CS 401

Dynamic Programming Sequence Alignment / Shortest Path

Xiaorui Sun

Sequence Alignment

Word Alignment

How similar are two strings?

ocurrance

occurrence

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps

Edit Distance

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970] Cost = # of gaps + #mismatches.

Applications.

- Basis for Unix diff and Word correct in editors.
- Speech recognition.
- Computational biology.

Sequence Alignment

Given two strings $x_1, ..., x_m$ and $y_1, ..., y_n$ find an alignment with minimum number of mismatch and gaps.

An alignment is a set of ordered pairs $(x_{i_1}, y_{j_1}), (x_{i_2}, y_{j_2}), \dots$ such that $i_1 < i_2 < \cdots$ and $j_1 < j_2 < \cdots$

Example: CTACCG VS. TACATG. Sol: We aligned $x_2-y_1, x_3-y_2, x_4-y_3, x_5-y_4, x_6-y_6$.

So, the cost is 3.

Optimal Substructure for String Alignment

Example: CTACCG **VS.** TACATG.

Observation:

- Without last column, it is optimal alignment for CTACC VS. TACAT
- Without last two columns, it is optimal alignment for CTACC VS. TACA

• •••

DP for Sequence Alignment

Let OPT(i, j) be min cost of aligning x_1, \dots, x_i and y_1, \dots, y_j

Case 1: OPT matches x_i, y_j

• Then, pay mis-match cost if $x_i \neq y_j$ + min cost of aligning x_1, \dots, x_{i-1} and y_1, \dots, y_{j-1} i.e., OPT(i-1, j-1)

Case 2: OPT leaves x_i unmatched

• Then, pay gap cost for $x_i + OPT(i - 1, j)$

Case 3: OPT leaves y_i unmatched

• Then, pay gap cost for $y_j + OPT(i, j - 1)$

 $M[i, j] = min((x_i=y_j? 0:1) + M[i-1, j-1], 1 + M[i-1, j], 1 + M[i, j-1])$

What is the order of induction? (i.e. why there is no loop?)

Figure 6.17 A graph-based picture of sequence alignment.

Bottom-up DP

Analysis: $\Theta(mn)$ time and space. English words or sentences: m, n $\leq 10,...,20$. Computational biology: m = n = 100,000. 10 billions ops OK, but 10GB array?

Optimizing Memory

If we are not using strong induction in the DP, we just need to use the last (row) of computed values.

DP with O(m + n) memory

- Keep an Old array containing values of the last row
- Fill out the new values in a New array
- Copy new to old at the end of the loop

Generalize edit distance

What if the cost of mismatches and gaps are different?

If the cost of mismatch is 1 and the cost of gap is 10,

Generalize dynamic programming for edit distance

Shortest Paths with Negative Edge Weights

Shortest Paths with Neg Edge Weights

Given a weighted directed graph G = (V, E) and a source vertex s, where the weight of edge (u,v) is $c_{u,v}$ (that can be negative) Goal: Find the shortest path from s to all vertices of G.

Recall that Dikjstra's Algorithm fails when weights are negative

Impossibility on Graphs with Neg Cycles

Observation: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the cycle again and again.

So, suppose G does not have a negative cycle.

DP for Shortest Path (First Attempt)

Def: Let OPT(v) be the length of the shortest s - v path

$$OPT(v) = \begin{cases} 0 & \text{if } v = s \\ \min_{u:(u,v) \text{ an edge}} OPT(u) + c_{u,v} \end{cases}$$

The formula is correct. But it is not clear how to compute it.

DP for Shortest Path

Def: Let OPT(v, i) be the length of the shortest s - v path with at most *i* edges.

Let us characterize OPT(v, i).

Case 1: OPT(v, i) path has less than *i* edges.

• Then, OPT(v, i) = OPT(v, i - 1).

Case 2: OPT(v, i) path has exactly *i* edges.

- Let $s, v_1, v_2, \dots, v_{i-1}, v$ be the OPT(v, i) path with i edges.
- Then, $s, v_1, ..., v_{i-1}$ must be the shortest $s v_{i-1}$ path with at most i 1 edges. So, $OPT(v, i) = OPT(v_{i-1}, i - 1) + c_{v_{i-1}, v}$

DP for Shortest Path

Def: Let OPT(v, i) be the length of the shortest s - v path with at most *i* edges.

$$OPT(v,i) = \begin{cases} 0 & \text{if } v = s \\ \infty & \text{if } v \neq s, i = 0 \\ \min(OPT(v,i-1), \min_{u:(u,v) \text{ an edge}} OPT(u,i-1) + c_{u,v}) \end{cases}$$

So, for every v, OPT(v,?) is the shortest path from s to v. But how long do we have to run? Since G has no negative cycle, it has at most n - 1 edges. So, OPT(v, n - 1) is the answer.

Bellman Ford Algorithm

for v=1 to n if $v \neq s$ then $M[v,0] = \infty$ M[s,0] = 0.

```
for i=1 to n-1
for v=1 to n
  M[v,i]=M[v,i-1
  for every edge
  M[v,i]=min(
```

	Complexity	Author
	$O(n^4)$	Shimbel (1955) [30]
	$O(Wn^2m)$	Ford (1956) [14]
*	O(nm)	Bellman (1958) [1], Moore (1959) [25]
	$O(n^{\frac{3}{4}}m\log W)$	Gabow (1983) [9]
	$O(\sqrt{n}m\log(nW))$	Gabow and Tarjan (1989) [10]
*	$O(\sqrt{n}m\log(W))$	Goldberg (1993) [12]
*	$ ilde{O}(Wn^\omega)$	Sankowski (2005) [27] Yuster and Zwick (2005) [35]
*	$\tilde{O}(m^{10/7}\log W)$	Cohen, Madry, Sankowski, Vladu (2016)

Table 1: The complexity results for the SSSP problem with negative weights (* indicates asymptotically the best bound for some range of parameters).

 $m^{1+o(1)}\log W$ algorithm By Bernstein, Nanongkai, and Wulff-Nilsen; Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva 2022

Running Time: O(nm)

Can we test if G has negative cycles? Yes, run for i=1...3n and see if the M[v,n-1] is different from M[v,3n]

DP Techniques Summary

Principle:

- Optimal substructure: Remove certain part of the optimal solution (for the entire problem) is an optimal solution of a subproblem
- Carefully define a collection of subproblems. Typically, only a polynomial number of subproblems
- Parameterization/Memorization

Recipe:

- Find optimal substructure by investigating the optimal solution
- Find out additional assumptions/variables/subproblems that you need to do the induction
- Strengthen the hypothesis and define w.r.t. new subproblems

Dynamic programming techniques.

- Adding a new variable: knapsack.
- Order subproblems in the right way: RNA secondary structure/String Alignment