
CS 401

Dynamic Programming

Sequence Alignment / Shortest Path

Xiaorui Sun

1

Sequence Alignment

Word Alignment

How similar are two strings?

ocurrance

occurrence

3

o c u r r a n c e

c c u r r e n c eo

-

o c u r r n c e

c c u r r n c eo

- - a

e -

o c u r r a n c e

c c u r r e n c eo

-

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps

Edit Distance

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

 Cost = # of gaps + #mismatches.

Applications.

• Basis for Unix diff and Word correct in editors.

• Speech recognition.

• Computational biology.

4

Cost: 3

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

-T

C

C

C

Cost: 5

-

Sequence Alignment

Given two strings 𝑥1, … , 𝑥𝑚 and 𝑦1, … , 𝑦𝑛 find an alignment
with minimum number of mismatch and gaps.

An alignment is a set of ordered pairs (𝑥𝑖1
, 𝑦𝑗1

), 𝑥𝑖2
, 𝑦𝑗2

, … such

that 𝑖1 < 𝑖2 < ⋯ and 𝑗1 < 𝑗2 < ⋯

Example: CTACCG vs. TACATG.
Sol: We aligned
x2-y1, x3-y2, x4-y3, x5-y4, x6-y6.

So, the cost is 3.

5

C T A C C -

T A C A T-

G

G

y1 y2 y3 y4 y5 y6

x2 x3 x4 x5x1 x6

Optimal Substructure for String Alignment

Example: CTACCG vs. TACATG.

Observation:
• Without last column, it is optimal alignment for CTACC

vs. TACAT
• Without last two columns, it is optimal alignment for
CTACC vs. TACA

• …

6

C T A C C -

T A C A T-

G

G

y1 y2 y3 y4 y5 y6

x2 x3 x4 x5x1 x6

DP for Sequence Alignment

Let 𝑂𝑃𝑇(𝑖, 𝑗) be min cost of aligning 𝑥1, … , 𝑥𝑖 and 𝑦1, … , 𝑦𝑗

Case 1: OPT matches 𝑥𝑖 , 𝑦𝑗

• Then, pay mis-match cost if 𝑥𝑖 ≠ 𝑦𝑗 + min cost of aligning

𝑥1, … , 𝑥𝑖−1 and 𝑦1, … , 𝑦𝑗−1 i.e., 𝑂𝑃𝑇(𝑖 − 1, 𝑗 − 1)

Case 2: OPT leaves 𝑥𝑖 unmatched
• Then, pay gap cost for 𝑥𝑖 + 𝑂𝑃𝑇 𝑖 − 1, 𝑗

Case 3: OPT leaves 𝑦𝑗 unmatched

• Then, pay gap cost for 𝑦𝑗 + 𝑂𝑃𝑇(𝑖, 𝑗 − 1)

7

Induction

What is the order of induction? (i.e. why there is no loop?)

8

M[i, j] = min((xi=yj ? 0:1) + M[i-1, j-1],

 1 + M[i-1, j],

 1 + M[i, j-1])

Bottom-up DP

9

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn) {

 for i = 0 to m

 M[0, i] = i

 for j = 0 to n

 M[j, 0] = j

 for i = 1 to m

 for j = 1 to n

 M[i, j] = min((xi=yj ? 0:1) + M[i-1, j-1],

 1 + M[i-1, j],

 1 + M[i, j-1])

 return M[m, n]

}

Analysis: Θ(𝑚𝑛) time and space.

English words or sentences: m, n  10,..,20.

Computational biology: m = n = 100,000. 10 billions ops OK,

 but 10GB array?

Optimizing Memory

If we are not using strong induction in the DP, we just need to

use the last (row) of computed values.

10

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn) {

 for i = 0 to m

 M[0, i] = i

 for j = 0 to n

 M[j, 0] = j

 for i = 1 to m

 for j = 1 to n

 M[i, j] = min((xi=yj ? 0:1) + M[i-1, j-1],

 1 + M[i-1, j],

 1 + M[i, j-1])

 return M[m, n]

}
Just need 𝑖 − 1, 𝑖 rows

to compute M[i,j]

DP with 𝑂(𝑚 + 𝑛) memory

• Keep an Old array containing values of the last row

• Fill out the new values in a New array

• Copy new to old at the end of the loop

11

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn) {

 for i = 0 to m

 O[i] = i

 for i = 1 to m

 N[0]=i

 for j = 1 to n

 N[j] = min((xi=yj ? 0:1) + O[j-1],

 1 + O[j],

 1 + N[j-1])

 for j = 1 to n

 O[j]=N[j]

 return N[n]

}

M[i-1, j]

M[i, j-1]

M[i-1, j-1]

Generalize edit distance

What if the cost of mismatches and gaps are different?

