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Weighted Interval Scheduling



Weighted Interval Scheduling

• Job 𝑗 starts at 𝑠(𝑗) and finishes at 𝑓 𝑗  and has weight 𝑤!
•Two jobs compatible if they don’t overlap.
•Goal: find maximum weight subset of mutually compatible jobs.
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Weighted Job Scheduling by Induction

Suppose 1,… , 𝑛	are all jobs. Let us use induction:

IH: Suppose we can compute the optimum job scheduling for a set of 
jobs of size < 𝑛.

IS: Goal: For any 𝑛 jobs we can compute OPT.
Case 1: Job 𝑛 is not in OPT.
-- Then, just return OPT of 1,… , 𝑛 − 1.

Case 2: Job 𝑛 is in OPT.
-- Then, delete all jobs not compatible with n and recurse. 

Optimal Substructure: Optimal solution of a 
problem can be obtained from optimal 

solutions of smaller sub-problems



Dynamic Programming

Principle:
• Optimal substructure: Remove certain part of the optimal solution 

(for the entire problem) is an optimal solution of a subproblem
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Dynamic Programming

Principle:
• Optimal substructure: Remove certain part of the optimal solution 

(for the entire problem) is an optimal solution of a subproblem
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Dynamic Programming

Principle:
• Optimal substructure: Remove certain part of the optimal solution 

(for the entire problem) is an optimal solution of a subproblem
• Case analysis for optimal solution (e.g. weighted interval 

scheduling)

7
case 1: if n is not in the 

optimal solution

n



Dynamic Programming

Principle:
• Optimal substructure: Remove certain part of the optimal solution 

(for the entire problem) is an optimal solution of a subproblem
• Case analysis for optimal solution (e.g. weighted interval 

scheduling)
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Weighted Job Scheduling by Induction

Suppose 1,… , 𝑛	are all jobs. Let us use induction:

IH: Suppose we can compute the optimum job scheduling for a set of 
jobs of size < 𝑛.

IS: Goal: For any 𝑛 jobs we can compute OPT.
Case 1: Job 𝑛 is not in OPT.
-- Then, just return OPT of 1,… , 𝑛 − 1.

Case 2: Job 𝑛 is in OPT.
-- Then, delete all jobs not compatible with n and recurse. 

Major Problem: Too many subproblems need to compute. 

Optimal Substructure: Optimal solution of a 
problem can be obtained from optimal 

solutions of smaller sub-problems



Sorting to reduce Subproblems

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)
IS: For jobs 1,… , 𝑛 we want to compute OPT

Case 1: Suppose OPT has job 𝑛. 
• So, all jobs 𝑖 that are not compatible with 𝑛 are not OPT
• Let 𝑝(𝑛) = largest index 𝑖 < 𝑛 such that job 𝑖 is compatible with 𝑛.
• Then, we just need to find OPT of 1,… , 𝑝(𝑛)

Case 2: OPT does not select job 𝑛.
• Then, OPT is just the OPT of 1,… , 𝑛 − 1
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Take best of the two



Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)
Def 𝑂𝑃𝑇(𝑗) denote the weight of OPT solution of 1,… , 𝑗

To solve 𝑂𝑃𝑇(𝑗):
Case 1: 𝑂𝑃𝑇(𝑗) has job 𝑗. 
• So, all jobs 𝑖 that are not compatible with 𝑗 are not 𝑂𝑃𝑇(𝑗).
• Let 𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.
• So 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇 𝑝 𝑗 + 𝑤!.

Case 2: 𝑂𝑃𝑇(𝑗) does not select job 𝑗.
• Then, 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇(𝑗 − 1).

𝑂𝑃𝑇 𝑗 = 8
0	 if	𝑗 = 0	
max 𝑤! + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 	 o. w.
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The most important part of a correct DP; It fixes IH 

Dynamic programming equation



Algorithm
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Input: 𝒏, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

𝑶𝑷𝑻(𝒋) {
   if ( 𝒋 = 𝟎 )
      return 𝟎
   else
      return 𝒎𝒂𝒙	(𝒘𝒋 + 𝑶𝑷𝑻 𝒑 𝒋 , 𝑶𝑷𝑻 𝒋 − 𝟏 ).
}



Recursive Algorithm Fails

Even though we have only 𝑛 subproblems, we do not store the 
solution to the subproblems
ØSo, we may re-solve the same problem many many times.

