CS 401

Dynamic Programming:
 RNA Secondary Structure / Negative Shortest Path

Xiaorui Sun

Stuff

Homework 4 has been released last Thursday (due April 19)

- Programming homework on Leetcode
- Submit your code to gradescope
- The first 4 questions are for all the students
- Question 5 is for graduate student only (Undergraduate students who work on Question 5 receive at most 5 bonus points)

RNA Secondary Structure

RNA Secondary Structure (Formal)

Secondary structure. A set of pairs $S=\left\{\left(b_{i}, b_{j}\right)\right\}$ that satisfy:
[Watson-Crick.]

- S is a matching and
- each pair in S is a Watson-Crick pair: $A-U, U-A, C-G$, or $G-C$.
[No sharp turns.]: The ends of each pair are separated by at least 4 intervening bases. If $\left(b_{i}, b_{j}\right) \in S$, then $i<j-4$.
[Non-crossing.] If $\left(b_{i}, b_{j}\right)$ and $\left(b_{k}, b_{l}\right)$ are two pairs in S, then we cannot have $i<k<j<l$.

Free energy: Usual hypothesis is that an RNA molecule will maximize total free energy.
approximate by number of base pairs
Goal: Given an RNA molecule $B=b_{1} b_{2} \ldots b_{n}$, find a secondary structure S that maximizes the number of base pairs.

DP: First Attempt

First attempt. Let $O P T(n)=$ maximum number of base pairs in a secondary structure of the substring $b_{1} b_{2} \ldots b_{n}$.

Suppose b_{n} is matched with b_{t} in $\operatorname{OPT}(n)$.
What IH should we use?

$$
\text { match } b_{+} \text {and } b_{n}
$$

Difficulty: This naturally reduces to two subproblems

- Finding secondary structure in b_{1}, \ldots, b_{t-1}, i.e., OP-
- Finding secondary structure in b_{t+1}, \ldots, b_{n-1}, ???

Not correspond to any subproblem

Optimal
substructure not exist

DP: Second Attempt

Definition: $\operatorname{OPT}(i, j)=$ maximum number of base pairs in a secondary structure of the substring $b_{i}, b_{i+1}, \ldots, b_{j}$

Case 1: If $j-i \leq 4$.

- OPT $(i, j)=0$ by no-sharp turns condition.

Case 2: Base b_{j} is not involved in a pair.

- $\operatorname{OPT}(i, j)=O P T(i, j-1)$

Case 3: Base b_{j} pairs with b_{t} for some $i \leq t<j-4$

- non-crossing constraint decouples resulting sub-problems
- $\operatorname{OPT}(i, j)=\max _{i \leq t<j-4}\{1+O P T(i, t-1)+O P T(t+1, j-1)\}$

Recursive Code

```
Let M[i,j]=empty for all i,j.
Compute-OPT(i,j) {
    if (j-i <= 4)
        return 0;
    if (M[i,j] is empty)
        M[i,j]=Compute-OPT(i,j-1)
        for t=i to j-5 do
            if (b}\mp@subsup{b}{t}{},\mp@subsup{b}{j}{}\mathrm{ is in {A-U, U-A, C-G, G-C})
            M[i,j]=max(M[i,j], 1+Compute-OPT(i,t-1) +
                        Compute-OPT(t+1,j-1))
    return M[j]
}
```

Does this code terminate?
What are we inducting on?
Key question: is there any loop in the recursion?

Formal Induction

Let $O P T(i, j)=$ maximum number of base pairs in a secondary structure of the substring $b_{i}, b_{i+1}, \ldots, b_{j}$
Base Case: $\operatorname{OPT}(i, j)=0$ for all i, j where $|j-i| \leq 4$.
IH: For some $\ell \geq 4$, Suppose we have computed $\operatorname{OPT}(i, j)$ for all i, j where $|i-j| \leq \ell$.

IS: Goal: We find $O P T(i, j)$ for all i, j where $|i-j|=\ell+1$. Fix i, j such that $|i-j|=\ell+1$.
Case 1: Base b_{j} is not involved in a pair.

- $\operatorname{OPT}(i, j)=\operatorname{OPT}(i, j-1)$ [this we know by IH since $|i-(j-1)|=\ell]$

Case 2: Base b_{j} pairs with b_{t} for some $i \leq t<j-4$

- $O P T(i, j)=\max _{i \leq t<j-4}\{1+O P T(i, t-1)+O P T(t+1, j-1)\}$

Bottom-up DP

```
for \(l=1,2, \ldots, n-1\)
    for \(i=1,2, \ldots, n-1\)
        \(j=i+\ell\)
        if ( \(\ell<=4\) )
            M[i,j]=0;
            else
```



```
            \(M[i, j]=M[i, j-1]\)
            j
            for \(t=i\) to \(j-5\) do
                if \(\left(b_{t}, b_{j}\right.\) is in \(\left.\{A-U, U-A, C-G, G-C\}\right)\)
                \(M[i, j]=\max (M[i, j], 1+M[i, t-1]+M[t+1, j-1])\)
    return \(M[1, \mathrm{n}]\)
\}
```

Running Time: $O\left(n^{3}\right)$

Lesson

We may not always induct on i or w to get to smaller subproblems.

