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Shortest Paths with Negative Edge 

Weights



Shortest Paths with Neg Edge Weights

Given a weighted directed graph 𝐺 = 𝑉, 𝐸  and a source vertex 
𝑠, where the weight of edge (u,v) is 𝑐𝑢,𝑣 (that can be negative)

Goal: Find the shortest path from s to all vertices of G.

Recall that Dikjstra’s Algorithm fails when weights are negative
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Impossibility on Graphs with Neg Cycles

Observation: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the 

cycle again and again. 

So, suppose G does not have a negative cycle. 
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DP for Shortest Path (First Attempt)

Optimal substructure: Take the shortest 𝑠 - 𝑣 path, if the last 

edge in the path is 𝑤 - 𝑣, then removing last edge is a shortest   

𝑠 - 𝑤 path 

Def: Let 𝑂𝑃𝑇(𝑣) be the length of the shortest 𝑠 - 𝑣 path

𝑂𝑃𝑇 𝑣 = ൝
0 if 𝑣 = 𝑠

min
𝑢: 𝑢,𝑣 an edge

𝑂𝑃𝑇 𝑢 + 𝑐𝑢,𝑣

The formula is correct. But it is not clear how to compute it.
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Why 𝑂𝑃𝑇(𝑤) is an easier subproblem than 

𝑂𝑃𝑇(𝑣)?

(𝑂𝑃𝑇(𝑣) might be smaller than 𝑂𝑃𝑇(𝑤))



DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at 

most 𝑖 edges.

Let us characterize 𝑂𝑃𝑇(𝑣, 𝑖).

Case 1: 𝑂𝑃𝑇(𝑣, 𝑖) path has less than 𝑖 edges.

• Then, 𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣, 𝑖 − 1 .

Case 2: 𝑂𝑃𝑇(𝑣, 𝑖) path has exactly 𝑖 edges.

• Let 𝑠, 𝑣1, 𝑣2, … , 𝑣𝑖−1, 𝑣 be the 𝑂𝑃𝑇(𝑣, 𝑖) path with 𝑖 edges.

• Then, 𝑠, 𝑣1, … , 𝑣𝑖−1 must be the shortest 𝑠 - 𝑣𝑖−1 path with at 

most 𝑖 − 1 edges. So, 

𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣𝑖−1, 𝑖 − 1 + 𝑐𝑣𝑖−1,𝑣
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DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at 

most 𝑖 edges.

𝑂𝑃𝑇 𝑣, 𝑖 = ൞

0 if 𝑣 = 𝑠
∞ if 𝑣 ≠ 𝑠, 𝑖 = 0

min(𝑂𝑃𝑇 𝑣, 𝑖 − 1 , min
𝑢: 𝑢,𝑣 an edge

𝑂𝑃𝑇 𝑢, 𝑖 − 1 + 𝑐𝑢,𝑣)

So, for every v, 𝑂𝑃𝑇 𝑣, ?  is the shortest path from s to v.

But how long do we have to run?

Since G has no negative cycle, it has at most 𝑛 − 1 edges. So,

𝑂𝑃𝑇(𝑣, 𝑛 − 1) is the answer. 
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Bellman Ford Algorithm
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for v=1 to n

   if 𝒗 ≠ 𝒔 then
      M[v,0]=∞
M[s,0]=0.

for i=1 to n-1

   for v=1 to n

      M[v,i]=M[v,i-1]

      for every edge (u,v)

         M[v,i]=min(M[v,i], M[u,i-1]+cu,v)

Running Time: 𝑂 𝑛𝑚
Can we test if G has negative cycles? 

Yes, run for i=1…3n and see if the M[v,n-1] is different from M[v,3n] 

𝑚1+𝑜(1)log 𝑊 algorithm

By Bernstein, Nanongkai, and Wulff-Nilsen; 

Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva 

2022  



DP Techniques

Principle:

• Optimal substructure: Remove certain part of the optimal solution 

(for the entire problem) is an optimal solution of a subproblem

• Carefully define subproblems. Typically, only a polynomial number 

of subproblems

• Parameterization/Memorization

Recipe: 

• Find optimal substructure by investigating the optimal solution

• Find out additional variables/subproblems that you need to do the 

induction

• Strengthen the hypothesis and define new subproblems

Dynamic programming techniques.

• Adding a new variable:  knapsack, shortest path with negative 

weights
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Computational Complexity
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Algorithm Design Patterns and Anti-

Patterns

Algorithm design patterns.         Ex.

• Greed.           O(n log n) interval scheduling.

• Divide-and-conquer.         O(n2) edit distance.

• Dynamic programming.

• Reductions. 

• Local search. 

• Randomization.

Algorithm design anti-patterns.

• NP-completeness.         O(nk) algorithm unlikely.

• PSPACE-completeness.      O(nk) certification algorithm 

unlikely.

• Undecidability.          No algorithm possible.
12



Computational Complexity

Goal: Classify problems according to the amount of 

computational resources used by the best algorithms that 

solve them

   Here we focus on time complexity

Recall:  worst-case running time of an algorithm 

• max # steps algorithm takes on any input of size n
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• Want a notion that allows us to compare the complexity 
of problems

• Want to be able to make statements of the form

 “If we could solve problem B in polynomial time 
then we can solve problem A in polynomial time”

“Problem B is at least as hard as problem A”

Relative Complexity of Problems



Polynomial Time Reduction

Def A P
 
B: if there is an algorithm for problem A using a 

‘black box’ (subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps 

• Makes only a polynomial number of calls to a subroutine for B

Example
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Algorithm for A:

Int i=0, i’=0;

Int j=0, j’=0;

…..

i=i+j;

(computation on i, j, i’, j')

…..

