## CS 401

# Dynamic Programming: <br> Knapsack / RNA Secondary Structure 

Xiaorui Sun

## Stuff

Homework 4 will be released later today

Knapsack Problem

## Knapsack Problem

Given $n$ objects and a "knapsack." Item $i$ weighs $w_{i}>0$ kilograms and has value $v_{i}>0$. Knapsack has capacity of $W$ kilograms.
Goal: fill knapsack so as to maximize total value.

Ex: OPT is $\{3,4\}$ with value 40 .

|  | Item | Value | Weight |
| :---: | :---: | :---: | :---: |
|  | 1 | 1 | 1 |
| $W=11$ | 2 | 6 | 2 |
|  | 3 | 18 | 5 |
|  | 4 | 22 | 6 |
|  | 5 | 28 | 7 |

Greedy: repeatedly add item with maximum ratio $v_{i} / w_{i}$.
Ex: $\{5,2,1\}$ achieves only value $=35 \Rightarrow$ greedy not optimal.

## First Attempt

Def $O P T(i)=$ max profit subset of items $1, \ldots, i$.

Case 1: OPT does not select item $i$.

- OPT selects best of $\{1,2, \ldots, i-1\}$

Case 2: OPT selects item $i$.

- accepting item $i$ does not immediately imply that we will have to reject other items
- without knowing what other items were selected before $i$, we don't even know if we have enough room for $i$


## Stronger DP (New Variable)

Let $O P T(i, w)=$ Max value of subsets of items $1, \ldots, i$ of weight $\leq w$
Case 1: $\operatorname{OPT}(i, w)$ selects item $i$

- In this case, $\operatorname{OPT}(i, w)=v_{i}+\operatorname{OPT}\left(i-1, w-w_{i}\right)$

Case 2: OPT $(i, w)$ does not select item $i$


- In this case, $\operatorname{OPT}(i, w)=O P T(i-1, w)$.

Therefore,

$$
\operatorname{OPT}(i, w)= \begin{cases}0 & \text { If } i=0 \\ \operatorname{OPT}(i-1, w) & \text { If } w_{i}>w \\ \max \left(\operatorname{OPT}(i-1, w), v_{i}+\operatorname{OPT}\left(i-1, w-w_{i}\right)\right) & \text { o.w. }\end{cases}
$$

