
CS 401

Dynamic Programming: 
RNA Secondary Structure / Negative 

Shortest Path

Xiaorui Sun
1



Stuff

Homework 4 has been released last Thursday (due April 19)
• Programming homework on Leetcode 
• Submit your code to gradescope 
• The first 4 questions are for all the students 
• Question 5 is for graduate student only (Undergraduate students 

who work on Question 5 receive at most 5 bonus points) 
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RNA Secondary Structure



RNA Secondary Structure (Formal)

Secondary structure.  A set of pairs 𝑆 = { 𝑏!, 𝑏" } that satisfy:
[Watson-Crick.]  
• 𝑆 is a matching and 
• each pair in 𝑆 is a Watson-Crick pair: 𝐴 − 𝑈, 𝑈 − 𝐴, 𝐶 − 𝐺, or 𝐺 − 𝐶.
[No sharp turns.]:  The ends of each pair are separated by at least 4 
intervening bases.  If 𝑏!, 𝑏" ∈ 𝑆, then 𝑖 < 𝑗 − 4.
[Non-crossing.]  If (𝑏!, 𝑏") and (𝑏#, 𝑏$) are two pairs in 𝑆, then we cannot 
have 𝑖 < 𝑘 < 𝑗 < 𝑙.

Free energy:  Usual hypothesis is that an RNA molecule will maximize 
total free energy.

Goal:  Given an RNA molecule B = b1b2…bn, find a secondary structure 
S that maximizes the number of base pairs.
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approximate by number of base pairs



DP: First Attempt

First attempt. Let 𝑂𝑃𝑇(𝑛) = maximum number of base pairs in a 
secondary structure of the substring  b1b2…bn.

Suppose 𝑏% is matched with 𝑏& in 𝑂𝑃𝑇 𝑛 .
What IH should we use?

Difficulty: This naturally reduces to two subproblems
• Finding secondary structure in 𝑏', … , 𝑏&(', i.e., OPT(t-1)
• Finding secondary structure in 𝑏&)', … , 𝑏%(',   ???
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DP: Second Attempt

Definition: 𝑂𝑃𝑇 𝑖, 𝑗 = maximum number of base pairs in a secondary 
structure of the substring 𝑏!, 𝑏!)', … , 𝑏"

Case 1:  If  𝑗	 − 𝑖 ≤ 4.
• 𝑂𝑃𝑇 𝑖, 𝑗 = 0 by no-sharp turns condition.

Case 2:  Base 𝑏" is not involved in a pair.
• 𝑂𝑃𝑇 𝑖, 𝑗 = 𝑂𝑃𝑇(𝑖, 𝑗 − 1)

Case 3:  Base 𝑏" pairs with 𝑏& for some 𝑖 ≤ 𝑡 < 𝑗 − 4
• non-crossing constraint decouples resulting sub-problems
• 𝑂𝑃𝑇 𝑖, 𝑗 = max

!*&+"(,
{	1 + 𝑂𝑃𝑇(𝑖, 𝑡 − 1) 	+ 	𝑂𝑃𝑇(𝑡 + 1, 𝑗 − 1)	} 

6



Recursive Code
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Let M[i,j]=empty for all i,j.

Compute-OPT(i,j){
   if (j-i <= 4)
     return 0;
   if (M[i,j] is empty)
      M[i,j]=Compute-OPT(i,j-1)
      for t=i to j-5 do
         if (𝒃𝒕, 𝒃𝒋 is in {A-U, U-A, C-G, G-C})
           M[i,j]=max(M[i,j], 1+Compute-OPT(i,t-1) +          

  Compute-OPT(t+1,j-1))
   return M[j]
}

Does this code terminate?
What are we inducting on?
Key question: is there any loop in the recursion? 



Formal Induction

Let 𝑂𝑃𝑇(𝑖, 𝑗) = maximum number of base pairs in a secondary structure 
of the substring 𝑏!, 𝑏!)', … , 𝑏"
Base Case: 𝑂𝑃𝑇(𝑖, 𝑗) = 0 for all 𝑖, 𝑗 where 𝑗 − 𝑖 ≤ 4.
IH: For some ℓ ≥ 4, Suppose we have computed 𝑂𝑃𝑇(𝑖, 𝑗) for all 𝑖, 𝑗 
where 𝑖 − 𝑗 ≤ ℓ.

