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Stuff

Homework 4 due today 11:59pm

Homework 5 will be released tomorrow

Final exam: Wednesday May 7 3:30pm – 5:30pm

• If you have exam conflicts, please let me know ASAP via 
email
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Polynomial Time Reduction

Def A P
 
B: if there is an algorithm for problem A using a 

‘black box’ (subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps 

• Makes only a polynomial number of calls to a subroutine for B

Example
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Algorithm for A:

Int i=0, i’=0;

Int j=0, j’=0;

…..

i=i+j;

(computation on i, j, i’, j')

…..

Int x = B(i, j)

Int y = B(i’, j’)

…..

(compute z based on x and y)

Return z



Polynomial Time Reduction

Def A P
 
B: if there is an algorithm for problem A using a 

‘black box’ (subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps 

• Makes only a polynomial number of calls to a subroutine for B

Question: Is the following polynomial time reduction 
correct?

Interval Scheduling ≤P Max Independent Set

• Yes. Without the blackbox of max independent set, we 
still have a polynomial time algorithm for interval 
scheduling. 

• If problem A can be solved in polynomial time, then A ≤P 
B holds for any problem B
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Polynomial Time Reduction

Def A P
 
B: if there is an algorithm for problem A using a 

‘black box’ (subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps 

• Makes only a polynomial number of calls to a subroutine for B

Question: Is the following polynomial time reduction 
correct?

Max Independent Set ≤P Interval Scheduling

• Unlikely. If there is such a polynomial time reduction, 
then MIS can be solved in polynomial time. 

• If A ≤P B, then A is no harder than B
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Polynomial Time Reduction

Def A P
 
B: if there is an algorithm for problem A using a 

‘black box’ (subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps 

• Makes only a polynomial number of calls to a subroutine for B

So, 

Conversely,

In words, 

• Problem A is polynomial-time reducible to problem B 

• B is as hard as A (it can be even harder)

• Informally, A is a special case of B
6

B is Polynomial

time solvable

A is Polynomial

time solvable

No efficient 

Algorithm for A

No efficient 

Algorithm for B



Polynomial Time Reduction

Purpose.  Classify problems according to relative difficulty.

Design algorithms.  If A  P B and B can be solved in polynomial-

time,  then A can also be solved in polynomial time.

Establish intractability.  If A  P B and A cannot be solved in 

polynomial-time, then B cannot be solved in polynomial time.

Establish equivalence.  If A  P B and B  P A, we use notation 

A  P B.
up to cost of reduction
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Polynomial Time Reduction

Basic reduction strategies

▪ Reduction by simple equivalence.

▪ Reduction from special case to general case.

▪ Reduction by encoding with gadgets.
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INDEPENDENT SET:  Given a graph G = (V, E) and an integer k, is there 

a subset of vertices S  V such that |S|  k, and for each edge at most 

one of its endpoints is in S?

Ex.  Is there an independent set of size  6?  Yes.

Ex.  Is there an independent set of size  7?  No.

independent set

Example 1: Vertex Cover 𝑝 Indep Set
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VERTEX COVER:  Given a graph G = (V, E) and an integer k, is there a 

subset of vertices S  V such that |S|  k, and for each edge, at least 

one of its endpoints is in S?

Ex.  Is there a vertex cover of size  4?  Yes.

Ex.  Is there a vertex cover of size  3?  No.

vertex cover

Example 1: Vertex Cover 𝑝 Indep Set
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Example 1: Vertex Cover 𝑝 Indep Set

Claim: For any graph 𝐺 = 𝑉, 𝐸 , S is an independent set iff    
𝑉 − 𝑆 is a vertex cover

Pf: => 

Let S be a independent set of G

Then, 𝑆 has at most one endpoint of every edge of G

So, 𝑉 − 𝑆 has at least one endpoint of every edge of G

So, 𝑉 − 𝑆 is a vertex cover.

<= Suppose 𝑉 − 𝑆 is a vertex cover

Then, there is no edge between vertices of S (otherwise, 𝑉 − 𝑆 is 
not a vertex cover)

So, 𝑆 is an independent set.
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Polynomial Time Reduction

Basic reduction strategies

▪ Reduction by simple equivalence.

▪ Reduction from special case to general case.

▪ Reduction by encoding with gadgets.
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VERTEX COVER:  Given a graph G = (V, E) and an integer k, is there a 

subset of vertices S  V such that |S|  k, and for each edge, at least 

one of its endpoints is in S?

