
CS 401

Shortest Path / Computational

Complexity

Xiaorui Sun

1

Shortest Paths with Negative Edge

Weights

Shortest Paths with Neg Edge Weights

Given a weighted directed graph 𝐺 = 𝑉, 𝐸 and a source vertex
𝑠, where the weight of edge (u,v) is 𝑐𝑢,𝑣 (that can be negative)

Goal: Find the shortest path from s to all vertices of G.

Recall that Dikjstra’s Algorithm fails when weights are negative

3

s

1

3

4

2

2

3 -2

-1

source s

1

3

4

2

2

3 -2

-1

Impossibility on Graphs with Neg Cycles

Observation: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the

cycle again and again.

So, suppose G does not have a negative cycle.

4

s

1

3

4

2

2

3 -2

-1

DP for Shortest Path (First Attempt)

Optimal substructure: Take the shortest 𝑠 - 𝑣 path, if the last

edge in the path is 𝑤 - 𝑣, then removing last edge is a shortest

𝑠 - 𝑤 path

Def: Let 𝑂𝑃𝑇(𝑣) be the length of the shortest 𝑠 - 𝑣 path

𝑂𝑃𝑇 𝑣 = ൝
0 if 𝑣 = 𝑠

min
𝑢: 𝑢,𝑣 an edge

𝑂𝑃𝑇 𝑢 + 𝑐𝑢,𝑣

The formula is correct. But it is not clear how to compute it.

5

DP for Shortest Path (First Attempt)

Optimal substructure: Take the shortest 𝑠 - 𝑣 path, if the last

edge in the path is 𝑤 - 𝑣, then removing last edge is a shortest

𝑠 - 𝑤 path

Def: Let 𝑂𝑃𝑇(𝑣) be the length of the shortest 𝑠 - 𝑣 path

𝑂𝑃𝑇 𝑣 = ൝
0 if 𝑣 = 𝑠

min
𝑢: 𝑢,𝑣 an edge

𝑂𝑃𝑇 𝑢 + 𝑐𝑢,𝑣

The formula is correct. But it is not clear how to compute it.

6

Why 𝑂𝑃𝑇(𝑤) is an easier subproblem than

𝑂𝑃𝑇(𝑣)?

(𝑂𝑃𝑇(𝑣) might be smaller than 𝑂𝑃𝑇(𝑤))

DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at

most 𝑖 edges.

Let us characterize 𝑂𝑃𝑇(𝑣, 𝑖).

Case 1: 𝑂𝑃𝑇(𝑣, 𝑖) path has less than 𝑖 edges.

• Then, 𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣, 𝑖 − 1 .

Case 2: 𝑂𝑃𝑇(𝑣, 𝑖) path has exactly 𝑖 edges.

• Let 𝑠, 𝑣1, 𝑣2, … , 𝑣𝑖−1, 𝑣 be the 𝑂𝑃𝑇(𝑣, 𝑖) path with 𝑖 edges.

• Then, 𝑠, 𝑣1, … , 𝑣𝑖−1 must be the shortest 𝑠 - 𝑣𝑖−1 path with at

most 𝑖 − 1 edges. So,

𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣𝑖−1, 𝑖 − 1 + 𝑐𝑣𝑖−1,𝑣

7

DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at

most 𝑖 edges.

𝑂𝑃𝑇 𝑣, 𝑖 = ൞

0 if 𝑣 = 𝑠
∞ if 𝑣 ≠ 𝑠, 𝑖 = 0

min(𝑂𝑃𝑇 𝑣, 𝑖 − 1 , min
𝑢: 𝑢,𝑣 an edge

𝑂𝑃𝑇 𝑢, 𝑖 − 1 + 𝑐𝑢,𝑣)

So, for every v, 𝑂𝑃𝑇 𝑣, ? is the shortest path from s to v.

But how long do we have to run?

Since G has no negative cycle, it has at most 𝑛 − 1 edges. So,

𝑂𝑃𝑇(𝑣, 𝑛 − 1) is the answer.

