
CS 401

Shortest Path / Computational

Complexity

Xiaorui Sun

1

Shortest Paths with Negative Edge

Weights

Shortest Paths with Neg Edge Weights

Given a weighted directed graph 𝐺 = 𝑉, 𝐸 and a source vertex
𝑠, where the weight of edge (u,v) is 𝑐𝑢,𝑣 (that can be negative)

Goal: Find the shortest path from s to all vertices of G.

Recall that Dikjstra’s Algorithm fails when weights are negative

3

s

1

3

4

2

2

3 -2

-1

source s

1

3

4

2

2

3 -2

-1

Impossibility on Graphs with Neg Cycles

Observation: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the

cycle again and again.

So, suppose G does not have a negative cycle.

4

s

1

3

4

2

2

3 -2

-1

DP for Shortest Path (First Attempt)

Optimal substructure: Take the shortest 𝑠 - 𝑣 path, if the last

edge in the path is 𝑤 - 𝑣, then removing last edge is a shortest

𝑠 - 𝑤 path

Def: Let 𝑂𝑃𝑇(𝑣) be the length of the shortest 𝑠 - 𝑣 path

𝑂𝑃𝑇 𝑣 = ൝
0 if 𝑣 = 𝑠

min
𝑢: 𝑢,𝑣 an edge

𝑂𝑃𝑇 𝑢 + 𝑐𝑢,𝑣

The formula is correct. But it is not clear how to compute it.

5

DP for Shortest Path (First Attempt)

Optimal substructure: Take the shortest 𝑠 - 𝑣 path, if the last

edge in the path is 𝑤 - 𝑣, then removing last edge is a shortest

𝑠 - 𝑤 path

Def: Let 𝑂𝑃𝑇(𝑣) be the length of the shortest 𝑠 - 𝑣 path

𝑂𝑃𝑇 𝑣 = ൝
0 if 𝑣 = 𝑠

min
𝑢: 𝑢,𝑣 an edge

𝑂𝑃𝑇 𝑢 + 𝑐𝑢,𝑣

The formula is correct. But it is not clear how to compute it.

6

Why 𝑂𝑃𝑇(𝑤) is an easier subproblem than

𝑂𝑃𝑇(𝑣)?

(𝑂𝑃𝑇(𝑣) might be smaller than 𝑂𝑃𝑇(𝑤))

DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at

most 𝑖 edges.

Let us characterize 𝑂𝑃𝑇(𝑣, 𝑖).

Case 1: 𝑂𝑃𝑇(𝑣, 𝑖) path has less than 𝑖 edges.

• Then, 𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣, 𝑖 − 1 .

Case 2: 𝑂𝑃𝑇(𝑣, 𝑖) path has exactly 𝑖 edges.

• Let 𝑠, 𝑣1, 𝑣2, … , 𝑣𝑖−1, 𝑣 be the 𝑂𝑃𝑇(𝑣, 𝑖) path with 𝑖 edges.

• Then, 𝑠, 𝑣1, … , 𝑣𝑖−1 must be the shortest 𝑠 - 𝑣𝑖−1 path with at

most 𝑖 − 1 edges. So,

𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣𝑖−1, 𝑖 − 1 + 𝑐𝑣𝑖−1,𝑣

7

DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at

most 𝑖 edges.

𝑂𝑃𝑇 𝑣, 𝑖 = ൞

0 if 𝑣 = 𝑠
∞ if 𝑣 ≠ 𝑠, 𝑖 = 0

min(𝑂𝑃𝑇 𝑣, 𝑖 − 1 , min
𝑢: 𝑢,𝑣 an edge

𝑂𝑃𝑇 𝑢, 𝑖 − 1 + 𝑐𝑢,𝑣)

So, for every v, 𝑂𝑃𝑇 𝑣, ? is the shortest path from s to v.

But how long do we have to run?

Since G has no negative cycle, it has at most 𝑛 − 1 edges. So,

𝑂𝑃𝑇(𝑣, 𝑛 − 1) is the answer.

