CS 401

Dynamic Programming

Xiaorui Sun

Weighted Interval Scheduling

Weighted Interval Scheduling

- Job j starts at $s(j)$ and finishes at $f(j)$ and has weight w_{j}
-Two jobs compatible if they don't overlap.
-Goal: find maximum weight subset of mutually compatible jobs.

Weighted Job Scheduling by Induction

Suppose 1, ...,

IH: Suppose we

Optimal Substructure: Optimal solution of a problem can be obtained from optimal solutions of smaller sub-problems jobs of size $<n$.

IS: Goal: For any n jobs we can compute OPT. Case 1: Job n is not in OPT.
-- Then, just return OPT of $1, \ldots, n-1$.

Case 2: Job n is in OPT.
-- Then, delete all jobs not compatible with n and recurse.

Dynamic Programming

Principle:

- Optimal substructure: Remove certain part of the optimal solution (for the entire problem) is an optimal solution of a subproblem

Dynamic Programming

Principle:

- Optimal substructure: Remove certain part of the optimal solution (for the entire problem) is an optimal solution of a subproblem

Dynamic Programming

Principle:

- Optimal substructure: Remove certain part of the optimal solution (for the entire problem) is an optimal solution of a subproblem
- Case analysis for optimal solution (e.g. weighted interval scheduling)

Dynamic Programming

Principle:

- Optimal substructure: Remove certain part of the optimal solution (for the entire problem) is an optimal solution of a subproblem
- Case analysis for optimal solution (e.g. weighted interval scheduling)

Weighted Job Scheduling by Induction

Suppose 1, ...,

IH: Suppose we

Optimal Substructure: Optimal solution of a problem can be obtained from optimal solutions of smaller sub-problems jobs of size $<n$.

IS: Goal: For any n jobs we can compute OPT. Case 1: Job n is not in OPT.
-- Then, just return OPT of $1, \ldots, n-1$.

Case 2: Job n is in OPT.
-- Then, delete all jobs not compatible with n and recurse.

Major Problem: Too many subproblems need to compute.

Sorting to reduce Subproblems

Sorting Idea: Label jobs by finishing time $f(1) \leq \cdots \leq f(n)$ IS: For jobs $1, \ldots, n$ we want to compute OPT

Case 1: Suppose OPT has job n.

- So, all jobs i that are not compatible with n are not OPT
- Let $p(n)=$ largest index $i<n$ such that job i is compatible with n.
- Then, we just need to find OPT of $1, \ldots, p(n)$

Case 2: OPT does not select job n.

- Then, OPT is just the OPT of $1, \ldots, n-1$

Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time $f(1) \leq \cdots \leq f(n)$ Def $O P T(j)$ denote the weight of OPT solution of $1, \ldots, j$

To solve $O P T(j)$:
The most important part of a correct DP; It fixes IH
Case 1: OPT(j) has job j.

- So, all jobs i that are not compatible with j are not $O P T(j)$.
- Let $p(j)=$ largest index $i<j$ such that job i is compatible with j.
- So $O P T(j)=O P T(p(j))+w_{j}$.

Dynamic programming equation
Case 2: $O P T(j)$ does not selectjodo.

- Then, $O P T(j)=O P T(j-1)$.

$$
O P T(j)=\left\{\begin{array}{lc}
0 & \text { if } j=0 \\
\max \left(w_{j}+O P T(p(j)), O P T(j-1)\right) & \text { o.w. }
\end{array}\right.
$$

Algorithm

```
Input: }n,s(1),\ldots,s(n)\mathrm{ and }f(1),\ldots,f(n)\mathrm{ and }\mp@subsup{w}{1}{},\ldots,\mp@subsup{w}{n}{}
Sort jobs by finish times so that f(1)\leqf(2)\leq\cdotsf(n).
Compute p(1),p(2),\ldots,p(n)
OPT(j) {
    if (j=0 )
        return 0
    else
        return max (w, OPT}(\boldsymbol{p}(j)),OPT(j-1))
}
```


Recursive Algorithm Fails

Even though we have only n subproblems, we do not store the solution to the subproblems
$>$ So, we may re-solve the same problem many many times.
Ex. Number of recursive calls for family of "layered" instances grows exponentially

$p(1)=0, p(j)=j-2$

Algorithm with Memoization

Memorization. Compute and Store the solution of each sub-problem in a cache the first time that you face it. lookup as needed.

```
Input: n, s(1),\ldots,s(n) and f(1),\ldots,f(n) and wi,\ldots,wn.
Sort jobs by finish times so that f(1) \leqf(2)\leq\cdotsf(n).
Compute p(1),p(2),\ldots,p(n)
for j = 1 to n
    M[j] = empty
M[0] = 0
OPT(j) {
    if (M[j] is empty)
        M[j] = max (wj +OPT}(p(j)),OPT(j-1))
    return M[j]
}
```


