CS 401

Shortest Path / Computational
Complexity

Xiaorui Sun

Shortest Paths with Negative Edge
Weights

Shortest Paths with Neg Edge Welghts

Given a weighted directed graph ¢ = (V,E) and a source vertex
s, where the weight of edge (u,v) Is ¢, ,, (that can be negative)

Goal: Find the shortest path from s to all vertices of G.

Recall that Dikjstra’s Algorithm fails when weights are negative

e e

Impossibility on Graphs with Neg Cycles

Observation: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the
cycle again and again.

So, suppose G does not have a negative cycle.

DP for Shortest Path (First Attempt)

Optimal substructure: Take the shortest s - v path, if the last
edge in the path is w - v, then removing last edge is a shortest
s - w path

Def: Let OPT (v) be the length of the shortest s - v path

0 ifv=s
OPT(v) = min OPT (u) + cyy

u:(u,v) an edge

The formula is correct. But it is not clear how to compute it.

DP for Shortest Path (First Attempt)

Optimal substructure: Take the shortest s - v path, if the last
edge in the path is w - v, then removing last edge is a shortest

s - w path Why OPT(w) is an easier subproblem than

OPT (v)?
Def: Let OPT(v) be the (OPT (v) might be smaller than OPT (w))

0 ifv=s
OPT(v) = min OPT (u) + cyy

u:(u,v) an edge

The formula is correct. But it is not clear how to compute it.

DP for Shortest Path

Def: Let OPT (v, i) be the length of the shortest s - v path with at
most i edges.

Let us characterize OPT (v, Q).

Case 1: OPT (v,i) path has less than i edges.
« Then, OPT(v,i) = OPT(v,i — 1).

Case 2: OPT (v,i) path has exactly i edges.
 Lets,vq,v,,...,v;_1, v be the OPT (v, i) path with i edges.
 Then, s,v,,...,v;_1 Mmust be the shortest s - v;_; path with at

most i — 1 edges. So,
OPT(v,i) = OPT(v;_1,i — 1) + ¢y, »

DP for Shortest Path

Def: Let OPT (v, i) be the length of the shortest s - v path with at
most i edges.

(0 ifv=s
min(OPT (v,i — 1), min OPT(u,i —1) + cyy)
X u:(u,v) an edge ’

So, for every v, OPT(v,?) is the shortest path from s to v.

But how long do we have to run?

Since G has no negative cycle, it has at most n — 1 edges. So,
OPT (v,n — 1) Is the answer.

Bellman Ford Algorithm

Complexity Author
o(n") Shimbel (1955) [30]
O(Wn?m) Ford (1956) [1]
* O(nm) Bellman (1958) [1], Moore (1959) [27]
for v=1 to n O(nimlog W) Gabow (1983) [9]
O(y/nmlog(n¥)) Gabow and Tarjan (1989) [10]
if v+ s then * | O(v/nmlog(W)) Goldberg (1993) 1]
* O(Wn*) Sankowski (2005) [27] Yuster and Zwick (2005) [37]
M [V ’ 0] =00 1 Om log W) Cohen, Madry, Sankowski, Vladu (2016)
M [S, 0] =0 . Table 1: The complexity results for the SSSP problem with negative weights (* indicates asymptotically the

best bound for some range of parameters).

for i=1 to n-1
for v=1 ton m!toW]og W algorithm
MAeINEMesN By Bernstein, Nanongkai, and Wulff-Nilsen;

f°"M‘§Z‘f‘§§’=:§§ Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva
2022

Running Time: 0(nm)
Can we test if G has negative cycles?
Yes, run for i=1...3n and see if the M[v,n-1] is different from M[v,3n]

DP Technigues

Principle:

« Optimal substructure: Remove certain part of the optimal solution
(for the entire problem) is an optimal solution of a subproblem

« Carefully define subproblems. Typically, only a polynomial number
of subproblems

« Parameterization/Memorization
Recipe:
« Find optimal substructure by investigating the optimal solution

« Find out additional variables/subproblems that you need to do the
Induction

« Strengthen the hypothesis and define new subproblems
Dynamic programming techniques.

« Adding a new variable: knapsack, shortest path with negative
weights

10

Computational Complexity

11

Algorithm Design Patterns and Anti-
Patterns

Algorithm design patterns.
« Greed.
« Divide-and-conqguer.
« Dynamic programming.
* Reductions.

Algorithm design anti-patterns.

 NP-completeness.

« PSPACE-completeness.

unlikely.
« Undecidability.

EX.
O(n log n) interval scheduling.
O(n?) edit distance.

O(nk) algorithm unlikely.
O(nk) certification algorithm

No algorithm possible.
12

Computational Complexity

Goal: Classify problems according to the amount of

computational resources used by the best algorithms that
solve them

Here we focus on time complexity

Recall: worst-case running time of an algorithm
 max # steps algorithm takes on any input of size n

13

Relative Complexity of Problems

« Want a notion that allows us to compare the complexity
of problems

« \Want to be able to make statements of the form

“If we could solve problem B in polynomial time
then we can solve problem A in polynomial time”

“Problem B is at least as hard as problem A”

14

Polynomial Time Reduction

Def A <, B: if there Is an algorithm for problem A using a
‘black box’ (subroutine) that solve problem B s.t.,

« Algorithm uses only a polynomial number of steps
« Makes only a polynomial number of calls to a subroutine for B

Example Algorithm for A:
Int i1=0, 1'=0;
Int j=0, j'=0;

I=i+j;

(computationon i, j, I, j')
Int X = B(l, |)

Inty =B(i’,)

(compute z based on x and y)
Return z

Polynomial Time Reduction

Def A <, B: if there Is an algorithm for problem A using a
‘black box’ (subroutine) that solve problem B s.t.,
Algorithm uses only a polynomial number of steps
Makes only a polynomial number of calls to a subroutine for B

Question: Is the following polynomial time reduction
correct?