8

Bellman Ford Algorithm

9

for v=1 to n

 if 𝒗 ≠ 𝒔 then
 M[v,0]=∞
M[s,0]=0.

for i=1 to n-1

 for v=1 to n

 M[v,i]=M[v,i-1]

 for every edge (u,v)

 M[v,i]=min(M[v,i], M[u,i-1]+cu,v)

Running Time: 𝑂 𝑛𝑚
Can we test if G has negative cycles?

Yes, run for i=1…3n and see if the M[v,n-1] is different from M[v,3n]

𝑚1+𝑜(1)log 𝑊 algorithm

By Bernstein, Nanongkai, and Wulff-Nilsen;

Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva

2022

DP Techniques

Principle:

• Optimal substructure: Remove certain part of the optimal solution

(for the entire problem) is an optimal solution of a subproblem

• Carefully define subproblems. Typically, only a polynomial number

of subproblems

• Parameterization/Memorization

Recipe:

• Find optimal substructure by investigating the optimal solution

• Find out additional variables/subproblems that you need to do the

induction

• Strengthen the hypothesis and define new subproblems

Dynamic programming techniques.

• Adding a new variable: knapsack, shortest path with negative

weights

10

Computational Complexity

11

Algorithm Design Patterns and Anti-

Patterns

Algorithm design patterns. Ex.

• Greed. O(n log n) interval scheduling.

• Divide-and-conquer. O(n2) edit distance.

• Dynamic programming.

• Reductions.

• Local search.

• Randomization.

Algorithm design anti-patterns.

• NP-completeness. O(nk) algorithm unlikely.

• PSPACE-completeness. O(nk) certification algorithm

unlikely.

• Undecidability. No algorithm possible.
12

Computational Complexity

Goal: Classify problems according to the amount of

computational resources used by the best algorithms that

solve them

 Here we focus on time complexity

Recall: worst-case running time of an algorithm

• max # steps algorithm takes on any input of size n

13

14

• Want a notion that allows us to compare the complexity
of problems

• Want to be able to make statements of the form

 “If we could solve problem B in polynomial time
then we can solve problem A in polynomial time”

“Problem B is at least as hard as problem A”

Relative Complexity of Problems

Polynomial Time Reduction

Def A P

B: if there is an algorithm for problem A using a

‘black box’ (subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps

• Makes only a polynomial number of calls to a subroutine for B

Example

15

Algorithm for A:

Int i=0, i’=0;

Int j=0, j’=0;

…..

i=i+j;

(computation on i, j, i’, j')

…..

Int x = B(i, j)

Int y = B(i’, j’)

…..

(compute z based on x and y)

Return z

Polynomial Time Reduction

Def A P

B: if there is an algorithm for problem A using a

‘black box’ (subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps

• Makes only a polynomial number of calls to a subroutine for B

Question: Is the following polynomial time reduction
correct?

Interval Scheduling ≤P Max Independent Set

• Yes. Without the blackbox of max independent set, we
still have a polynomial time algorithm for interval
scheduling.

• If problem A can be solved in polynomial time, then A ≤P
B holds for any problem B

16

Polynomial Time Reduction

Def A P

B: if there is an algorithm for problem A using a

‘black box’ (subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps

• Makes only a polynomial number of calls to a subroutine for B

So,

Conversely,

In words,

• Problem A is polynomial-time reducible to problem B

• B is as hard as A (it can be even harder)

• Informally, A is a special case of B
17

B is Polynomial

time solvable

A is Polynomial

time solvable

No efficient

Algorithm for A

No efficient

Algorithm for B

Polynomial Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If A P B and B can be solved in polynomial-

time, then A can also be solved in polynomial time.

Establish intractability. If A P B and A cannot be solved in

polynomial-time, then B cannot be solved in polynomial time.

Establish equivalence. If A P B and B P A, we use notation

A P B.
up to cost of reduction

18

Polynomial Time Reduction

Basic reduction strategies

▪ Reduction by simple equivalence.

▪ Reduction from special case to general case.

▪ Reduction by encoding with gadgets.

19

20

INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is there

a subset of vertices S V such that |S| k, and for each edge at most

one of its endpoints is in S?

