
CS 401

Dynamic Programming
Xiaorui Sun

1

Weighted Interval Scheduling

Weighted Interval Scheduling

• Job 𝑗 starts at 𝑠(𝑗) and finishes at 𝑓 𝑗 and has weight 𝑤!
•Two jobs compatible if they don’t overlap.
•Goal: find maximum weight subset of mutually compatible jobs.

3
Time

0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

Weighted Job Scheduling by Induction

Suppose 1,… , 𝑛	are all jobs. Let us use induction:

IH: Suppose we can compute the optimum job scheduling for a set of
jobs of size < 𝑛.

IS: Goal: For any 𝑛 jobs we can compute OPT.
Case 1: Job 𝑛 is not in OPT.
-- Then, just return OPT of 1,… , 𝑛 − 1.

Case 2: Job 𝑛 is in OPT.
-- Then, delete all jobs not compatible with n and recurse.

Optimal Substructure: Optimal solution of a
problem can be obtained from optimal

solutions of smaller sub-problems

Dynamic Programming

Principle:
• Optimal substructure: Remove certain part of the optimal solution

(for the entire problem) is an optimal solution of a subproblem

5

input

solution

Dynamic Programming

Principle:
• Optimal substructure: Remove certain part of the optimal solution

(for the entire problem) is an optimal solution of a subproblem

6

subproblem

subproblem solution

Dynamic Programming

Principle:
• Optimal substructure: Remove certain part of the optimal solution

(for the entire problem) is an optimal solution of a subproblem
• Case analysis for optimal solution (e.g. weighted interval

scheduling)

7
case 1: if n is not in the

optimal solution

n

Dynamic Programming

Principle:
• Optimal substructure: Remove certain part of the optimal solution

(for the entire problem) is an optimal solution of a subproblem
• Case analysis for optimal solution (e.g. weighted interval

scheduling)

8
case 2: if n is in the optimal

solution

Weighted Job Scheduling by Induction

Suppose 1,… , 𝑛	are all jobs. Let us use induction:

IH: Suppose we can compute the optimum job scheduling for a set of
jobs of size < 𝑛.

IS: Goal: For any 𝑛 jobs we can compute OPT.
Case 1: Job 𝑛 is not in OPT.
-- Then, just return OPT of 1,… , 𝑛 − 1.

Case 2: Job 𝑛 is in OPT.
-- Then, delete all jobs not compatible with n and recurse.

Major Problem: Too many subproblems need to compute.

Optimal Substructure: Optimal solution of a
problem can be obtained from optimal

solutions of smaller sub-problems

Sorting to reduce Subproblems

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)
IS: For jobs 1,… , 𝑛 we want to compute OPT

Case 1: Suppose OPT has job 𝑛.
• So, all jobs 𝑖 that are not compatible with 𝑛 are not OPT
• Let 𝑝(𝑛) = largest index 𝑖 < 𝑛 such that job 𝑖 is compatible with 𝑛.
• Then, we just need to find OPT of 1,… , 𝑝(𝑛)

Case 2: OPT does not select job 𝑛.
• Then, OPT is just the OPT of 1,… , 𝑛 − 1

10

Take best of the two

Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)
Def 𝑂𝑃𝑇(𝑗) denote the weight of OPT solution of 1,… , 𝑗

To solve 𝑂𝑃𝑇(𝑗):
Case 1: 𝑂𝑃𝑇(𝑗) has job 𝑗.
• So, all jobs 𝑖 that are not compatible with 𝑗 are not 𝑂𝑃𝑇(𝑗).
• Let 𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.
• So 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇 𝑝 𝑗 + 𝑤!.

Case 2: 𝑂𝑃𝑇(𝑗) does not select job 𝑗.
• Then, 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇(𝑗 − 1).

𝑂𝑃𝑇 𝑗 = 8
0	 if	𝑗 = 0	
max 𝑤! + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 	 o. w.

11

The most important part of a correct DP; It fixes IH

Dynamic programming equation

Algorithm

12

Input: 𝒏, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

𝑶𝑷𝑻(𝒋) {
 if (𝒋 = 𝟎)
 return 𝟎
 else
 return 𝒎𝒂𝒙	(𝒘𝒋 + 𝑶𝑷𝑻 𝒑 𝒋 , 𝑶𝑷𝑻 𝒋 − 𝟏).
}

Recursive Algorithm Fails

Even though we have only 𝑛 subproblems, we do not store the
solution to the subproblems
ØSo, we may re-solve the same problem many many times.

Ex. Number of recursive calls for family of "layered" instances
grows exponentially

13

3
4

5

1
2

𝑝 1 = 0, 𝑝 𝑗 = 𝑗 − 2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

Algorithm with Memoization

14

Input: 𝒏, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

for j = 1 to n
 M[j] = empty
M[0] = 0

𝑶𝑷𝑻(𝒋) {
 if (M[j] is empty)
 M[j] = 𝒎𝒂𝒙	(𝒘𝒋 + 𝑶𝑷𝑻 𝒑 𝒋 , 𝑶𝑷𝑻 𝒋 − 𝟏).
 return M[j]
}

Memorization. Compute and Store the solution of each sub-problem
in a cache the first time that you face it. lookup as needed.

In practice, you may get stack overflow if 𝑛 ≫ 10$ (depends on the language).