8

Bellman Ford Algorithm

9

for v=1 to n

 if 𝒗 ≠ 𝒔 then
 M[v,0]=∞
M[s,0]=0.

for i=1 to n-1

 for v=1 to n

 M[v,i]=M[v,i-1]

 for every edge (u,v)

 M[v,i]=min(M[v,i], M[u,i-1]+cu,v)

Running Time: 𝑂 𝑛𝑚
Can we test if G has negative cycles?

Yes, run for i=1…3n and see if the M[v,n-1] is different from M[v,3n]

𝑚1+𝑜(1)log 𝑊 algorithm

By Bernstein, Nanongkai, and Wulff-Nilsen;

Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva

2022

DP Techniques

Principle:

• Optimal substructure: Remove certain part of the optimal solution

(for the entire problem) is an optimal solution of a subproblem

• Carefully define subproblems. Typically, only a polynomial number

of subproblems

• Parameterization/Memorization

Recipe:

• Find optimal substructure by investigating the optimal solution

• Find out additional variables/subproblems that you need to do the

induction

• Strengthen the hypothesis and define new subproblems

Dynamic programming techniques.

• Adding a new variable: knapsack, shortest path with negative

weights

10

Computational Complexity

11

Algorithm Design Patterns and Anti-

Patterns

Algorithm design patterns. Ex.

• Greed. O(n log n) interval scheduling.

• Divide-and-conquer. O(n2) edit distance.

• Dynamic programming.

• Reductions.

• Local search.

• Randomization.

Algorithm design anti-patterns.

• NP-completeness. O(nk) algorithm unlikely.

• PSPACE-completeness. O(nk) certification algorithm

unlikely.

• Undecidability. No algorithm possible.
12

Computational Complexity

Goal: Classify problems according to the amount of

computational resources used by the best algorithms that

solve them

 Here we focus on time complexity

Recall: worst-case running time of an algorithm

• max # steps algorithm takes on any input of size n

13

14

• Want a notion that allows us to compare the complexity
of problems

• Want to be able to make statements of the form

 “If we could solve problem B in polynomial time
then we can solve problem A in polynomial time”

“Problem B is at least as hard as problem A”

Relative Complexity of Problems

Polynomial Time Reduction

Def A P

B: if there is an algorithm for problem A using a

‘black box’ (subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps

• Makes only a polynomial number of calls to a subroutine for B

Example

15

Algorithm for A:

Int i=0, i’=0;

Int j=0, j’=0;

…..

i=i+j;

(computation on i, j, i’, j')

…..

Int x = B(i, j)

Int y = B(i’, j’)

…..

(compute z based on x and y)

Return z

Polynomial Time Reduction

Def A P

B: if there is an algorithm for problem A using a

‘black box’ (subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps

• Makes only a polynomial number of calls to a subroutine for B

Question: Is the following polynomial time reduction
correct?

Interval Scheduling ≤P Max Independent Set

• Yes. Without the blackbox of max independent set, we
still have a polynomial time algorithm for interval
scheduling.

• If problem A can be solved in polynomial time, then A ≤P
B holds for any problem B

16

Polynomial Time Reduction

Def A P

B: if there is an algorithm for problem A using a

‘black box’ (subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps

• Makes only a polynomial number of calls to a subroutine for B

So,

Conversely,

In words,

• Problem A is polynomial-time reducible to problem B

• B is as hard as A (it can be even harder)

• Informally, A is a special case of B
17

B is Polynomial

time solvable

A is Polynomial

time solvable

No efficient

Algorithm for A

No efficient

Algorithm for B

Polynomial Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If A  P B and B can be solved in polynomial-

time, then A can also be solved in polynomial time.

Establish intractability. If A  P B and A cannot be solved in

polynomial-time, then B cannot be solved in polynomial time.

Establish equivalence. If A  P B and B  P A, we use notation

A  P B.
up to cost of reduction

18

Polynomial Time Reduction

Basic reduction strategies

▪ Reduction by simple equivalence.

▪ Reduction from special case to general case.

▪ Reduction by encoding with gadgets.

19

20

INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is there

a subset of vertices S  V such that |S|  k, and for each edge at most

one of its endpoints is in S?