Bottom up Dynamic Programming

You can also avoid recursion

- recursion may be easier conceptually when you use induction

```
Input: \(n, s(1), \ldots, s(n)\) and \(f(1), \ldots, f(n)\) and \(w_{1}, \ldots, w_{n}\).
Sort jobs by finish times so that \(\boldsymbol{f}(\mathbf{1}) \leq \boldsymbol{f}(\mathbf{2}) \leq \cdots \boldsymbol{f}(\boldsymbol{n})\). \(\mathrm{O}(\mathrm{n} \log \mathrm{n})\)
Compute \(p(1), p(2), \ldots, p(n)\)
```


$\mathrm{m}[0]=0$
for $\mathrm{j}=1$ to n
$M[j]=\max \left(w_{j}+M[p(j)], M[j-1]\right)$.

Output M[n]

Claim: $M[j]$ is value of $O P T(j)$

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$p(j)=$ largest index $i<j$ such that job i is compatible with j.

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$p(j)=$ largest index $i<j$ such that job i is compatible with j.

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$p(j)=$ largest index $i<j$ such that job i is compatible with j.

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$p(j)=$ largest index $i<j$ such that job i is compatible with j.

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$p(j)=$ largest index $i<j$ such that job i is compatible with j.

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$p(j)=$ largest index $i<j$ such that job i is compatible with j.

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$p(j)=$ largest index $i<j$ such that job i is compatible with j.

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$p(j)=$ largest index $i<j$ such that job i is compatible with j.

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$p(j)=$ largest index $i<j$ such that job i is compatible with j.

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$. $p(j)=$ largest index $i<j$ such that job i is compatible with j.

Dynamic Programming

Principle:

- Optimal substructure: Remove certain part of the optimal solution (for the entire problem) is an optimal solution of a subproblem
- Typically, only a polynomial number of subproblems

Technique:

- Parameterization: Describe subproblems by parameters so that the optimal solution can be represented as a recurrence relation
- Memorization: Remember the solution of subproblems

Examples:

- Binary choice: weighted interval scheduling.
- Multiway choice: segmented least squares.
- Multidimensional dynamic programming: knapsack

Segmented Least Squares

Segmented Least Squares

Least squares.

- Foundational problem in statistic and numerical analysis.
- Given n points in the plane: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$.
- Find a line $y=a x+b$ that minimizes the sum of the squared error:

$$
S S E=\sum_{i=1}^{n}\left(y_{i}-a x_{i}-b\right)^{2}
$$

Solution. Calculus \Rightarrow min error is achieved when

$$
a=\frac{n \sum_{i} x_{i} y_{i}-\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n \sum_{i} x_{i}^{2}-\left(\sum_{i} x_{i}\right)^{2}}, \quad b=\frac{\sum_{i} y_{i}-a \sum_{i} x_{i}}{n}
$$

Segmented Least Squares

Segmented least squares.

- Points lie roughly on a sequence of several line segments.
- Given n points in the plane $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \ldots,\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$ with
- $\mathrm{x}_{1}<\mathrm{x}_{2}<\ldots<\mathrm{x}_{\mathrm{n}}$, find a sequence of lines that minimizes:
- the sum of the sums of the squared errors E in each segment
- the number of lines L
- Tradeoff function: $\mathrm{E}+\mathrm{c} \mathrm{L}$, for some constant $\mathrm{c}>0$.

Dynamic programming

Suppose we know the last segment

- If all the points in last segment are removed, then the remaining segments must be the optimal solution for the the remaining points
- Optimal substructure!

Dynamic Programming: Multiway Choice

 Notation.OPT(j) = minimum cost for points $p_{1}, \ldots, p_{i+1}, \ldots, p_{j}$.
$e(i, j)=$ minimum sum of squares for points $p_{i}, p_{i+1}, \ldots, p_{j}$.

To compute OPT(j):
Last segment uses points $p_{i}, p_{i+1}, \ldots, p_{j}$ for some i.
Cost $=e(i, j)+c+\operatorname{OPT}(i-1)$.

$$
O P T(j)= \begin{cases}0 & \text { if } \mathrm{j}=0 \\ \min _{1 \leq i \leq j}\{e(i, j)+c+O P T(i-1)\} & \text { otherwise }\end{cases}
$$

Segmented Least Squares: Algorithm

```
INPUT: n, p
Segmented-Least-Squares() {
    M[0] = 0
    for j = 1 to n
        for i = 1 to j
            compute the least square error (eij for
            the segment p pi,\ldots, p p
    for j = 1 to n
```



```
    return M[n]
}
```

can be improved to $O\left(n^{2}\right)$ by pre-computing various statistics
Running time. $\mathrm{O}\left(\mathrm{n}^{3}\right)$.
Bottleneck = computing e(i, j) for $\mathrm{O}\left(\mathrm{n}^{2}\right)$ pairs, $\mathrm{O}(\mathrm{n})$ per pair using previous formula.

