
CS 401

Dynamic Programming:
RNA Secondary Structure / Negative

Shortest Path

Xiaorui Sun
1

Stuff

Homework 4 has been released last Thursday (due April 19)
• Programming homework on Leetcode
• Submit your code to gradescope
• The first 4 questions are for all the students
• Question 5 is for graduate student only (Undergraduate students

who work on Question 5 receive at most 5 bonus points)

2

RNA Secondary Structure

RNA Secondary Structure (Formal)

Secondary structure. A set of pairs 𝑆 = { 𝑏!, 𝑏" } that satisfy:
[Watson-Crick.]
• 𝑆 is a matching and
• each pair in 𝑆 is a Watson-Crick pair: 𝐴 − 𝑈, 𝑈 − 𝐴, 𝐶 − 𝐺, or 𝐺 − 𝐶.
[No sharp turns.]: The ends of each pair are separated by at least 4
intervening bases. If 𝑏!, 𝑏" ∈ 𝑆, then 𝑖 < 𝑗 − 4.
[Non-crossing.] If (𝑏!, 𝑏") and (𝑏#, 𝑏$) are two pairs in 𝑆, then we cannot
have 𝑖 < 𝑘 < 𝑗 < 𝑙.

Free energy: Usual hypothesis is that an RNA molecule will maximize
total free energy.

Goal: Given an RNA molecule B = b1b2…bn, find a secondary structure
S that maximizes the number of base pairs.

4

approximate by number of base pairs

DP: First Attempt

First attempt. Let 𝑂𝑃𝑇(𝑛) = maximum number of base pairs in a
secondary structure of the substring b1b2…bn.

Suppose 𝑏% is matched with 𝑏& in 𝑂𝑃𝑇 𝑛 .
What IH should we use?

Difficulty: This naturally reduces to two subproblems
• Finding secondary structure in 𝑏', … , 𝑏&(', i.e., OPT(t-1)
• Finding secondary structure in 𝑏&)', … , 𝑏%(', ???

5

1 t n

match bt and bn

Not correspond to
any subproblem

Optimal
substructure not

exist

DP: Second Attempt

Definition: 𝑂𝑃𝑇 𝑖, 𝑗 = maximum number of base pairs in a secondary
structure of the substring 𝑏!, 𝑏!)', … , 𝑏"

Case 1: If 𝑗	 − 𝑖 ≤ 4.
• 𝑂𝑃𝑇 𝑖, 𝑗 = 0 by no-sharp turns condition.

Case 2: Base 𝑏" is not involved in a pair.
• 𝑂𝑃𝑇 𝑖, 𝑗 = 𝑂𝑃𝑇(𝑖, 𝑗 − 1)

Case 3: Base 𝑏" pairs with 𝑏& for some 𝑖 ≤ 𝑡 < 𝑗 − 4
• non-crossing constraint decouples resulting sub-problems
• 𝑂𝑃𝑇 𝑖, 𝑗 = max

!*&+"(,
{	1 + 𝑂𝑃𝑇(𝑖, 𝑡 − 1) 	+ 	𝑂𝑃𝑇(𝑡 + 1, 𝑗 − 1)	}

6

Recursive Code

7

Let M[i,j]=empty for all i,j.

Compute-OPT(i,j){
 if (j-i <= 4)
 return 0;
 if (M[i,j] is empty)
 M[i,j]=Compute-OPT(i,j-1)
 for t=i to j-5 do
 if (𝒃𝒕, 𝒃𝒋 is in {A-U, U-A, C-G, G-C})
 M[i,j]=max(M[i,j], 1+Compute-OPT(i,t-1) +

 Compute-OPT(t+1,j-1))
 return M[j]
}

Does this code terminate?
What are we inducting on?
Key question: is there any loop in the recursion?

Formal Induction

Let 𝑂𝑃𝑇(𝑖, 𝑗) = maximum number of base pairs in a secondary structure
of the substring 𝑏!, 𝑏!)', … , 𝑏"
Base Case: 𝑂𝑃𝑇(𝑖, 𝑗) = 0 for all 𝑖, 𝑗 where 𝑗 − 𝑖 ≤ 4.
IH: For some ℓ ≥ 4, Suppose we have computed 𝑂𝑃𝑇(𝑖, 𝑗) for all 𝑖, 𝑗
where 𝑖 − 𝑗 ≤ ℓ.