We may have to induct on $|i-j|$ or $i+j$ when we are dealing with more complex problems.

Shortest Paths with Negative Edge Weights

Shortest Paths with Neg Edge Weights

Given a weighted directed graph $G=(V, E)$ and a source vertex s, where the weight of edge (u, v) is $c_{u, v}$ (that can be negative)
Goal: Find the shortest path from s to all vertices of G.

Recall that Dikjstra's Algorithm fails when weights are negative

Impossibility on Graphs with Neg Cycles

Observation: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the cycle again and again.

So, suppose G does not have a negative cycle.

DP for Shortest Path (First Attempt)

Def: Let $O P T(v)$ be the length of the shortest $s-v$ path

$$
O P T(v)=\left\{\begin{array}{lr}
0 & \text { if } v=s \\
u:(u, v) \text { an edge } & O P T(u)+c_{u, v}
\end{array}\right.
$$

The formula is correct. But it is not clear how to compute it.

DP for Shortest Path

Def: Let $\operatorname{OPT}(v, i)$ be the length of the shortest $s-v$ path with at most i edges.
Let us characterize $\operatorname{OPT}(v, i)$.

Case 1: $O P T(v, i)$ path has less than i edges.

- Then, $\operatorname{OPT}(v, i)=O P T(v, i-1)$.

Case 2: $\operatorname{OPT}(v, i)$ path has exactly i edges.

- Let $s, v_{1}, v_{2}, \ldots, v_{i-1}, v$ be the $O P T(v, i)$ path with i edges.
- Then, $s, v_{1}, \ldots, v_{i-1}$ must be the shortest $s-v_{i-1}$ path with at most i - 1 edges. So,

$$
O P T(v, i)=O P T\left(v_{i-1}, i-1\right)+c_{v_{i-1}, v}
$$

DP for Shortest Path

Def: Let $\operatorname{OPT}(v, i)$ be the length of the shortest $s-v$ path with at most i edges.
$\operatorname{OPT}(v, i)=\left\{\begin{array}{lr}0 & \text { if } v=s \\ \infty & \text { if } v \neq s, i=0 \\ \min \left(O P T(v, i-1), \min _{u:(u, v) \text { an edge }} O P T(u, i-1)+c_{u, v}\right)\end{array}\right.$

So, for every $\mathrm{v}, \operatorname{OPT}(v, ?)$ is the shortest path from s to v .
But how long do we have to run?
Since G has no negative cycle, it has at most $n-1$ edges. So, $\operatorname{OPT}(v, n-1)$ is the answer.

Bellman Ford Algorithm

$$
\begin{aligned}
& \text { for } v=1 \text { to } n \\
& \text { if } v \neq s \text { then } \\
& M[v, 0]=\infty \\
& M[s, 0]=0 . \\
& \text { for i=1 to } n-1 \\
& \text { for } v=1 \text { to } n \\
& M[v, i]=M[v, i-1 \\
& \text { for every edge } \\
& M[v, i]=\min (
\end{aligned}
$$

Complexity	Author
$O\left(n^{4}\right)$	Shimbel (1955) [30]
$*$	$O\left(W n^{2} m\right)$
$O(n m)$	Ford (1956) [14]
	$O\left(n^{\frac{3}{4}} m \log W\right)$
	$O(\sqrt{n} m \log (n W))$
$O(\sqrt{n} m \log (W))$	Bellman (1958) [1], Moore (1959) [25]
$\tilde{O}\left(W n^{\omega}\right)$	Gabow (1983) [9]
$\tilde{O}\left(m^{10 / 7} \log W\right)$	Gankowski (2005) [27] Yuster and Zwick (2005) [35]

Table 1: The complexity results for the SSSP problem with negative weights (* indicates asymptotically the best bound for some range of parameters).
$m^{1+o(1)} \log W$ algorithm
By Bernstein, Nanongkai, and Wulff-Nilsen;
Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva
2022

Running Time: $O(n m)$
Can we test if G has negative cycles?
Yes, run for $\mathrm{i}=1 \ldots 3 \mathrm{n}$ and see if the $\mathrm{M}[\mathrm{v}, \mathrm{n}-1]$ is different from $\mathrm{M}[v, 3 \mathrm{n}]$

DP Techniques

Principle:

- Optimal substructure: Remove certain part of the optimal solution (for the entire problem) is an optimal solution of a subproblem
- Carefully define subproblems. Typically, only a polynomial number of subproblems
- Parameterization/Memorization

Recipe:

- Find optimal substructure by investigating the optimal solution
- Find out additional variables/subproblems that you need to do the induction
- Strengthen the hypothesis and define new subproblems

Dynamic programming techniques.

- Adding a new variable: knapsack.
- Order subproblems in the right way: RNA secondary structure