If the cost of mismatch is 1 and the cost of gap is 10,

Generalize dynamic programming for edit distance

12

Cost: 21

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

-T

C

C

C

Cost: 5

-

Shortest Paths with Negative Edge

Weights

Shortest Paths with Neg Edge Weights

Given a weighted directed graph 𝐺 = 𝑉, 𝐸 and a source vertex
𝑠, where the weight of edge (u,v) is 𝑐𝑢,𝑣 (that can be negative)

Goal: Find the shortest path from s to all vertices of G.

Recall that Dikjstra’s Algorithm fails when weights are negative

14

s

1

3

4

2

2

3 -2

-1

source s

1

3

4

2

2

3 -2

-1

Impossibility on Graphs with Neg Cycles

Observation: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the

cycle again and again.

So, suppose G does not have a negative cycle.

15

s

1

3

4

2

2

3 -2

-1

DP for Shortest Path (First Attempt)

Def: Let 𝑂𝑃𝑇(𝑣) be the length of the shortest 𝑠 - 𝑣 path

𝑂𝑃𝑇 𝑣 = ൝
0 if 𝑣 = 𝑠

min
𝑢: 𝑢,𝑣 an edge

𝑂𝑃𝑇 𝑢 + 𝑐𝑢,𝑣

The formula is correct. But it is not clear how to compute it.

16

DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at

most 𝑖 edges.

Let us characterize 𝑂𝑃𝑇(𝑣, 𝑖).

Case 1: 𝑂𝑃𝑇(𝑣, 𝑖) path has less than 𝑖 edges.

• Then, 𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣, 𝑖 − 1 .

Case 2: 𝑂𝑃𝑇(𝑣, 𝑖) path has exactly 𝑖 edges.

• Let 𝑠, 𝑣1, 𝑣2, … , 𝑣𝑖−1, 𝑣 be the 𝑂𝑃𝑇(𝑣, 𝑖) path with 𝑖 edges.

• Then, 𝑠, 𝑣1, … , 𝑣𝑖−1 must be the shortest 𝑠 - 𝑣𝑖−1 path with at

most 𝑖 − 1 edges. So,

𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣𝑖−1, 𝑖 − 1 + 𝑐𝑣𝑖−1,𝑣

17

DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at

most 𝑖 edges.

𝑂𝑃𝑇 𝑣, 𝑖 = ൞

0 if 𝑣 = 𝑠
∞ if 𝑣 ≠ 𝑠, 𝑖 = 0

min(𝑂𝑃𝑇 𝑣, 𝑖 − 1 , min
𝑢: 𝑢,𝑣 an edge

𝑂𝑃𝑇 𝑢, 𝑖 − 1 + 𝑐𝑢,𝑣)

So, for every v, 𝑂𝑃𝑇 𝑣, ? is the shortest path from s to v.

But how long do we have to run?

Since G has no negative cycle, it has at most 𝑛 − 1 edges. So,

𝑂𝑃𝑇(𝑣, 𝑛 − 1) is the answer.

18

Bellman Ford Algorithm

19

for v=1 to n

 if 𝒗 ≠ 𝒔 then
 M[v,0]=∞
M[s,0]=0.

for i=1 to n-1

 for v=1 to n

 M[v,i]=M[v,i-1]

 for every edge (u,v)

 M[v,i]=min(M[v,i], M[u,i-1]+cu,v)

Running Time: 𝑂 𝑛𝑚
Can we test if G has negative cycles?

Yes, run for i=1…3n and see if the M[v,n-1] is different from M[v,3n]

𝑚1+𝑜(1)log 𝑊 algorithm

By Bernstein, Nanongkai, and Wulff-Nilsen;

Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva

2022

DP Techniques Summary

Principle:

• Optimal substructure: Remove certain part of the optimal solution

(for the entire problem) is an optimal solution of a subproblem

• Carefully define a collection of subproblems. Typically, only a

polynomial number of subproblems

• Parameterization/Memorization

Recipe:

• Find optimal substructure by investigating the optimal solution

• Find out additional assumptions/variables/subproblems that you

need to do the induction

• Strengthen the hypothesis and define w.r.t. new subproblems

Dynamic programming techniques.

• Adding a new variable: knapsack.

• Order subproblems in the right way: RNA secondary structure/String

Alignment
20

	Slide 1: CS 401
	Slide 2: Sequence Alignment
	Slide 3: Word Alignment
	Slide 4: Edit Distance
	Slide 5: Sequence Alignment
	Slide 6: Optimal Substructure for String Alignment
	Slide 7: DP for Sequence Alignment
	Slide 8: Induction
	Slide 9: Bottom-up DP
	Slide 10: Optimizing Memory
	Slide 11: DP with O m n memory
	Slide 12: Generalize edit distance
	Slide 13: Shortest Paths with Negative Edge Weights
	Slide 14: Shortest Paths with Neg Edge Weights
	Slide 15: Impossibility on Graphs with Neg Cycles
	Slide 16: DP for Shortest Path (First Attempt)
	Slide 17: DP for Shortest Path
	Slide 18: DP for Shortest Path
	Slide 19: Bellman Ford Algorithm
	Slide 20: DP Techniques Summary