Bottom up Dynamic Programming

15

Input: 𝒏, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

M[0] = 0
for j = 1 to n
 M[j] = 𝒎𝒂𝒙	(𝒘𝒋 +𝑴 𝒑 𝒋 ,𝑴 𝒋 − 𝟏).

Output M[n]

You can also avoid recursion
• recursion may be easier conceptually when you use induction

Claim: 𝑀[𝑗] is value of 𝑂𝑃𝑇(𝑗)

Binary search

O(n log n)

O(n)

O(n log n)

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

0

0

OPT(j)p(j)𝑤%j

𝑂𝑃𝑇 𝑗 = +
0	 if	𝑗 = 0	
max 𝑤! + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 	 o. w.

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

0

0

p(j)𝑤%j

3

OPT(j)

𝑂𝑃𝑇 𝑗 = +
0	 if	𝑗 = 0	
max 𝑤! + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 	 o. w.

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

0

0

p(j)𝑤%j

3

 4

OPT(j)

𝑂𝑃𝑇 𝑗 = +
0	 if	𝑗 = 0	
max 𝑤! + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 	 o. w.

548

327

236

045

134

013

042

031

0

0

p(j)𝑤%j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

OPT(j)

𝑂𝑃𝑇 𝑗 = +
0	 if	𝑗 = 0	
max 𝑤! + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 	 o. w.

548

327

236

045

134

013

042

031

0

0

p(j)𝑤%j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

 6

OPT(j)

𝑂𝑃𝑇 𝑗 = +
0	 if	𝑗 = 0	
max 𝑤! + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 	 o. w.

548

327

236

045

134

013

042

031

0

0

p(j)𝑤%j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

 6

 6

OPT(j)

𝑂𝑃𝑇 𝑗 = +
0	 if	𝑗 = 0	
max 𝑤! + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 	 o. w.

548

327

236

045

134

013

042

031

0

0

p(j)𝑤%j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

 6

 6

 7

OPT(j)

𝑂𝑃𝑇 𝑗 = +
0	 if	𝑗 = 0	
max 𝑤! + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 	 o. w.

548

327

236

045

134

013

042

031

0

0

p(j)𝑤%j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

 6

 6

 77
 7

OPT(j)

𝑂𝑃𝑇 𝑗 = +
0	 if	𝑗 = 0	
max 𝑤! + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 	 o. w.

548

327

236

045

134

013

042

031

0

0

p(j)𝑤%j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

 6

 6

 7

 7

 10

OPT(j)

𝑂𝑃𝑇 𝑗 = +
0	 if	𝑗 = 0	
max 𝑤! + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 	 o. w.

548

327

236

045

134

013

042

031

0

0

p(j)𝑤%j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

 6

 6

 7

 7

 10

OPT(j)

𝑂𝑃𝑇 𝑗 = +
0	 if	𝑗 = 0	
max 𝑤! + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 	 o. w.

Dynamic Programming

Principle:
• Optimal substructure: Remove certain part of the optimal solution

(for the entire problem) is an optimal solution of a subproblem
• Typically, only a polynomial number of subproblems

Technique:
• Parameterization: Describe subproblems by parameters so that the

optimal solution can be represented as a recurrence relation
• Memorization: Remember the solution of subproblems

Examples:
• Binary choice: weighted interval scheduling.
• Multiway choice: segmented least squares.
• Multidimensional dynamic programming: knapsack 26

Segmented Least Squares

28

Segmented Least Squares
Least squares.

• Foundational problem in statistic and numerical analysis.
• Given n points in the plane: (x1, y1), (x2, y2) , . . . , (xn, yn).
• Find a line y = ax + b that minimizes the sum of the squared

error:

Solution. Calculus Þ min error is achieved when

€

SSE = (yi − axi −b)2
i=1

n
∑

€

a =
n xi yi − (xi)i∑ (yi)i∑i∑

n xi
2 − (xi)

2
i∑i∑

, b =
yi − a xii∑i∑

n

x

y

Segmented Least Squares
Segmented least squares.

• Points lie roughly on a sequence of several line segments.
• Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with
• x1 < x2 < ... < xn, find a sequence of lines that minimizes:

• the sum of the sums of the squared errors E in each segment
• the number of lines L

• Tradeoff function: E + c L, for some constant c > 0.

x

y

Dynamic programming
Suppose we know the last segment
• If all the points in last segment are removed, then the

remaining segments must be the optimal solution for the
the remaining points

• Optimal substructure!

x

y

Dynamic Programming: Multiway Choice
Notation.

OPT(j) = minimum cost for points p1, …., pi+1 , . . . , pj.
e(i, j) = minimum sum of squares for points pi, pi+1 , . . . , pj.

To compute OPT(j):
Last segment uses points pi, pi+1 , . . . , pj for some i.
Cost = e(i, j) + c + OPT(i-1).

€

OPT(j) =
0 if j = 0

min
1≤ i ≤ j

e(i, j) + c + OPT(i −1){ } otherwise
$
%
&

' &

Segmented Least Squares: Algorithm

Running time. O(n3).
Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair using
previous formula.

INPUT: n, p1,…,pN , c

Segmented-Least-Squares() {
 M[0] = 0
 for j = 1 to n
 for i = 1 to j
 compute the least square error eij for
 the segment pi,…, pj

 for j = 1 to n
 M[j] = min 1 £ i £ j (eij + c + M[i-1])

 return M[n]
}

can be improved to O(n2) by pre-computing various statistics

