
CS 401

Dynamic Programming

Xiaorui Sun

1



Weighted Interval Scheduling



Weighted Interval Scheduling

• Job 𝑗 starts at 𝑠(𝑗) and finishes at 𝑓 𝑗  and has weight 𝑤𝑗

•Two jobs compatible if they don’t overlap.

•Goal: find maximum weight subset of mutually compatible jobs.

3

Time

0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b



Dynamic Programming

Principle:

• Optimal substructure: Remove certain part of the optimal solution 

(for the entire problem) is an optimal solution of a subproblem

4

input

solution



Dynamic Programming

Principle:

• Optimal substructure: Remove certain part of the optimal solution 

(for the entire problem) is an optimal solution of a subproblem

5

subproblem

subproblem solution



Dynamic Programming

Principle:

• Optimal substructure: Remove certain part of the optimal solution 

(for the entire problem) is an optimal solution of a subproblem

• Case analysis for optimal solution (e.g. weighted interval 

scheduling)

6

case 1: if n is not in the 

optimal solution

n



Dynamic Programming

Principle:

• Optimal substructure: Remove certain part of the optimal solution 

(for the entire problem) is an optimal solution of a subproblem

• Case analysis for optimal solution (e.g. weighted interval 

scheduling)

7

case 2: if n is in the optimal 

solution



Weighted Job Scheduling by Induction

Suppose 1, … , 𝑛 are all jobs. Let us use induction:

IH: Suppose we can compute the optimum job scheduling for a set of 

jobs of size < 𝑛.

IS: Goal: For any 𝑛 jobs we can compute OPT.

Case 1: Job 𝑛 is not in OPT.

-- Then, just return OPT of 1, … , 𝑛 − 1.

Case 2: Job 𝑛 is in OPT.

-- Then, delete all jobs not compatible with n and recurse. 

Key question: Too many subproblems need to compute. 

Optimal Substructure: Optimal solution of a 

problem can be obtained from optimal 

solutions of smaller sub-problems

Take best of the two



Sorting to reduce Subproblems

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

IS: For jobs 1, … , 𝑛 we want to compute OPT

Case 1: Suppose OPT has job 𝑛. 

• So, all jobs 𝑖 that are not compatible with 𝑛 are not OPT

• Let 𝑝(𝑛) = largest index 𝑖 < 𝑛 such that job 𝑖 is compatible with 𝑛.

• Then, we just need to find OPT of 1, … , 𝑝(𝑛)

Case 2: OPT does not select job 𝑛.

• Then, OPT is just the OPT of 1, … , 𝑛 − 1

9

Take best of the two



Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

Def 𝑂𝑃𝑇(𝑗) denote the weight of OPT solution of 1, … , 𝑗

To solve 𝑂𝑃𝑇(𝑗):

Case 1: 𝑂𝑃𝑇(𝑗) has job 𝑗. 

• So, all jobs 𝑖 that are not compatible with 𝑗 are not 𝑂𝑃𝑇(𝑗).

• Let 𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

• So 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇 𝑝 𝑗 + 𝑤𝑗.

Case 2: 𝑂𝑃𝑇(𝑗) does not select job 𝑗.

• Then, 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇(𝑗 − 1).

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0 

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1  o. w.

10

The most important part of a correct DP; It fixes IH 

Dynamic programming equation



Algorithm with Memoization

11

Input: 𝒏, 𝒔 𝟏 , … , 𝒔(𝒏)  and 𝒇 𝟏 , … , 𝒇(𝒏) and 𝒘𝟏, … , 𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯ 𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

for j = 1 to n

   M[j] = empty

M[0] = 0

𝑶𝑷𝑻(𝒋) {
   if (M[j] is empty)

      M[j] = 𝒎𝒂𝒙 (𝒘𝒋 + 𝑶𝑷𝑻 𝒑 𝒋 , 𝑶𝑷𝑻 𝒋 − 𝟏 ).

   return M[j]

}

Memorization.  Compute and Store the solution of each sub-problem  

in a cache the first time that you face it. lookup as needed.

In practice, you may get stack overflow if 𝑛 ≫ 106 (depends on the language).

Dynamic programming: break 

complex problem down into simpler 

sub-problems in 

a recursive manner

(can be viewed as a generalization 

of divide and conquer)



Bottom up Dynamic Programming

12

Input: 𝒏, 𝒔 𝟏 , … , 𝒔(𝒏)  and 𝒇 𝟏 , … , 𝒇(𝒏) and 𝒘𝟏, … , 𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯ 𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

M[0] = 0

for j = 1 to n

   M[j] = 𝒎𝒂𝒙 (𝒘𝒋 + 𝑴 𝒑 𝒋 , 𝑴 𝒋 − 𝟏 ).

Output M[n]

You can also avoid recursion

• recursion may be easier conceptually when you use induction

Claim: 𝑀[𝑗] is value of 𝑂𝑃𝑇(𝑗)

Binary search

O(n log n)

O(n)

O(n log n)

Dynamic programming: break 

complex problem down into a 

sequence of decision steps over 

time (can be viewed as a 

generalization of greedy)



Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

0

 

0

OPT(j)p(j)𝑤𝑗j

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0 

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1  o. w.



Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

0

 

0

p(j)𝑤𝑗j

3

 

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0 

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1  o. w.



Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

0

 

0

p(j)𝑤𝑗j

3

 4

 

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0 

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1  o. w.



548

327

236

045

134

013

042

031

0

 

0

p(j)𝑤𝑗j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

 

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0 

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1  o. w.



548

327

236

045

134

013

042

031

0

 

0

p(j)𝑤𝑗j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

 
6

 

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0 

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1  o. w.



548

327

236

045

134

013

042

031

0

 

0

p(j)𝑤𝑗j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

 
6

 6

 

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0 

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1  o. w.



548

327

236

045

134

013

042

031

0

 

0

p(j)𝑤𝑗j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

 
6

 6

 7

 

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0 

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1  o. w.



548

327

236

045

134

013

042

031

0

 

0

p(j)𝑤𝑗j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

 
6

 6

 77

 7

 

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0 

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1  o. w.



548

327

236

045

134

013

042

031

0

 

0

p(j)𝑤𝑗j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

 
6

 6

 7

 7

 10

 

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0 

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1  o. w.



548

327

236

045

134

013

042

031

0

 

0

p(j)𝑤𝑗j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

 
6

 6

 7

 7

 10

 

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0 

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1  o. w.



Dynamic Programming

Principle:

• Optimal substructure: Remove certain part of the optimal solution 

(for the entire problem) is an optimal solution of a subproblem

• Typically, only a polynomial number of subproblems

Technique:

• Parameterization: Describe subproblems by parameters so that the 

optimal solution can be represented as a recurrence relation

• Memorization: Remember the solution of subproblems

Examples:

• Binary choice: weighted interval scheduling. 

• Multiway choice: segmented least squares.

• Multidimensional dynamic programming: knapsack 23



Segmented Least Squares



25

Segmented Least Squares

Least squares.

• Foundational problem in statistic and numerical analysis.

• Given n points in the plane:  (x1, y1), (x2, y2) , . . . , (xn, yn).

• Find a line y = ax + b that minimizes the sum of the squared 

error: 

Solution.  Calculus  Þ min error is achieved when

  

   

SSE = ( yi - axi - b)
2

i=1

n

å

  

   

a =
n xi yi - ( xi )iå ( yi )iåiå

n xi
2

- ( xi )
2

iåiå
, b =

yi - a xiiåiå

n

x

y



Segmented Least Squares

Segmented least squares.

• Points lie roughly on a sequence of several line segments.

• Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with 

• x1 < x2 < ... < xn, find a sequence of lines that minimizes:

• the sum of the sums of the squared errors E in each segment

• the number of lines L

• Tradeoff function:  E + c L, for some constant c > 0.

x

y



Dynamic programming

Suppose we know the last segment

• If all the points in last segment are removed, then the 

remaining segments must be the optimal solution for the 

the remaining points

• Optimal substructure!

x

y



Dynamic Programming:  Multiway Choice

Notation.

OPT(j) = minimum cost for points p1, …., pi+1 , . . . , pj.

e(i, j)   = minimum sum of squares for points pi, pi+1 , . . . , pj.

To compute OPT(j):

Last segment uses points pi, pi+1 , . . . , pj for some i.

Cost = e(i, j) + c + OPT(i-1).

  

   

OPT( j) =
0 if  j = 0

min
1£ i £ j

e(i, j) + c + OPT(i -1){ } otherwise

ì 
í 
ï 

î ï 



Segmented Least Squares:  Algorithm

Running time.  O(n3).

Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair using 

previous formula.

INPUT: n, p1,…,pN , c

Segmented-Least-Squares() {

   M[0] = 0

   for j = 1 to n

      for i = 1 to j

         compute the least square error eij for

         the segment pi,…, pj

   for j = 1 to n

      M[j] = min 1  i  j (eij + c + M[i-1])

   return M[n]

}

can be improved to O(n2) by pre-computing various statistics


	Slide 1: CS 401
	Slide 2: Weighted Interval Scheduling
	Slide 3: Weighted Interval Scheduling
	Slide 4: Dynamic Programming
	Slide 5: Dynamic Programming
	Slide 6: Dynamic Programming
	Slide 7: Dynamic Programming
	Slide 8: Weighted Job Scheduling by Induction
	Slide 9: Sorting to reduce Subproblems
	Slide 10: Weighted Job Scheduling by Induction
	Slide 11: Algorithm with Memoization
	Slide 12: Bottom up Dynamic Programming
	Slide 13: Example
	Slide 14: Example
	Slide 15: Example
	Slide 16: Example
	Slide 17: Example
	Slide 18: Example
	Slide 19: Example
	Slide 20: Example
	Slide 21: Example
	Slide 22: Example
	Slide 23: Dynamic Programming
	Slide 24: Segmented Least Squares
	Slide 25
	Slide 26: Segmented Least Squares
	Slide 27: Dynamic programming
	Slide 28: Dynamic Programming:  Multiway Choice
	Slide 29: Segmented Least Squares:  Algorithm