## DP for Knapsack

```
Compute-OPT (i,w)
    if \(M[i, w]==\) empty
        if (i==0)
        M \([\mathbf{i}, w]=0\)
    recursive
    else if ( \(\left.w_{i}>w\right)\)
        M[i,w]=Comp-OPT(i-1,w)
    else
        M[i,w]= max \(\left\{\operatorname{Comp-OPT}(i-1, w), v_{i}+\operatorname{Comp-OPT}\left(i-1, w-w_{i}\right)\right\}\)
    return \(M[i, w]\)
```

```
for \(w=0\) to \(W\)
    \(\mathrm{M}[0, \mathrm{w}]=0\)
for \(i=1\) to \(n\)
    for \(w=1\) to \(W\)
        if ( \(\left.w_{i}>w\right)\)
        \(\mathrm{M}[\mathrm{i}, \mathrm{w}]=\mathrm{M}[\mathrm{i}-1, \mathrm{w}]\)
        else
        \(M[i, w]=\max \left\{M[i-1, w], v_{i}+M\left[i-1, w-w_{i}\right]\right\}\)

\section*{DP for Knapsack}
\[
w+1
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline & \(\phi\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & \{1\} & 0 & & & & & & & & & & & \\
\hline \(n+1\) & \{1,2 \} & 0 & & & & & & & & & & & \\
\hline & \{ \(1,2,3\) \} & 0 & & & & & & & & & & & \\
\hline & \(\{1,2,3,4\}\) & 0 & & & & & & & & & & & \\
\hline \(\downarrow\) & \(\{1,2,3,4,5\}\) & 0 & & & & & & & & & & & \\
\hline
\end{tabular}
\[
W=11
\]
\[
\begin{aligned}
& \text { if }\left(w_{i}>w\right) \\
& \quad M[i, w]=\operatorname{m}[i-1, w] \\
& \text { else } \\
& \quad M[i, w]=\max \left\{M[i-1, w], v_{i}+M\left[i-1, w-w_{i}\right]\right\}
\end{aligned}
\]
\begin{tabular}{|c|c|c|}
\hline Item & Value & Weight \\
\hline 1 & 1 & 1 \\
\hline 2 & 6 & 2 \\
\hline 3 & 18 & 5 \\
\hline 4 & 22 & 6 \\
\hline 5 & 28 & 7 \\
\hline
\end{tabular}

\section*{DP for Knapsack}
\[
w+1
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline & \(\phi\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & \{ 1 \} & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \(n+1\) & \{ 1,2 \} & 0 & & & & & & & & & & & \\
\hline & \{ 1, 2, 3 \} & 0 & & & & & & & & & & & \\
\hline & \(\{1,2,3,4\}\) & 0 & & & & & & & & & & & \\
\hline & \(\{1,2,3,4,5\}\) & 0 & & & & & & & & & & & \\
\hline
\end{tabular}
\[
W=11
\]
\[
\begin{aligned}
& \text { if }\left(w_{i}>w\right) \\
& \quad M[i, w]=\operatorname{m}[i-1, w] \\
& \text { else } \\
& \quad M[i, w]=\max \left\{M[i-1, w], v_{i}+M\left[i-1, w-w_{i}\right]\right\}
\end{aligned}
\]
\begin{tabular}{|c|c|c|}
\hline Item & Value & Weight \\
\hline 1 & 1 & 1 \\
\hline 2 & 6 & 2 \\
\hline 3 & 18 & 5 \\
\hline 4 & 22 & 6 \\
\hline 5 & 28 & 7 \\
\hline
\end{tabular}

\section*{DP for Knapsack}
\[
\ldots \quad W+1
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline & \(\phi\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & \{1\} & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \(n+1\) & \{ 1,2 \} & 0 & 1 & 6 & 7 & & & & & & & & \\
\hline & \(\{1,2,3\}\) & 0 & 1 & & & & & & & & & & \\
\hline & \(\{1,2,3,4\}\) & 0 & 1 & & & & & & & & & & \\
\hline \(\downarrow\) & \(\{1,2,3,4,5\}\) & 0 & 1 & & & & & & & & & & \\
\hline
\end{tabular}
\[
\text { OPT: }\{4,3\}
\]
\[
\text { value }=22+18=40
\]
\[
W=11
\]
\[
\begin{aligned}
& \text { if }\left(w_{i}>w\right) \\
& \quad M[i, w]=M[i-1, w] \\
& \text { else } \\
& \quad M[i, w]=\max \left\{M[i-1, w], v_{i}+M\left[i-1, w-w_{i}\right]\right\}
\end{aligned}
\]
\begin{tabular}{|c|c|c|}
\hline Item & Value & Weight \\
\hline 1 & 1 & 1 \\
\hline 2 & 6 & 2 \\
\hline 3 & 18 & 5 \\
\hline 4 & 22 & 6 \\
\hline 5 & 28 & 7 \\
\hline
\end{tabular}

\section*{DP for Knapsack}
\[
\ldots \quad W+1
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline & \(\phi\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & \{1\} & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \(n+1\) & \{ 1,2 \} & 0 & 1 & 6 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
\hline & \(\{1,2,3\}\) & 0 & 1 & 6 & 7 & 7 & 18 & 19 & & & & & \\
\hline & \(\{1,2,3,4\}\) & 0 & 1 & & & & & & & & & & \\
\hline \(\downarrow\) & \(\{1,2,3,4,5\}\) & 0 & 1 & & & & & & & & & & \\
\hline
\end{tabular}

OPT: \(\{4,3\}\)
\[
\text { value }=22+18=40
\]
\(W=11\)
\[
\begin{aligned}
& \text { if }\left(w_{i}>w\right) \\
& \quad M[i, w]=M[i-1, w] \\
& \text { else } \\
& \quad M[i, w]=\max \left\{M[i-1, w], v_{i}+M\left[i-1, w-w_{i}\right]\right\}
\end{aligned}
\]