Int x = B(i, j)

Int y = B(i’, j’)

…..

(compute z based on x and y)

Return z



Polynomial Time Reduction

Def A P
 
B: if there is an algorithm for problem A using a 

‘black box’ (subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps 

• Makes only a polynomial number of calls to a subroutine for B

Question: Is the following polynomial time reduction 
correct?

Interval Scheduling ≤P Max Independent Set

• Yes. Without the blackbox of max independent set, we 
still have a polynomial time algorithm for interval 
scheduling. 

• If problem A can be solved in polynomial time, then A ≤P 
B holds for any problem B
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Polynomial Time Reduction

Def A P
 
B: if there is an algorithm for problem A using a 

‘black box’ (subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps 

• Makes only a polynomial number of calls to a subroutine for B

So, 

Conversely,

In words, 

• Problem A is polynomial-time reducible to problem B 

• B is as hard as A (it can be even harder)

• Informally, A is a special case of B
17

B is Polynomial

time solvable

A is Polynomial

time solvable

No efficient 

Algorithm for A

No efficient 

Algorithm for B



Polynomial Time Reduction

Purpose.  Classify problems according to relative difficulty.

Design algorithms.  If A  P B and B can be solved in polynomial-

time,  then A can also be solved in polynomial time.

Establish intractability.  If A  P B and A cannot be solved in 

polynomial-time, then B cannot be solved in polynomial time.

Establish equivalence.  If A  P B and B  P A, we use notation 

A  P B.
up to cost of reduction
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Polynomial Time Reduction

Basic reduction strategies

▪ Reduction by simple equivalence.

▪ Reduction from special case to general case.

▪ Reduction by encoding with gadgets.
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INDEPENDENT SET:  Given a graph G = (V, E) and an integer k, is there 

a subset of vertices S  V such that |S|  k, and for each edge at most 

one of its endpoints is in S?

Ex.  Is there an independent set of size  6?  Yes.

Ex.  Is there an independent set of size  7?  No.

independent set

Example 1: Vertex Cover 𝑝 Indep Set
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VERTEX COVER:  Given a graph G = (V, E) and an integer k, is there a 

subset of vertices S  V such that |S|  k, and for each edge, at least 

one of its endpoints is in S?

Ex.  Is there a vertex cover of size  4?  Yes.

Ex.  Is there a vertex cover of size  3?  No.

vertex cover

Example 1: Vertex Cover 𝑝 Indep Set
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Example 1: Vertex Cover 𝑝 Indep Set

Claim: For any graph 𝐺 = 𝑉, 𝐸 , S is an independent set iff    
𝑉 − 𝑆 is a vertex cover

Pf: => 

Let S be a independent set of G

Then, 𝑆 has at most one endpoint of every edge of G

So, 𝑉 − 𝑆 has at least one endpoint of every edge of G

So, 𝑉 − 𝑆 is a vertex cover.

<= Suppose 𝑉 − 𝑆 is a vertex cover

Then, there is no edge between vertices of S (otherwise, 𝑉 − 𝑆 is 
not a vertex cover)

So, 𝑆 is an independent set.
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Polynomial Time Reduction

Basic reduction strategies

▪ Reduction by simple equivalence.

▪ Reduction from special case to general case.

▪ Reduction by encoding with gadgets.
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VERTEX COVER:  Given a graph G = (V, E) and an integer k, is there a 

subset of vertices S  V such that |S|  k, and for each edge, at least 

one of its endpoints is in S?

Ex.  Is there a vertex cover of size  4?  Yes.

Ex.  Is there a vertex cover of size  3?  No.

vertex cover

Example 2: Vertex Cover ≤𝑝 Set Cover
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Example 2: Vertex Cover ≤𝑝 Set Cover

SET COVER:  Given a set U of elements, a collection S1, S2, . . . , 

Sm of subsets of U, and an integer k, does there exist a 

collection of  k of these sets whose union is equal to U?

Ex:

U = { 1, 2, 3, 4, 5, 6, 7 }

k = 2

S1 = {3, 7} S4 = {2, 4}

S2 = {3, 4, 5, 6} S5 = {5}

S3 = {1}  S6 =  {1, 2, 6, 7}
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SET COVER

U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
Sa = {3, 7}  Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1}  Sf= {1, 2, 6, 7}

Claim:  VERTEX-COVER  P SET-COVER.

Pf:  Given a VERTEX-COVER instance G = (V, E), k, we 

construct a set cover instance whose size equals the size of the 

vertex cover instance.

Construction:  

Create SET-COVER instance:

• k = k,  U = E,  Sv = {e  E : e incident to v }

Set-cover of size  k iff vertex cover of size  k.  

a

d

b

e

f c

VERTEX COVER

k = 2
e1 

e2 e3 

e5 

e4 

e6 

e7 

Example 2: Vertex Cover ≤𝑝 Set Cover
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