CS 401

Shortest Path / Computational Complexity

Xiaorui Sun

Shortest Paths with Negative Edge Weights

Shortest Paths with Neg Edge Weights

Given a weighted directed graph G = (V, E) and a source vertex s, where the weight of edge (u,v) is $c_{u,v}$ (that can be negative) Goal: Find the shortest path from s to all vertices of G.

Recall that Dikjstra's Algorithm fails when weights are negative

Impossibility on Graphs with Neg Cycles

Observation: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the cycle again and again.

So, suppose G does not have a negative cycle.

DP for Shortest Path (First Attempt)

Optimal substructure: Take the shortest s - v path, if the last edge in the path is w - v, then removing last edge is a shortest s - w path

Def: Let OPT(v) be the length of the shortest s - v path

$$OPT(v) = \begin{cases} 0 & \text{if } v = s \\ \min_{u:(u,v) \text{ an edge}} OPT(u) + c_{u,v} \end{cases}$$

The formula is correct. But it is not clear how to compute it.

DP for Shortest Path (First Attempt)

Optimal substructure: Take the shortest s - v path, if the last edge in the path is w - v, then removing last edge is a shortest

s - w path

Why OPT(w) is an easier subproblem than OPT(v)? (OPT(v) might be smaller than OPT(w))

Def: Let OPT(v) be the

$$OPT(v) = \begin{cases} 0 & \text{if } v = s \\ \min_{u:(u,v) \text{ an edge}} OPT(u) + c_{u,v} \end{cases}$$

The formula is correct. But it is not clear how to compute it.

DP for Shortest Path

Def: Let OPT(v, i) be the length of the shortest s - v path with at most *i* edges.

Let us characterize OPT(v, i).

Case 1: OPT(v, i) path has less than *i* edges.

• Then, OPT(v, i) = OPT(v, i - 1).

Case 2: OPT(v, i) path has exactly *i* edges.

- Let $s, v_1, v_2, \dots, v_{i-1}, v$ be the OPT(v, i) path with i edges.
- Then, $s, v_1, ..., v_{i-1}$ must be the shortest $s v_{i-1}$ path with at most i 1 edges. So, $OPT(v, i) = OPT(v_{i-1}, i - 1) + c_{v_{i-1}, v}$

DP for Shortest Path

Def: Let OPT(v, i) be the length of the shortest s - v path with at most *i* edges.

$$OPT(v,i) = \begin{cases} 0 & \text{if } v = s \\ \infty & \text{if } v \neq s, i = 0 \\ \min(OPT(v,i-1), \min_{u:(u,v) \text{ an edge}} OPT(u,i-1) + c_{u,v}) \end{cases}$$

So, for every v, OPT(v,?) is the shortest path from s to v. But how long do we have to run? Since G has no negative cycle, it has at most n - 1 edges. So, OPT(v, n - 1) is the answer.

Bellman Ford Algorithm

for v=1 to n if $v \neq s$ then $M[v,0] = \infty$ M[s,0] = 0.

```
for i=1 to n-1
for v=1 to n
  M[v,i]=M[v,i-1
  for every edge
  M[v,i]=min(
```

	Complexity	Author
	$O(n^4)$	Shimbel (1955) [30]
	$O(Wn^2m)$	Ford (1956) [14]
*	O(nm)	Bellman (1958) [1], Moore (1959) [25]
	$O(n^{\frac{3}{4}}m\log W)$	Gabow (1983) [9]
	$O(\sqrt{n}m\log(nW))$	Gabow and Tarjan (1989) [10]
*	$O(\sqrt{n}m\log(W))$	Goldberg (1993) [12]
*	$ ilde{O}(Wn^\omega)$	Sankowski (2005) [27] Yuster and Zwick (2005) [35]
*	$\tilde{O}(m^{10/7}\log W)$	Cohen, Madry, Sankowski, Vladu (2016)

Table 1: The complexity results for the SSSP problem with negative weights (* indicates asymptotically the best bound for some range of parameters).

 $m^{1+o(1)}\log W$ algorithm By Bernstein, Nanongkai, and Wulff-Nilsen; Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva 2022

Running Time: O(nm)

Can we test if G has negative cycles? Yes, run for i=1...3n and see if the M[v,n-1] is different from M[v,3n]

DP Techniques

Principle:

- Optimal substructure: Remove certain part of the optimal solution (for the entire problem) is an optimal solution of a subproblem
- Carefully define subproblems. Typically, only a polynomial number of subproblems
- Parameterization/Memorization

Recipe:

- Find optimal substructure by investigating the optimal solution
- Find out additional variables/subproblems that you need to do the induction
- Strengthen the hypothesis and define new subproblems

Dynamic programming techniques.

Adding a new variable: knapsack, shortest path with negative weights

Computational Complexity

Algorithm Design Patterns and Anti-Patterns

Algorithm design patterns.

- Greed.
- Divide-and-conquer.
- Dynamic programming.
- Reductions.
- Local search.
- Randomization.

Algorithm design anti-patterns.

- NP-completeness.
- PSPACE-completeness. unlikely.
- Undecidability.

Ex.

 $O(n \log n)$ interval scheduling. $O(n^2)$ edit distance.