\begin{tabular}{|c|c|c|}
\hline Item & Value & Weight \\
\hline 1 & 1 & 1 \\
\hline 2 & 6 & 2 \\
\hline 3 & 18 & 5 \\
\hline 4 & 22 & 6 \\
\hline 5 & 28 & 7 \\
\hline
\end{tabular}

\section*{DP for Knapsack}

W+1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|} 
& & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{c}
11 \\
\hline\(n+1\) \\
\end{tabular}

OPT: \(\{4,3\}\)
value \(=22+18=40\)
\(W=11\)
\[
\begin{aligned}
& \text { if }\left(w_{i}>w\right) \\
& \quad M[i, w]=M[i-1, w] \\
& \text { else } \\
& \quad M[i, w]=\max \left\{M[i-1, w], v_{i}+M\left[i-1, w-w_{i}\right]\right\}
\end{aligned}
\]
\begin{tabular}{|c|c|c|}
\hline Item & Value & Weight \\
\hline 1 & 1 & 1 \\
\hline 2 & 6 & 2 \\
\hline 3 & 18 & 5 \\
\hline 4 & 22 & 6 \\
\hline 5 & 28 & 7 \\
\hline
\end{tabular}

\section*{DP for Knapsack}

W+1


\section*{DP Ideas so far}
- You may have to strengthen DP, equivalently the induction, i.e., you have may have to carry more information to find the Optimum.
- This means that sometimes we may have to use two dimensional or three dimensional induction
- Is this dynamic algorithm a polynomial time algorithm for knapsack?
- No
- For an input of \(N\) bits, \(W\) can be as large as \(2^{N}\)
- Knapsack problem is actually NP-complete

\section*{RNA Secondary Structure}

\section*{RNA Secondary Structure}

RNA: A String \(B=b_{1} b_{2} \ldots b_{n}\) over alphabet \(\{A, C, G, U\}\).
Secondary structure. RNA is single-stranded so it tends to loop back and form base pairs with itself. This structure is essential for understanding behavior of molecule.

Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA


\section*{RNA Secondary Structure (Formal)}

Secondary structure. A set of pairs \(S=\left\{\left(b_{i}, b_{j}\right)\right\}\) that satisfy:
[Watson-Crick.]
- \(S\) is a matching and
- each pair in \(S\) is a Watson-Crick pair: \(A-U, U-A, C-G\), or \(G-C\).
[No sharp turns.]: The ends of each pair are separated by at least 4 intervening bases. If \(\left(b_{i}, b_{j}\right) \in S\), then \(i<j-4\).
[Non-crossing.] If \(\left(b_{i}, b_{j}\right)\) and \(\left(b_{k}, b_{l}\right)\) are two pairs in \(S\), then we cannot have \(i<k<j<l\).

\section*{Secondary Structure (Examples)}




\section*{RNA Secondary Structure (Formal)}

Secondary structure. A set of pairs \(S=\left\{\left(b_{i}, b_{j}\right)\right\}\) that satisfy:
[Watson-Crick.]
- \(S\) is a matching and
- each pair in \(S\) is a Watson-Crick pair: \(A-U, U-A, C-G\), or \(G-C\).
[No sharp turns.]: The ends of each pair are separated by at least 4 intervening bases. If \(\left(b_{i}, b_{j}\right) \in S\), then \(i<j-4\).
[Non-crossing.] If \(\left(b_{i}, b_{j}\right)\) and \(\left(b_{k}, b_{l}\right)\) are two pairs in \(S\), then we cannot have \(i<k<j<l\).

Free energy: Usual hypothesis is that an RNA molecule will maximize total free energy.
approximate by number of base pairs
Goal: Given an RNA molecule \(B=b_{1} b_{2} \ldots b_{n}\), find a secondary structure \(S\) that maximizes the number of base pairs.

\section*{DP: First Attempt}

First attempt. Let \(O P T(n)=\) maximum number of base pairs in a secondary structure of the substring \(b_{1} b_{2} \ldots b_{n}\).

Suppose \(b_{n}\) is matched with \(b_{t}\) in \(\operatorname{OPT}(n)\).
What IH should we use?
match \(b_{+}\)and \(b_{n}\)


Difficulty: This naturally reduces to two subproblems
- Finding secondary structure in \(b_{1}, \ldots, b_{t-1}\), i.e., OPT(t-1)
- Finding secondary structure in \(b_{t+1}, \ldots, b_{n-1}\), ???

\section*{DP: Second Attempt}

Definition: \(O P T(i, j)=\) maximum number of base pairs in a secondary structure of thesubstring \(b_{i}, b_{i+1}, \ldots, b_{j}\)

The most important part of a correct DP; It fixes IH
Case 1: If \(j-i \leq 4\).
- \(O P T(i, j)=0\) by no-sharp turns condition.

Case 2: Base \(b_{j}\) is not involved in a pair.
- \(O P T(i, j)=O P T(i, j-1)\)

Case 3: Base \(b_{j}\) pairs with \(b_{t}\) for some \(i \leq t<j-4\)
- non-crossing constraint decouples resulting sub-problems
- \(\operatorname{OPT}(i, j)=\max _{i \leq t<j-4}\{1+O P T(i, t-1)+O P T(t+1, j-1)\}\)

\section*{Recursive Code}
```