Ex. Is there an independent set of size 6? Yes.

Ex. Is there an independent set of size 7? No.

independent set

Example 1: Vertex Cover 𝑝 Indep Set

20

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a

subset of vertices S V such that |S| k, and for each edge, at least

one of its endpoints is in S?

Ex. Is there a vertex cover of size 4? Yes.

Ex. Is there a vertex cover of size 3? No.

vertex cover

Example 1: Vertex Cover 𝑝 Indep Set

21

Example 1: Vertex Cover 𝑝 Indep Set

Claim: For any graph 𝐺 = 𝑉, 𝐸 , S is an independent set iff
𝑉 − 𝑆 is a vertex cover

Pf: =>

Let S be a independent set of G

Then, 𝑆 has at most one endpoint of every edge of G

So, 𝑉 − 𝑆 has at least one endpoint of every edge of G

So, 𝑉 − 𝑆 is a vertex cover.

<= Suppose 𝑉 − 𝑆 is a vertex cover

Then, there is no edge between vertices of S (otherwise, 𝑉 − 𝑆 is
not a vertex cover)

So, 𝑆 is an independent set.

22

Polynomial Time Reduction

Basic reduction strategies

▪ Reduction by simple equivalence.

▪ Reduction from special case to general case.

▪ Reduction by encoding with gadgets.

23

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a

subset of vertices S V such that |S| k, and for each edge, at least

one of its endpoints is in S?

Ex. Is there a vertex cover of size 4? Yes.

Ex. Is there a vertex cover of size 3? No.

vertex cover

Example 2: Vertex Cover ≤𝑝 Set Cover

24

Example 2: Vertex Cover ≤𝑝 Set Cover

SET COVER: Given a set U of elements, a collection S1, S2, . . . ,

Sm of subsets of U, and an integer k, does there exist a

collection of k of these sets whose union is equal to U?

Ex:

U = { 1, 2, 3, 4, 5, 6, 7 }

k = 2

S1 = {3, 7} S4 = {2, 4}

S2 = {3, 4, 5, 6} S5 = {5}

S3 = {1} S6 = {1, 2, 6, 7}

25

26

SET COVER

U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf= {1, 2, 6, 7}

Claim: VERTEX-COVER P SET-COVER.

Pf: Given a VERTEX-COVER instance G = (V, E), k, we

construct a set cover instance whose size equals the size of the

vertex cover instance.

Construction:

Create SET-COVER instance:

• k = k, U = E, Sv = {e E : e incident to v }

Set-cover of size k iff vertex cover of size k.

a

d

b

e

f c

VERTEX COVER

k = 2
e1

e2 e3

e5

e4

e6

e7

Example 2: Vertex Cover ≤𝑝 Set Cover

26

	Slide 1: CS 401
	Slide 2: Shortest Paths with Negative Edge Weights
	Slide 3: Shortest Paths with Neg Edge Weights
	Slide 4: Impossibility on Graphs with Neg Cycles
	Slide 5: DP for Shortest Path (First Attempt)
	Slide 6: DP for Shortest Path (First Attempt)
	Slide 7: DP for Shortest Path
	Slide 8: DP for Shortest Path
	Slide 9: Bellman Ford Algorithm
	Slide 10: DP Techniques
	Slide 11
	Slide 12: Algorithm Design Patterns and Anti-Patterns
	Slide 13: Computational Complexity
	Slide 14
	Slide 15: Polynomial Time Reduction
	Slide 16: Polynomial Time Reduction
	Slide 17: Polynomial Time Reduction
	Slide 18: Polynomial Time Reduction
	Slide 19: Polynomial Time Reduction
	Slide 20: Example 1: Vertex Cover p Indep Set
	Slide 21: Example 1: Vertex Cover p Indep Set
	Slide 22: Example 1: Vertex Cover p Indep Set
	Slide 23: Polynomial Time Reduction
	Slide 24: Example 2: Vertex Cover p Set Cover
	Slide 25: Example 2: Vertex Cover p Set Cover
	Slide 26: Example 2: Vertex Cover p Set Cover