Ex. Is there an independent set of size  6? Yes.

Ex. Is there an independent set of size  7? No.

independent set

Example 1: Vertex Cover 𝑝 Indep Set

20

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a

subset of vertices S  V such that |S|  k, and for each edge, at least

one of its endpoints is in S?

Ex. Is there a vertex cover of size  4? Yes.

Ex. Is there a vertex cover of size  3? No.

vertex cover

Example 1: Vertex Cover 𝑝 Indep Set

21

Example 1: Vertex Cover 𝑝 Indep Set

Claim: For any graph 𝐺 = 𝑉, 𝐸 , S is an independent set iff
𝑉 − 𝑆 is a vertex cover

Pf: =>

Let S be a independent set of G

Then, 𝑆 has at most one endpoint of every edge of G

So, 𝑉 − 𝑆 has at least one endpoint of every edge of G

So, 𝑉 − 𝑆 is a vertex cover.

<= Suppose 𝑉 − 𝑆 is a vertex cover

Then, there is no edge between vertices of S (otherwise, 𝑉 − 𝑆 is
not a vertex cover)

So, 𝑆 is an independent set.

22

Polynomial Time Reduction

Basic reduction strategies

▪ Reduction by simple equivalence.

▪ Reduction from special case to general case.

▪ Reduction by encoding with gadgets.

23

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a

subset of vertices S  V such that |S|  k, and for each edge, at least

one of its endpoints is in S?

Ex. Is there a vertex cover of size  4? Yes.

Ex. Is there a vertex cover of size  3? No.

vertex cover

Example 2: Vertex Cover ≤𝑝 Set Cover

24

Example 2: Vertex Cover ≤𝑝 Set Cover

SET COVER: Given a set U of elements, a collection S1, S2, . . . ,

Sm of subsets of U, and an integer k, does there exist a

collection of  k of these sets whose union is equal to U?

Ex:

U = { 1, 2, 3, 4, 5, 6, 7 }

k = 2

S1 = {3, 7} S4 = {2, 4}

S2 = {3, 4, 5, 6} S5 = {5}

S3 = {1} S6 = {1, 2, 6, 7}

25

26

SET COVER

U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf= {1, 2, 6, 7}

Claim: VERTEX-COVER  P SET-COVER.

Pf: Given a VERTEX-COVER instance G = (V, E), k, we

construct a set cover instance whose size equals the size of the

vertex cover instance.

Construction:

Create SET-COVER instance:

• k = k, U = E, Sv = {e  E : e incident to v }

Set-cover of size  k iff vertex cover of size  k.

a

d

b

e

f c

VERTEX COVER

k = 2
e1

e2 e3

e5

e4

e6

e7

Example 2: Vertex Cover ≤𝑝 Set Cover

26

	Slide 1: CS 401
	Slide 2: Shortest Paths with Negative Edge Weights
	Slide 3: Shortest Paths with Neg Edge Weights
	Slide 4: Impossibility on Graphs with Neg Cycles
	Slide 5: DP for Shortest Path (First Attempt)
	Slide 6: DP for Shortest Path (First Attempt)
	Slide 7: DP for Shortest Path
	Slide 8: DP for Shortest Path
	Slide 9: Bellman Ford Algorithm
	Slide 10: DP Techniques
	Slide 11
	Slide 12: Algorithm Design Patterns and Anti-Patterns
	Slide 13: Computational Complexity
	Slide 14
	Slide 15: Polynomial Time Reduction
	Slide 16: Polynomial Time Reduction
	Slide 17: Polynomial Time Reduction
	Slide 18: Polynomial Time Reduction
	Slide 19: Polynomial Time Reduction
	Slide 20: Example 1: Vertex Cover  p Indep Set
	Slide 21: Example 1: Vertex Cover  p Indep Set
	Slide 22: Example 1: Vertex Cover  p Indep Set
	Slide 23: Polynomial Time Reduction
	Slide 24: Example 2: Vertex Cover p Set Cover
	Slide 25: Example 2: Vertex Cover p Set Cover
	Slide 26: Example 2: Vertex Cover p Set Cover

