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Sequence Alignment



Word Alignment

How similar are two strings?

ocurrance

occurrence
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o c u r r a n c e

c c u r r e n c eo

-

o c u r r n c e

c c u r r n c eo

- - a

e -

o c u r r a n c e

c c u r r e n c eo

-

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps



Edit Distance

Edit distance.  [Levenshtein 1966, Needleman-Wunsch 1970]

   Cost = # of gaps + #mismatches.

Applications.

• Basis for Unix diff and Word correct in editors.

• Speech recognition.

• Computational biology.
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Sequence Alignment

Given two strings 𝑥1, … , 𝑥𝑚 and 𝑦1, … , 𝑦𝑛 find an alignment 
with minimum number of mismatch and gaps.

An alignment is a set of ordered pairs (𝑥𝑖1
, 𝑦𝑗1

), 𝑥𝑖2
, 𝑦𝑗2

, … such 

that 𝑖1 < 𝑖2 < ⋯ and 𝑗1 < 𝑗2 < ⋯

Example: CTACCG vs. TACATG.
Sol:  We aligned 
x2-y1, x3-y2, x4-y3, x5-y4, x6-y6.

So, the cost is 3. 
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Optimal Substructure for String Alignment

Example: CTACCG vs. TACATG.

Observation: 
• Without last column, it is optimal alignment for CTACC 

vs. TACAT
• Without last two columns, it is optimal alignment for 
CTACC vs. TACA

• …
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DP for Sequence Alignment

Let 𝑂𝑃𝑇(𝑖, 𝑗) be min cost of aligning 𝑥1, … , 𝑥𝑖 and 𝑦1, … , 𝑦𝑗

Case 1: OPT matches 𝑥𝑖 , 𝑦𝑗

• Then, pay mis-match cost if 𝑥𝑖 ≠ 𝑦𝑗 + min cost of aligning 

𝑥1, … , 𝑥𝑖−1 and 𝑦1, … , 𝑦𝑗−1  i.e., 𝑂𝑃𝑇(𝑖 − 1, 𝑗 − 1)

Case 2: OPT leaves 𝑥𝑖 unmatched
• Then, pay gap cost for 𝑥𝑖 + 𝑂𝑃𝑇 𝑖 − 1, 𝑗

Case 3: OPT leaves 𝑦𝑗 unmatched

• Then, pay gap cost for 𝑦𝑗 + 𝑂𝑃𝑇(𝑖, 𝑗 − 1)
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Induction

What is the order of induction? (i.e. why there is no loop?)

8

M[i, j] = min( (xi=yj ? 0:1) + M[i-1, j-1],

                       1 + M[i-1, j],

                       1 + M[i, j-1])



Bottom-up DP
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Sequence-Alignment(m, n, x1x2...xm, y1y2...yn) {

   for i = 0 to m

      M[0, i] = i

   for j = 0 to n

      M[j, 0] = j

   for i = 1 to m

      for j = 1 to n

         M[i, j] = min( (xi=yj ? 0:1) + M[i-1, j-1],

                       1 + M[i-1, j],

                       1 + M[i, j-1])

   return M[m, n]

}

Analysis: Θ(𝑚𝑛) time and space.

English words or sentences:  m, n   10,..,20.

Computational biology:  m = n = 100,000. 10 billions ops OK, 

         but 10GB array?



Optimizing Memory

If we are not using strong induction in the DP, we just need to 

use the last (row) of computed values.
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Sequence-Alignment(m, n, x1x2...xm, y1y2...yn) {

   for i = 0 to m

      M[0, i] = i

   for j = 0 to n

      M[j, 0] = j

   for i = 1 to m

      for j = 1 to n

         M[i, j] = min( (xi=yj ? 0:1) + M[i-1, j-1],

                       1 + M[i-1, j],

                       1 + M[i, j-1])

   return M[m, n]

}
Just need 𝑖 − 1, 𝑖 rows

to compute M[i,j]



DP with 𝑂(𝑚 + 𝑛) memory

• Keep an Old array containing values of the last row

• Fill out the new values in a New array

• Copy new to old at the end of the loop
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Sequence-Alignment(m, n, x1x2...xm, y1y2...yn) {

   for i = 0 to m

      O[i] = i

   for i = 1 to m

      N[0]=i

      for j = 1 to n

         N[j] = min( (xi=yj ? 0:1) + O[j-1],

                       1 + O[j],

                       1 + N[j-1])

      for j = 1 to n

         O[j]=N[j]

   return N[n]

}

M[i-1, j]

M[i, j-1]

M[i-1, j-1]



Generalize edit distance

What if the cost of mismatches and gaps are different?