Ex.  Is there a vertex cover of size  4?  Yes.

Ex.  Is there a vertex cover of size  3?  No.

vertex cover

Example 2: Vertex Cover ≤𝑝 Set Cover
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Example 2: Vertex Cover ≤𝑝 Set Cover

SET COVER:  Given a set U of elements, a collection S1, S2, . . . , 

Sm of subsets of U, and an integer k, does there exist a 

collection of  k of these sets whose union is equal to U?

Ex:

U = { 1, 2, 3, 4, 5, 6, 7 }

k = 2

S1 = {3, 7} S4 = {2, 4}

S2 = {3, 4, 5, 6} S5 = {5}

S3 = {1}  S6 =  {1, 2, 6, 7}
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SET COVER

U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
Sa = {3, 7}  Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1}  Sf= {1, 2, 6, 7}

Claim:  VERTEX-COVER  P SET-COVER.

Pf:  Given a VERTEX-COVER instance G = (V, E), k, we 

construct a set cover instance whose size equals the size of the 

vertex cover instance.

Construction:  

Create SET-COVER instance:

• k = k,  U = E,  Sv = {e  E : e incident to v }

Set-cover of size  k iff vertex cover of size  k.  

a

d

b

e

f c

VERTEX COVER

k = 2
e1 

e2 e3 

e5 

e4 

e6 

e7 

Example 2: Vertex Cover ≤𝑝 Set Cover
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Polynomial Time Reduction

Basic reduction strategies

▪ Reduction by simple equivalence.

▪ Reduction from special case to general case.

▪ Reduction by encoding with gadgets.
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Ex: 

Yes:  x1 = true, x2 = true x3 = false.

Literal: A Boolean variable or its negation.

Clause: A disjunction of literals.

Conjunctive normal form:  A propositional

formula  that is the conjunction of clauses.

SAT:  Given CNF formula , does it have a satisfying truth 

assignment?

3-SAT:  SAT where each clause contains exactly 3 literals.

Satisfiability

  

   

C j = x1 Ú x2 Ú x3

  

   

xi   or  xi

  

  

F =  C1 ÙC2 Ù C3 Ù C4

   

x1 Ú x2 Ú x3( ) Ù x1 Ú x2 Ú x3( ) Ù x2 Ú x3( ) Ù x1 Ú x2 Ú x3( )
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3 Satisfiability Reduces to Independent Set

Claim:  3-SAT  P INDEPENDENT-SET.

Pf:  Given an instance  of 3-SAT, we construct an instance (G, 

k) of INDEPENDENT-SET that has an independent set of size k 

if and only if  is satisfiable.

Construction

• G contains 3 vertices for each clause, one for each literal.

• Connect 3 literals in a clause in a triangle.

• Connect literal to each of its negations.

  

   

x2

  

   

F  =  x1 Ú x2 Ú x3( ) Ù x1 Ú x2 Ú x3( ) Ù x1 Ú x2 Ú x4( )

  

   

x3

  

   

x1

  

   

x1   

   

x2   

   

x4

  

   

x1  

   

x2

  

   

x3

k = 3

G
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3 Satisfiability Reduces to Independent Set
Claim: G contains independent set of size k = || iff  is 

satisfiable.

Pf    Let S be independent set of size k.

• S must contain exactly one vertex in each triangle.

• Set these literals to true.

• Truth assignment is consistent and all clauses are 

satisfied.

Pf    Given satisfying assignment, select one true literal from 

each triangle. This is an independent set of size k.  

  

   

x2   

   

x3

  

   

x1

  

   

x1   

   

x2   

   

x4

  

   

x1  

   

x2

  

   

x3

k = 3

G

and any other variables in a consistent way

  

   

F  =  x1 Ú x2 Ú x3( ) Ù x1 Ú x2 Ú x3( ) Ù x1 Ú x2 Ú x4( ) 19



Review

Basic reduction strategies:

• Simple equivalence:  INDEPENDENT-SET  P VERTEX-

COVER.

• Special case to general case:  VERTEX-COVER  P SET-

COVER.

• Encoding with gadgets:  3-SAT  P INDEPENDENT-SET.

Transitivity.  If X  P Y and Y  P Z, then X  P Z.

Pf idea.  Compose the two algorithms.

Ex:  3-SAT  P INDEPENDENT-SET  P VERTEX-COVER  P 

SET-COVER.
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