IS: Goal: We find 𝑂𝑃𝑇(𝑖, 𝑗) for all 𝑖, 𝑗 where 𝑖 − 𝑗 = ℓ + 1. Fix 𝑖, 𝑗 such 
that 𝑖 − 𝑗 = ℓ + 1.
Case 1:  Base 𝑏" is not involved in a pair.
• 𝑂𝑃𝑇 𝑖, 𝑗 = 𝑂𝑃𝑇(𝑖, 𝑗 − 1) [this we know by IH since 𝑖 − 𝑗 − 1 = ℓ]

Case 2:  Base 𝑏" pairs with 𝑏& for some 𝑖 ≤ 𝑡 < 𝑗 − 4
• 𝑂𝑃𝑇 𝑖, 𝑗 = max

!*&+"(,
{	1 + 𝑂𝑃𝑇(𝑖, 𝑡 − 1) 	+ 	𝑂𝑃𝑇(𝑡 + 1, 𝑗 − 1)	} 

8We know by IH since difference ≤ ℓ



Bottom-up DP
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for ℓ = 1, 2, …, n-1
   for i = 1, 2, …, n-1
     j = i + ℓ
     if (ℓ <= 4)
       M[i,j]=0;
       else
         M[i,j]=M[i,j-1]
         for t=i to j-5 do
           if (𝒃𝒕, 𝒃𝒋 is in {A-U, U-A, C-G, G-C})
             M[i,j]=max(M[i,j], 1+ M[i,t-1] + M[t+1,j-1])

   return M[1, n]
}

Running Time: 𝑂(𝑛!)
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Lesson

We may not always induct on 𝑖 or 𝑤 to get to smaller 
subproblems. 

We may have to induct on |𝑖 − 𝑗| or 𝑖 + 𝑗 when we are 
dealing with more complex problems.
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Shortest Paths with Negative Edge 
Weights



Shortest Paths with Neg Edge Weights

Given a weighted directed graph 𝐺 = 𝑉, 𝐸  and a source vertex 
𝑠, where the weight of edge (u,v) is 𝑐$,% (that can be negative)
Goal: Find the shortest path from s to all vertices of G.

Recall that Dikjstra’s Algorithm fails when weights are negative
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Impossibility on Graphs with Neg Cycles

Observation: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the 
cycle again and again. 

So, suppose G does not have a negative cycle. 
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DP for Shortest Path (First Attempt)

Def: Let 𝑂𝑃𝑇(𝑣) be the length of the shortest 𝑠 - 𝑣 path

𝑂𝑃𝑇 𝑣 = .
0	 if	𝑣 = 𝑠

min
$: $,% 	()	*+,*

𝑂𝑃𝑇 𝑢 + 𝑐$,%

The formula is correct. But it is not clear how to compute it.
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DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at 
most 𝑖 edges.
Let us characterize 𝑂𝑃𝑇(𝑣, 𝑖).

Case 1: 𝑂𝑃𝑇(𝑣, 𝑖) path has less than 𝑖 edges.
• Then, 𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣, 𝑖 − 1 .

Case 2: 𝑂𝑃𝑇(𝑣, 𝑖) path has exactly 𝑖 edges.
• Let 𝑠, 𝑣-, 𝑣., … , 𝑣/0-, 𝑣 be the 𝑂𝑃𝑇(𝑣, 𝑖)	path with 𝑖 edges.
• Then, 𝑠, 𝑣-, … , 𝑣/0- must be the shortest 𝑠 - 𝑣/0- path with at 

most 𝑖 − 1 edges. So, 
𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣/0-, 𝑖 − 1 + 𝑐%!"#,%
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DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at 
most 𝑖 edges.

𝑂𝑃𝑇 𝑣, 𝑖 = <
0	 if	𝑣 = 𝑠	
∞	 if	𝑣 ≠ 𝑠, 𝑖 = 0	
min(𝑂𝑃𝑇 𝑣, 𝑖 − 1 , min

$: $,% 	()	*+,*
𝑂𝑃𝑇 𝑢, 𝑖 − 1 + 𝑐$,%)

So, for every v, 𝑂𝑃𝑇 𝑣, ?  is the shortest path from s to v.
But how long do we have to run?
Since G has no negative cycle, it has at most 𝑛 − 1 edges. So,
𝑂𝑃𝑇(𝑣, 𝑛 − 1) is the answer. 
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Bellman Ford Algorithm
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for v=1 to n
   if 𝒗 ≠ 𝒔 then
      M[v,0]=∞
M[s,0]=0.

for i=1 to n-1
   for v=1 to n
      M[v,i]=M[v,i-1]
      for every edge (u,v)
         M[v,i]=min(M[v,i], M[u,i-1]+cu,v)

Running Time: 𝑂 𝑛𝑚
Can we test if G has negative cycles? 
Yes, run for i=1…3n and see if the M[v,n-1] is different from M[v,3n] 

𝑚')-(')log	𝑊 algorithm
By Bernstein, Nanongkai, and Wulff-Nilsen; 

Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva 
2022  



DP Techniques
Principle:
• Optimal substructure: Remove certain part of the optimal solution 

(for the entire problem) is an optimal solution of a subproblem
• Carefully define subproblems. Typically, only a polynomial number 

of subproblems
• Parameterization/Memorization
Recipe: 
• Find optimal substructure by investigating the optimal solution
• Find out additional variables/subproblems that you need to do the 

induction
• Strengthen the hypothesis and define new subproblems
Dynamic programming techniques.
• Adding a new variable:  knapsack.
• Order subproblems in the right way: RNA secondary structure

18


