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Weighted Interval Scheduling



Weighted Interval Scheduling

- Jobj starts at s(j) and finishes at f(j) and has weight w;

*Two jobs compatible if they don’t overlap.

*Goal: find maximum weight subset of mutually compatible jobs.
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Dynamic Programming

Principle:

« Optimal substructure: Remove certain part of the optimal solution
(for the entire problem) is an optimal solution of a subproblem
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Weighted Job Scheduling by Induction

Optimal Substructure: Optimal solution of a
problem can be obtained from optimal

IH: Suppose we solutions of smaller sub-problems

jobs of size < n.

Suppose 1, ...,

|S: Goal: For any n jobs we can compute OPT.
Case 1: Job n is not in OPT.

-- Then, just return OPT of 1,...,n — 1. \
/ Take best of the two

Case 2: Jobn is in OPT.
-- Then, delete all jobs not compatible with n and recurse.

Key question: Too many subproblems need to compute.



Sorting to reduce Subproblems

Sorting Idea: Label jobs by finishing time f(1) < :-- < f(n)
IS: For jobs 1, ..., n we want to compute OPT

Case 1. Suppose OPT has job n.

* S0, all jobs i that are not compatible with n are not OPT
 Letp(n) = largestindex i < n such that job i is compatible with n.
* Then, we just need to find OPT of 1, ...,p(n)

Case 2: OPT does not select job n. > Take best of the two
« Then, OPT isjustthe OPT of 1, ...,n—1



Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time f(1) < --- < f(n)
Def OPT (j) denote the weight of OPT solution of 1, ..., j

To solve OPT()): The most important part of a correct DP; It fixes IH

Case 1: OPT(j) has job j.
* S0, all jobs i that are not compatible with j are not OPT(j).

 Letp(j) = largestindex i < j such that job i is compatible with j.
S0 OPT(j) = OPT(p())) + w;.

Dynamic programming equation

. Then, OPT(j) = OPT(j — 1).

B ifj = 0
OPTG) =1 max (w; + OPT(p()),0PT( = 1)) o.w
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Algorithm with Memoization

Memorization. Compute and Store the solution of each sub-problem
In a cache the first time that you face it. lookup as needed.

Input: n, s(1),..,s(n) and f(1),..,f(n) and wy,..,w,.

Sort jobs by finish times so that f(1) < f(2) <. f(n).

Compute p(1),p(2),...p(M) Dynamic programming: break

for j =1 to n complex problem down into simpler
M[J] = empty sub-problems in

M[O0] = O

a recursive manner
OPTG) ¢ (can be viewed as a generalization
if (M[j] is empty)

M[3] = max (w; + OPT(p( of divide and conquer)
return M[]]

In practice, you may get stack overflow if n » 10° (depends on the language). 11



Bottom up Dynamic Programming

You can also avoid recursion
* recursion may be easier conceptually when you use induction

Input: n, s(1),..,s(n) and f(1),..,f(n) and wy,..,w,.

Sort jobs by finish times so that f(1) < f(2) < - f(n). O(n Iog n)
Compute p(1),p(2),..,p(n) < Binary search O(n log n)
M[O] = O

for j =1 ton

M[3] = max (w; + M[p()], Mj Dynamic programming:. break

complex problem down into a
sequence of decision steps over
time (can be viewed as a
generalization of greedy)

Output M[n]

Claim: M[j] is value of OPT(j)
12
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0
OPT(j) = { max (Wj +0PT(p())), OPT(j — 1)) 0. w.

Example

Label jobs by finishing time: f(1) < --- < f(n).
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Dynamic Programming

Principle:

« Optimal substructure: Remove certain part of the optimal solution
(for the entire problem) is an optimal solution of a subproblem

« Typically, only a polynomial number of subproblems

Technique:

« Parameterization: Describe subproblems by parameters so that the
optimal solution can be represented as a recurrence relation

« Memorization: Remember the solution of subproblems

Examples:

« Binary choice: weighted interval scheduling.

« Multiway choice: segmented least squares.

« Multidimensional dynamic programming: knapsack 23



Segmented Least Squares



Segmented Least Squares

Least squares.
« Foundational problem in statistic and numerical analysis.

« Given n points in the plane: (Xy, Y1), X2, ¥2) , - - ., (X5, Yn)-
« Find a line y = ax + b that minimizes the sum of the squared
error:

SSE = & (y, - ax, - b)?
i=1

a_néixiyi - (&%) (&) p o QuYi — a8y,

nd.x° - (&x) n




Segmented Least Squares

Segmented least squares.
« Points lie roughly on a sequence of several line segments.
« Given n points in the plane (X4, V1), X5, Vo) , - . ., (X, Yy,) With
* X;<X,<...<X, find a sequence of lines that minimizes:
 the sum of the sums of the squared errors E in each segment
 the number of lines L
« Tradeoff function: E + c L, for some constant ¢ > 0.




Dynamic programming

Suppose we know the last segment

 If all the points in last segment are removed, then the
remaining segments must be the optimal solution for the
the remaining points

« Optimal substructure!




Dynamic Programming: Multiway Choice

Notation.
OPT(j) = minimum cost for points pq, ...., Pisis v« - P;-
e(l, J) = minimum sum of squares for points p;,, Pis1, - - - o

To compute OPT()):
Last segment uses points pi, Pis1 » - - - p; for some |.

Cost=e(l, J) + c + OPT(i-1).
}O if j=0
=1

1 S . :
Tlfsni':?j{ e(i,j) +c+ OPT(i-1)} otherwise



Segmented Least Squares: Algorithm

INPUT: n, pi,../,Px, ©

Segmented-Least-Squares () {
M[O] = O
for j =1 ton
for 1 =1 to j
compute the least square error e;; for

the segment p;,.., P;

for j =1 ton
M[j] = min; <; <5 (e55 + ¢ + M[i-1])

return M[n]

can be improved to O(n?) by pre-computing various statistics
—
Running time. O(n3).

Bottleneck = computing e(i, j) for O(n?) pairs, O(n) per pair using
previous formula.
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