IS: Goal: We find 𝑂𝑃𝑇(𝑖, 𝑗) for all 𝑖, 𝑗 where 𝑖 − 𝑗 = ℓ + 1. Fix 𝑖, 𝑗 such
that 𝑖 − 𝑗 = ℓ + 1.
Case 1: Base 𝑏" is not involved in a pair.
• 𝑂𝑃𝑇 𝑖, 𝑗 = 𝑂𝑃𝑇(𝑖, 𝑗 − 1) [this we know by IH since 𝑖 − 𝑗 − 1 = ℓ]

Case 2: Base 𝑏" pairs with 𝑏& for some 𝑖 ≤ 𝑡 < 𝑗 − 4
• 𝑂𝑃𝑇 𝑖, 𝑗 = max

!*&+"(,
{	1 + 𝑂𝑃𝑇(𝑖, 𝑡 − 1) 	+ 	𝑂𝑃𝑇(𝑡 + 1, 𝑗 − 1)	}

8We know by IH since difference ≤ ℓ

Bottom-up DP

9

for ℓ = 1, 2, …, n-1
 for i = 1, 2, …, n-1
 j = i + ℓ
 if (ℓ <= 4)
 M[i,j]=0;
 else
 M[i,j]=M[i,j-1]
 for t=i to j-5 do
 if (𝒃𝒕, 𝒃𝒋 is in {A-U, U-A, C-G, G-C})
 M[i,j]=max(M[i,j], 1+ M[i,t-1] + M[t+1,j-1])

 return M[1, n]
}

Running Time: 𝑂(𝑛!)

0 0 0

0 0

02

3

4

1

i

6 7 8 9

j

Lesson

We may not always induct on 𝑖 or 𝑤 to get to smaller
subproblems.

We may have to induct on |𝑖 − 𝑗| or 𝑖 + 𝑗 when we are
dealing with more complex problems.

10

Shortest Paths with Negative Edge
Weights

Shortest Paths with Neg Edge Weights

Given a weighted directed graph 𝐺 = 𝑉, 𝐸 and a source vertex
𝑠, where the weight of edge (u,v) is 𝑐$,% (that can be negative)
Goal: Find the shortest path from s to all vertices of G.

Recall that Dikjstra’s Algorithm fails when weights are negative

12

s

1

3

4

2

2

3 -2

-1

source s

1

3

4

2

2

3 -2

-1

Impossibility on Graphs with Neg Cycles

Observation: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the
cycle again and again.

So, suppose G does not have a negative cycle.

13

s

1

3

4

2

2

3 -2

-1

DP for Shortest Path (First Attempt)

Def: Let 𝑂𝑃𝑇(𝑣) be the length of the shortest 𝑠 - 𝑣 path

𝑂𝑃𝑇 𝑣 = .
0	 if	𝑣 = 𝑠

min
$: $,% 	()	*+,*

𝑂𝑃𝑇 𝑢 + 𝑐$,%

The formula is correct. But it is not clear how to compute it.

14

DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at
most 𝑖 edges.
Let us characterize 𝑂𝑃𝑇(𝑣, 𝑖).

Case 1: 𝑂𝑃𝑇(𝑣, 𝑖) path has less than 𝑖 edges.
• Then, 𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣, 𝑖 − 1 .

Case 2: 𝑂𝑃𝑇(𝑣, 𝑖) path has exactly 𝑖 edges.
• Let 𝑠, 𝑣-, 𝑣., … , 𝑣/0-, 𝑣 be the 𝑂𝑃𝑇(𝑣, 𝑖)	path with 𝑖 edges.
• Then, 𝑠, 𝑣-, … , 𝑣/0- must be the shortest 𝑠 - 𝑣/0- path with at

most 𝑖 − 1 edges. So,
𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣/0-, 𝑖 − 1 + 𝑐%!"#,%

15

DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at
most 𝑖 edges.

𝑂𝑃𝑇 𝑣, 𝑖 = <
0	 if	𝑣 = 𝑠	
∞	 if	𝑣 ≠ 𝑠, 𝑖 = 0	
min(𝑂𝑃𝑇 𝑣, 𝑖 − 1 , min

$: $,% 	()	*+,*
𝑂𝑃𝑇 𝑢, 𝑖 − 1 + 𝑐$,%)

So, for every v, 𝑂𝑃𝑇 𝑣, ? is the shortest path from s to v.
But how long do we have to run?
Since G has no negative cycle, it has at most 𝑛 − 1 edges. So,
𝑂𝑃𝑇(𝑣, 𝑛 − 1) is the answer.

16

Bellman Ford Algorithm

17

for v=1 to n
 if 𝒗 ≠ 𝒔 then
 M[v,0]=∞
M[s,0]=0.

for i=1 to n-1
 for v=1 to n
 M[v,i]=M[v,i-1]
 for every edge (u,v)
 M[v,i]=min(M[v,i], M[u,i-1]+cu,v)

Running Time: 𝑂 𝑛𝑚
Can we test if G has negative cycles?
Yes, run for i=1…3n and see if the M[v,n-1] is different from M[v,3n]

𝑚')-(')log	𝑊 algorithm
By Bernstein, Nanongkai, and Wulff-Nilsen;

Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva
2022

DP Techniques
Principle:
• Optimal substructure: Remove certain part of the optimal solution

(for the entire problem) is an optimal solution of a subproblem
• Carefully define subproblems. Typically, only a polynomial number

of subproblems
• Parameterization/Memorization
Recipe:
• Find optimal substructure by investigating the optimal solution
• Find out additional variables/subproblems that you need to do the

induction
• Strengthen the hypothesis and define new subproblems
Dynamic programming techniques.
• Adding a new variable: knapsack.
• Order subproblems in the right way: RNA secondary structure

18

