑗

•Two jobs compatible if they don’t overlap.

•Goal: find maximum weight subset of mutually compatible jobs.
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Unweighted Interval Scheduling: Review

Recall: Greedy algorithm works if all weights are 1:

• Consider jobs in ascending order of finishing time

• Add job to a subset if it is compatible with prev added jobs.

Observation: Greedy ALG fails spectacularly if arbitrary weights are 

allowed:
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Suppose 1, … , 𝑛 are all jobs. Let us use induction:

IH: Suppose we can compute the optimum job scheduling for a set of 

jobs of size < 𝑛.

IS: Goal: For any 𝑛 jobs we can compute OPT.

Case 1: Job 𝑛 is not in OPT.

-- Then, just return OPT of 1, … , 𝑛 − 1.

Case 2: Job 𝑛 is in OPT.

-- Then, delete all jobs not compatible with n and recurse. 

Weighted Job Scheduling by Induction

Optimal substructure: Optimal solution of a problem 

can be obtained from optimal solutions of smaller 

(overlapping) sub-problems

Take best of the two



Suppose 1, … , 𝑛 are all jobs. Let us use induction:

IH: Suppose we can compute the optimum job scheduling for a set of 

jobs of size < 𝑛.

IS: Goal: For any 𝑛 jobs we can compute OPT.

Case 1: Job 𝑛 is not in OPT.

-- Then, just return OPT of 1, … , 𝑛 − 1.

Case 2: Job 𝑛 is in OPT.

-- Then, delete all jobs not compatible with n and recurse. 

Q: Are we done?

A: No, How many subproblems are there?

Potentially 2𝑛 all possible subsets of jobs. 

This idea works for any 

Optimization problem.

For NP-hard problems there is no 

ordering to reduce # subproblems

Weighted Job Scheduling by Induction
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Sorting to Reduce Subproblems

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

IS: For jobs 1, … , 𝑛 we want to compute OPT

Case 1: Suppose OPT has job 𝑛. 

• So, all jobs 𝑖 that are not compatible with 𝑛 are not OPT

• Let 𝑝 𝑛 = largest index 𝑖 < 𝑛 such that job 𝑖 is compatible with 𝑛.

• Then, we just need to find OPT of 1, … , 𝑝(𝑛)
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Sorting to reduce Subproblems

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

IS: For jobs 1, … , 𝑛 we want to compute OPT

Case 1: Suppose OPT has job 𝑛. 

• So, all jobs 𝑖 that are not compatible with 𝑛 are not OPT

• Let 𝑝(𝑛) = largest index 𝑖 < 𝑛 such that job 𝑖 is compatible with 𝑛.

• Then, we just need to find OPT of 1, … , 𝑝(𝑛)

Case 2: OPT does not select job 𝑛.

• Then, OPT is just the OPT of 1, … , 𝑛 − 1

Q: Have we made any progress?

A: Yes! This time every subproblem is of the form 1, … , 𝑖 for some 𝑖

So, at most 𝑛 possible subproblems.
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Take best of the two



Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

Def 𝑂𝑃𝑇(𝑗) denote the weight of OPT solution of 1, … , 𝑗

To solve 𝑂𝑃𝑇(𝑗):

Case 1: 𝑂𝑃𝑇(𝑗) has job 𝑗. 

• So, all jobs 𝑖 that are not compatible with 𝑗 are not 𝑂𝑃𝑇(𝑗).

• Let 𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

• So 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇 𝑝 𝑗 + 𝑤𝑗.

Case 2: 𝑂𝑃𝑇(𝑗) does not select job 𝑗.

• Then, 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇(𝑗 − 1).

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0 

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1  o. w.
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Algorithm
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Input: 𝒏, 𝒔 𝟏 , … , 𝒔(𝒏) and 𝒇 𝟏 , … , 𝒇(𝒏) and 𝒘𝟏, … , 𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯ 𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

𝑶𝑷𝑻(𝒋) {
   if ( 𝒋 = 𝟎 )
      return 𝟎
   else

      return 𝒎𝒂𝒙 (𝒘𝒋 + 𝑶𝑷𝑻 𝒑 𝒋 , 𝑶𝑷𝑻 𝒋 − 𝟏 ).

}



Recursive Algorithm Fails

Even though we have only 𝑛 subproblems, we do not store the 

solution to the subproblems

➢So, we may re-solve the same problem many many times.

Ex.  Number of recursive calls for family of "layered" instances 

grows exponentially
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Algorithm with Memoization
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Input: 𝒏, 𝒔 𝟏 , … , 𝒔(𝒏)  and 𝒇 𝟏 , … , 𝒇(𝒏) and 𝒘𝟏, … , 𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯ 𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

for j = 1 to n

   M[j] = empty

M[0] = 0

𝑶𝑷𝑻(𝒋) {
   if (M[j] is empty)

      M[j] = 𝒎𝒂𝒙 (𝒘𝒋 + 𝑶𝑷𝑻 𝒑 𝒋 , 𝑶𝑷𝑻 𝒋 − 𝟏 ).

   return M[j]

}

Memorization.  Compute and Store the solution of each sub-problem  

in a cache the first time that you face it. lookup as needed.

In practice, you may get stack overflow if 𝑛 ≫ 106 (depends on the language).



Bottom up Dynamic Programming
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Input: 𝒏, 𝒔 𝟏 , … , 𝒔(𝒏)  and 𝒇 𝟏 , … , 𝒇(𝒏) and 𝒘𝟏, … , 𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯ 𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

M[0] = 0

for j = 1 to n

   M[j] = 𝒎𝒂𝒙 (𝒘𝒋 + 𝑴 𝒑 𝒋 , 𝑴 𝒋 − 𝟏 ).

Output M[n]

You can also avoid recursion

• recursion may be easier conceptually when you use induction

Claim: 𝑀[𝑗] is value of 𝑂𝑃𝑇(𝑗)

Binary search

O(n log n)

O(n)

O(n log n)



Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.
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• Optimal substructure: Optimal solution of a problem can 
be obtained from optimal solutions of smaller 
(overlapping) sub-problems.

• Useful when the same subproblems show up again and 
again in the solution. 

• Memorization:  Compute and Store the solution of each 
sub-problem  in a cache the first time that you face it. 
lookup as needed.

Dynamic Programming
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