O(n^k) algorithm unlikely. O(n^k) certification algorithm

No algorithm possible.

Computational Complexity

Goal: Classify problems according to the amount of computational resources used by the best algorithms that solve them

Here we focus on time complexity

Recall: worst-case running time of an algorithm

• **max** # steps algorithm takes on any input of size **n**

Relative Complexity of Problems

- Want a notion that allows us to compare the complexity of problems
- Want to be able to make statements of the form

"If we could solve problem **B** in polynomial time then we can solve problem **A** in polynomial time"

"Problem **B** is at least as hard as problem **A**"

Def $A \leq_P B$: if there is an algorithm for problem A using a 'black box' (subroutine) that solve problem B s.t.,

- Algorithm uses only a polynomial number of steps
- Makes only a polynomial number of calls to a subroutine for B

```
Example
              Algorithm for A:
              Int i=0, i'=0;
              Int j=0, j'=0;
               . . . . .
              i=i+i:
               (computation on i, j, i', j')
               . . . . .
              Int x = B(i, j)
              Int y = B(i', j')
               . . . . .
               (compute z based on x and y)
               Return z
```

Def $A \leq_P B$: if there is an algorithm for problem A using a 'black box' (subroutine) that solve problem B s.t.,

- Algorithm uses only a polynomial number of steps
- Makes only a polynomial number of calls to a subroutine for **B**

Question: Is the following polynomial time reduction correct?

Interval Scheduling \leq_P Max Independent Set

- Yes. Without the blackbox of max independent set, we still have a polynomial time algorithm for interval scheduling.
- If problem A can be solved in polynomial time, then A ≤_P B holds for any problem B

Def $A \leq_P B$: if there is an algorithm for problem A using a 'black box' (subroutine) that solve problem B s.t.,

- Algorithm uses only a polynomial number of steps
- Makes only a polynomial number of calls to a subroutine for B

In words,

- Problem A is polynomial-time reducible to problem B
- B is as hard as A (it can be even harder)
- Informally, A is a special case of B

Purpose. Classify problems according to relative difficulty.

Design algorithms. If $A \leq_P B$ and B can be solved in polynomialtime, then A can also be solved in polynomial time.

Establish intractability. If $A \leq_P B$ and A cannot be solved in polynomial-time, then B cannot be solved in polynomial time.

Establish equivalence. If $A \leq_P B$ and $B \leq_P A$, we use notation $A \equiv_P B$.

Basic reduction strategies

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.

Example 1: Vertex Cover \equiv_p Indep Set

INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \ge k$, and for each edge at most one of its endpoints is in S?

- Ex. Is there an independent set of size ≥ 6 ? Yes.
- Ex. Is there an independent set of size \geq 7? No.

Example 1: Vertex Cover \equiv_p Indep Set

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a subset of vertices S \subseteq V such that $|S| \le k$, and for each edge, at least one of its endpoints is in S?

- Ex. Is there a vertex cover of size ≤ 4 ? Yes.
- Ex. Is there a vertex cover of size ≤ 3 ? No.

Example 1: Vertex Cover \equiv_p Indep Set

Claim: For any graph G = (V, E), S is an independent set iff V - S is a vertex cover

Pf: =>

Let S be a independent set of G Then, S has at most one endpoint of every edge of G So, V - S has at least one endpoint of every edge of G So, V - S is a vertex cover.

 \leq Suppose *V* – *S* is a vertex cover

Then, there is no edge between vertices of S (otherwise, V - S is not a vertex cover)

So, *S* is an independent set.

Basic reduction strategies

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.

Example 2: Vertex Cover \leq_p Set Cover

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a subset of vertices S \subseteq V such that $|S| \le k$, and for each edge, at least one of its endpoints is in S?

- Ex. Is there a vertex cover of size ≤ 4 ? Yes.
- Ex. Is there a vertex cover of size ≤ 3 ? No.

Example 2: Vertex Cover \leq_p Set Cover

SET COVER: Given a set U of elements, a collection S_1, S_2, \ldots , S_m of subsets of U, and an integer k, does there exist a collection of \leq k of these sets whose union is equal to U?

Ex:

$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$$

k = 2
$$S_1 = \{ 3, 7 \} \qquad S_4 = \{ 2, 4 \}$$

$$S_2 = \{ 3, 4, 5, 6 \} \qquad S_5 = \{ 5 \}$$

$$S_3 = \{ 1 \} \qquad S_6 = \{ 1, 2, 6, 7 \}$$

Example 2: Vertex Cover \leq_p Set Cover

Claim: VERTEX-COVER \leq_{P} SET-COVER.

Pf: Given a VERTEX-COVER instance G = (V, E), k, we construct a set cover instance whose size equals the size of the vertex cover instance.

Construction:

Create SET-COVER instance:

• k = k, U = E, $S_v = \{e \in E : e \text{ incident to } v\}$

Set-cover of size $\leq k$ iff vertex cover of size $\leq k$.

SET COVER	
U = { 1, 2, 3, 4, 5, 6, 7 k = 2 $S_a = \{3, 7\}$ $S_c = \{3, 4, 5, 6\}$ $S_e = \{1\}$	7