If the cost of mismatch is 1 and the cost of gap is 10,

Generalize dynamic programming for edit distance
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Shortest Paths with Negative Edge 

Weights



Shortest Paths with Neg Edge Weights

Given a weighted directed graph 𝐺 = 𝑉, 𝐸  and a source vertex 
𝑠, where the weight of edge (u,v) is 𝑐𝑢,𝑣 (that can be negative)

Goal: Find the shortest path from s to all vertices of G.

Recall that Dikjstra’s Algorithm fails when weights are negative
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3
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2

2
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Impossibility on Graphs with Neg Cycles

Observation: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the 

cycle again and again. 

So, suppose G does not have a negative cycle. 
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DP for Shortest Path (First Attempt)

Def: Let 𝑂𝑃𝑇(𝑣) be the length of the shortest 𝑠 - 𝑣 path

𝑂𝑃𝑇 𝑣 = ൝
0 if 𝑣 = 𝑠

min
𝑢: 𝑢,𝑣 an edge

𝑂𝑃𝑇 𝑢 + 𝑐𝑢,𝑣

The formula is correct. But it is not clear how to compute it.
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DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at 

most 𝑖 edges.

Let us characterize 𝑂𝑃𝑇(𝑣, 𝑖).

Case 1: 𝑂𝑃𝑇(𝑣, 𝑖) path has less than 𝑖 edges.

• Then, 𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣, 𝑖 − 1 .

Case 2: 𝑂𝑃𝑇(𝑣, 𝑖) path has exactly 𝑖 edges.

• Let 𝑠, 𝑣1, 𝑣2, … , 𝑣𝑖−1, 𝑣 be the 𝑂𝑃𝑇(𝑣, 𝑖) path with 𝑖 edges.

• Then, 𝑠, 𝑣1, … , 𝑣𝑖−1 must be the shortest 𝑠 - 𝑣𝑖−1 path with at 

most 𝑖 − 1 edges. So, 

𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣𝑖−1, 𝑖 − 1 + 𝑐𝑣𝑖−1,𝑣
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DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at 

most 𝑖 edges.

𝑂𝑃𝑇 𝑣, 𝑖 = ൞

0 if 𝑣 = 𝑠
∞ if 𝑣 ≠ 𝑠, 𝑖 = 0

min(𝑂𝑃𝑇 𝑣, 𝑖 − 1 , min
𝑢: 𝑢,𝑣 an edge

𝑂𝑃𝑇 𝑢, 𝑖 − 1 + 𝑐𝑢,𝑣)

So, for every v, 𝑂𝑃𝑇 𝑣, ?  is the shortest path from s to v.

But how long do we have to run?

Since G has no negative cycle, it has at most 𝑛 − 1 edges. So,

𝑂𝑃𝑇(𝑣, 𝑛 − 1) is the answer. 
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Bellman Ford Algorithm
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for v=1 to n

   if 𝒗 ≠ 𝒔 then
      M[v,0]=∞
M[s,0]=0.

for i=1 to n-1

   for v=1 to n

      M[v,i]=M[v,i-1]

      for every edge (u,v)

         M[v,i]=min(M[v,i], M[u,i-1]+cu,v)

Running Time: 𝑂 𝑛𝑚
Can we test if G has negative cycles? 

Yes, run for i=1…3n and see if the M[v,n-1] is different from M[v,3n] 

𝑚1+𝑜(1)log 𝑊 algorithm

By Bernstein, Nanongkai, and Wulff-Nilsen; 

Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva 

2022  



DP Techniques Summary

Principle:

• Optimal substructure: Remove certain part of the optimal solution 

(for the entire problem) is an optimal solution of a subproblem

• Carefully define a collection of subproblems. Typically, only a 

polynomial number of subproblems

• Parameterization/Memorization

Recipe: 

• Find optimal substructure by investigating the optimal solution

• Find out additional assumptions/variables/subproblems that you 

need to do the induction

• Strengthen the hypothesis and define w.r.t. new subproblems

Dynamic programming techniques.

• Adding a new variable:  knapsack.

• Order subproblems in the right way: RNA secondary structure/String 

Alignment
20
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