Let M[i,j]=empty for all i,j.
Compute-OPT(i,j) {
if (j-i <= 4)
return 0;
if (M[i,j] is empty)
M[i,j]=Compute-OPT(i,j-1)
for t=i to j-5 do
if (b}\mp@subsup{b}{t}{},\mp@subsup{b}{j}{}\mathrm{ is in {A-U, U-A, C-G, G-C})
M[i,j]=max(M[i,j], 1+Compute-OPT(i,t-1) +
Compute-OPT(t+1,j-1))
return M[j]
}

```

Does this code terminate?
What are we inducting on?
Key question: is there any loop in the recursion?

\section*{Formal Induction}

Let \(O P T(i, j)=\) maximum number of base pairs in a secondary structure of the substring \(b_{i}, b_{i+1}, \ldots, b_{j}\)
Base Case: \(\operatorname{OPT}(i, j)=0\) for all \(i, j\) where \(|j-i| \leq 4\).
IH: For some \(\ell \geq 4\), Suppose we have computed \(\operatorname{OPT}(i, j)\) for all \(i, j\) where \(|i-j| \leq \ell\).

IS: Goal: We find \(O P T(i, j)\) for all \(i, j\) where \(|i-j|=\ell+1\). Fix \(i, j\) such that \(|i-j|=\ell+1\).
Case 1: Base \(b_{j}\) is not involved in a pair.
- \(\operatorname{OPT}(i, j)=\operatorname{OPT}(i, j-1)\) [this we know by IH since \(|i-(j-1)|=\ell]\)

Case 2: Base \(b_{j}\) pairs with \(b_{t}\) for some \(i \leq t<j-4\)
- \(O P T(i, j)=\max _{i \leq t<j-4}\{1+O P T(i, t-1)+O P T(t+1, j-1)\}\)

\section*{Bottom-up DP}
```

for $l=1,2, \ldots, n-1$
for $i=1,2, \ldots, n-1$
$j=i+\ell$
if ( $\ell<=4$ )
M[i,j]=0;
else

```

```

            \(M[i, j]=M[i, j-1]\)
            j
            for \(t=i\) to \(j-5\) do
                if \(\left(b_{t}, b_{j}\right.\) is in \(\left.\{A-U, U-A, C-G, G-C\}\right)\)
                \(M[i, j]=\max (M[i, j], 1+M[i, t-1]+M[t+1, j-1])\)
    return \(M[1, \mathrm{n}]\)
    \}

```

Running Time: \(O\left(n^{3}\right)\)

\section*{Lesson}

We may not always induct on \(i\) or \(w\) to get to smaller subproblems.

We may have to induct on \(|i-j|\) or \(i+j\) when we are dealing with more complex problems.```