Interval Scheduling < Max Independent Set

* Yes. Without the blackbox of max independent set, we
still have a polynomial time algorithm for interval
scheduling.

 If problem A can be solved in polynomial time, then A <;
B holds for any problem B

16

Polynomial Time Reduction

Def A <, B: if there Is an algorithm for problem A using a
‘black box’ (subroutine) that solve problem B s.t.,

« Algorithm uses only a polynomial number of steps
« Makes only a polynomial number of calls to a subroutine for B

B is Polynomial ‘ Ais Polynomial
time solvable time solvable

Conversely,

No efficient - No efficient
[Algorithm for A] {Algorithm for B]
In words,
* Problem A is polynomial-time reducible to problem B

« Bis as hard as A (it can be even harder) 17
« Informally, A is a special case of B

So,

Polynomial Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If A<, B and B can be solved in polynomial-
time, then A can also be solved in polynomial time.

Establish intractability. If A <p B and A cannot be solved in
polynomial-time, then B cannot be solved in polynomial time.

Establish equivalence. If A<y B and B <y A, we use notation
A =,B. !

up to cost of reduction

18

Polynomial Time Reduction

Basic reduction strategies

= Reduction by simple equivalence.
= Reduction from special case to general case.

= Reduction by encoding with gadgets.

19

Example 1: Vertex Cover =, Indep Set

INDEPENDENT SET: Given agraph G = (V, E) and an integer k, is there

a subset of vertices S — V such that |S| > k, and for each edge at most
one of its endpoints is in S?

Ex. Isthere an independent set of size > 6? Yes.
EX. Isthere an independent set of size > 7? No.

7]

20 20

{

o—©O

@ independent set

Example 1: Vertex Cover =, Indep Set

VERTEX COVER: Given a graph G = (V, E) and an integer Kk, is there a

subset of vertices S — V such that |S| < k, and for each edge, at least
one of its endpoints is in S?

EXx. Is there a vertex cover of size <4? Yes.
Ex. Isthere a vertex cover of size < 3? No.

7]

{

o—©O

‘ vertex cover

21

Example 1: Vertex Cover =, Indep Set

Claim: For any graph ¢ = (V,E), S is an independent set iff
V — S is a vertex cover

Pf. =>

Let S be a independent set of G

Then, S has at most one endpoint of every edge of G
So, V — S has at least one endpoint of every edge of G
So, V — S is a vertex cover.

<= Suppose I’ — S Is a vertex cover

Then, there is no edge between vertices of S (otherwise, V — S is
not a vertex cover)

So, S is an independent set.

22

Polynomial Time Reduction

Basic reduction strategies

= Reduction by simple equivalence.
» Reduction from special case to general case.

= Reduction by encoding with gadgets.

23

Example 2: Vertex Cover <, Set Cover

VERTEX COVER: Given a graph G = (V, E) and an integer K, Is there a

subset of vertices S — V such that |S| < k, and for each edge, at least
one of its endpoints is in S?

EXx. Is there a vertex cover of size <4? Yes.
Ex. Isthere a vertex cover of size < 3? No.

7]

(LR

o—©O

‘ vertex cover

24

Example 2: Vertex Cover <, Set Cover

SET COVER. Given a set U of elements, a collection S, S,, . . .,

S, of subsets of U, and an integer k, does there exist a
collection of < k of these sets whose union is equal to U?

EX:

U={1,2,3,4,56,7}

k=2

5:={3,7} S4={2,4}
S2={3,4,5,6} S5={5)

S3 = {1} Se={1,2,6,7)

25

Example 2: Vertex Cover <

Set Cover

Claim: VERTEX-COVER <y SET-COVER.

Pf. Given a VERTEX-COVER instance G = (V, E), k, we
construct a set cover instance whose size equals the size of the
vertex cover instance.

Construction:

Create SET-COVER instance:

k=k, U=E, S, =
Set-cover of size < k iff vertex cover of size < k. =

VERTEX COVER

{e e E:eincidentto v}

SET COVER

U={1,23,4,5,6,7)

k=2

S.={3.7} Sp=1{2, 4}
S.= {3, 4,5, 6) S, = {5}

S.= {1} S5¢={1,2,6,7}

26

	Slide 1: CS 401
	Slide 2: Shortest Paths with Negative Edge Weights
	Slide 3: Shortest Paths with Neg Edge Weights
	Slide 4: Impossibility on Graphs with Neg Cycles
	Slide 5: DP for Shortest Path (First Attempt)
	Slide 6: DP for Shortest Path (First Attempt)
	Slide 7: DP for Shortest Path
	Slide 8: DP for Shortest Path
	Slide 9: Bellman Ford Algorithm
	Slide 10: DP Techniques
	Slide 11
	Slide 12: Algorithm Design Patterns and Anti-Patterns
	Slide 13: Computational Complexity
	Slide 14
	Slide 15: Polynomial Time Reduction
	Slide 16: Polynomial Time Reduction
	Slide 17: Polynomial Time Reduction
	Slide 18: Polynomial Time Reduction
	Slide 19: Polynomial Time Reduction
	Slide 20: Example 1: Vertex Cover  p Indep Set
	Slide 21: Example 1: Vertex Cover  p Indep Set
	Slide 22: Example 1: Vertex Cover  p Indep Set
	Slide 23: Polynomial Time Reduction
	Slide 24: Example 2: Vertex Cover p Set Cover
	Slide 25: Example 2: Vertex Cover p Set Cover
	Slide 26: Example 2: Vertex Cover p Set Cover