Ex.  Number of recursive calls for family of "layered" instances 
grows exponentially
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Algorithm with Memoization

14

Input: 𝒏, 𝒔 𝟏 ,… , 𝒔(𝒏)  and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

for j = 1 to n
   M[j] = empty
M[0] = 0

𝑶𝑷𝑻(𝒋) {
   if (M[j] is empty)
      M[j] = 𝒎𝒂𝒙	(𝒘𝒋 + 𝑶𝑷𝑻 𝒑 𝒋 , 𝑶𝑷𝑻 𝒋 − 𝟏 ).
   return M[j]
}

Memorization.  Compute and Store the solution of each sub-problem  
in a cache the first time that you face it. lookup as needed.

In practice, you may get stack overflow if 𝑛 ≫ 10$ (depends on the language).



Bottom up Dynamic Programming
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Input: 𝒏, 𝒔 𝟏 ,… , 𝒔(𝒏)  and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

M[0] = 0
for j = 1 to n
   M[j] = 𝒎𝒂𝒙	(𝒘𝒋 +𝑴 𝒑 𝒋 ,𝑴 𝒋 − 𝟏 ).

Output M[n]

You can also avoid recursion
• recursion may be easier conceptually when you use induction

Claim: 𝑀[𝑗] is value of 𝑂𝑃𝑇(𝑗)

Binary search

O(n log n)

O(n)

O(n log n)



Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.
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Dynamic Programming

Principle:
• Optimal substructure: Remove certain part of the optimal solution 

(for the entire problem) is an optimal solution of a subproblem
• Typically, only a polynomial number of subproblems

Technique:
• Parameterization: Describe subproblems by parameters so that the 

optimal solution can be represented as a recurrence relation
• Memorization: Remember the solution of subproblems

Examples:
• Binary choice: weighted interval scheduling. 
• Multiway choice: segmented least squares.
• Multidimensional dynamic programming: knapsack 26



Segmented Least Squares
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Segmented Least Squares
Least squares.

• Foundational problem in statistic and numerical analysis.
• Given n points in the plane:  (x1, y1), (x2, y2) , . . . , (xn, yn).
• Find a line y = ax + b that minimizes the sum of the squared 

error: 

Solution.  Calculus  Þ min error is achieved when

  

€ 

SSE = (yi − axi −b)2
i=1

n
∑

  

€ 

a =
n xi yi − ( xi )i∑ ( yi )i∑i∑

n xi
2 − ( xi )

2
i∑i∑

, b =
yi − a xii∑i∑

n

x

y



Segmented Least Squares
Segmented least squares.

• Points lie roughly on a sequence of several line segments.
• Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with 
• x1 < x2 < ... < xn, find a sequence of lines that minimizes:

• the sum of the sums of the squared errors E in each segment
• the number of lines L

• Tradeoff function:  E + c L, for some constant c > 0.

x

y



Dynamic programming
Suppose we know the last segment
• If all the points in last segment are removed, then the 

remaining segments must be the optimal solution for the 
the remaining points

• Optimal substructure!

x

y



Dynamic Programming:  Multiway Choice
Notation.

OPT(j) = minimum cost for points p1, …., pi+1 , . . . , pj.
e(i, j)   = minimum sum of squares for points pi, pi+1 , . . . , pj.

To compute OPT(j):
Last segment uses points pi, pi+1 , . . . , pj for some i.
Cost = e(i, j) + c + OPT(i-1).

  

€ 

OPT( j) =
0 if  j = 0

min
1≤ i ≤ j

e(i, j) + c + OPT(i −1){ } otherwise
$ 
% 
& 

' & 



Segmented Least Squares:  Algorithm

Running time.  O(n3).
Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair using 
previous formula.

INPUT: n, p1,…,pN , c

Segmented-Least-Squares() {
   M[0] = 0
   for j = 1 to n
      for i = 1 to j
         compute the least square error eij for
         the segment pi,…, pj

   for j = 1 to n
      M[j] = min 1 £ i £ j (eij + c + M[i-1])

   return M[n]
}

can be improved to O(n2) by pre-computing various statistics


