

Xiaorui Sun

1

### Stuff

Homework 4 due today 11:59pm

Homework 5 will be released tomorrow

Final exam: Wednesday May 7 3:30pm – 5:30pm

 If you have exam conflicts, please let me know ASAP via email

Def A  $\leq_P$  B: if there is an algorithm for problem A using a 'black box' (subroutine) that solve problem B s.t.,

- Algorithm uses only a polynomial number of steps
- Makes only a polynomial number of calls to a subroutine for B

```
Example
                Algorithm for A:
                Int i=0, i'=0;
                Int j=0, j'=0;
                 . . . . .
                i=i+i:
                (computation on i, j, i', j')
                 . . . . .
                Int x = B(i, j)
                Int y = B(i', j')
                 . . . . .
                 (compute z based on x and y)
                 Return z
```

Def  $A \leq_P B$ : if there is an algorithm for problem A using a 'black box' (subroutine) that solve problem B s.t.,

- Algorithm uses only a polynomial number of steps
- Makes only a polynomial number of calls to a subroutine for **B**

Question: Is the following polynomial time reduction correct?

Interval Scheduling  $\leq_P$  Max Independent Set

- Yes. Without the blackbox of max independent set, we still have a polynomial time algorithm for interval scheduling.
- If problem A can be solved in polynomial time, then A ≤<sub>P</sub> B holds for any problem B

Def  $A \leq_P B$ : if there is an algorithm for problem A using a 'black box' (subroutine) that solve problem B s.t.,

- Algorithm uses only a polynomial number of steps
- Makes only a polynomial number of calls to a subroutine for **B**

Question: Is the following polynomial time reduction correct?

Max Independent Set  $\leq_P$  Interval Scheduling

- Unlikely. If there is such a polynomial time reduction, then MIS can be solved in polynomial time.
- If  $A \leq_P B$ , then A is no harder than B

Def A  $\leq_P$  B: if there is an algorithm for problem A using a 'black box' (subroutine) that solve problem B s.t.,

- Algorithm uses only a polynomial number of steps
- Makes only a polynomial number of calls to a subroutine for B



In words,

- Problem A is polynomial-time reducible to problem B
- B is as hard as A (it can be even harder)
- Informally, A is a special case of B

Purpose. Classify problems according to relative difficulty.

Design algorithms. If  $A \leq_P B$  and B can be solved in polynomialtime, then A can also be solved in polynomial time.

Establish intractability. If  $A \leq_P B$  and A cannot be solved in polynomial-time, then B cannot be solved in polynomial time.

Establish equivalence. If  $A \leq_P B$  and  $B \leq_P A$ , we use notation  $A \equiv_P B$ .

### **Basic reduction strategies**

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.

# Example 1: Vertex Cover $\equiv_p$ Indep Set

**INDEPENDENT SET:** Given a graph G = (V, E) and an integer k, is there a subset of vertices S  $\subseteq$  V such that  $|S| \ge k$ , and for each edge at most one of its endpoints is in S?

- Ex. Is there an independent set of size  $\geq 6$ ? Yes.
- Ex. Is there an independent set of size  $\geq 7$ ? No.



# Example 1: Vertex Cover $\equiv_p$ Indep Set

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a subset of vertices S  $\subseteq$  V such that  $|S| \le k$ , and for each edge, at least one of its endpoints is in S?

- Ex. Is there a vertex cover of size  $\leq 4$ ? Yes.
- Ex. Is there a vertex cover of size  $\leq$  3? No.



# Example 1: Vertex Cover $\equiv_p$ Indep Set

Claim: For any graph G = (V, E), S is an independent set iff V - S is a vertex cover

#### Pf: =>

Let S be a independent set of G Then, S has at most one endpoint of every edge of G So, V - S has at least one endpoint of every edge of G So, V - S is a vertex cover.

 $\leq$  Suppose *V* – *S* is a vertex cover

Then, there is no edge between vertices of S (otherwise, V - S is not a vertex cover)

So, *S* is an independent set.

### **Basic reduction strategies**

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.

# Example 2: Vertex Cover $\leq_p$ Set Cover

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a subset of vertices S  $\subseteq$  V such that  $|S| \le k$ , and for each edge, at least one of its endpoints is in S?

- Ex. Is there a vertex cover of size  $\leq 4$ ? Yes.
- Ex. Is there a vertex cover of size  $\leq$  3? No.



# Example 2: Vertex Cover $\leq_p$ Set Cover

**SET COVER:** Given a set U of elements, a collection  $S_1, S_2, \ldots$ ,  $S_m$  of subsets of U, and an integer k, does there exist a collection of  $\leq$  k of these sets whose union is equal to U?

Ex:

$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$$
  
k = 2  
$$S_1 = \{ 3, 7 \} \qquad S_4 = \{ 2, 4 \}$$
  
$$S_2 = \{ 3, 4, 5, 6 \} \qquad S_5 = \{ 5 \}$$
  
$$S_3 = \{ 1 \} \qquad S_6 = \{ 1, 2, 6, 7 \}$$

Example 2: Vertex Cover  $\leq_p$  Set Cover

Claim: VERTEX-COVER  $\leq_{P}$  SET-COVER.

**Pf**: Given a VERTEX-COVER instance G = (V, E), k, we construct a set cover instance whose size equals the size of the vertex cover instance.

Construction:

Create SET-COVER instance:

• k = k, U = E,  $S_v = \{e \in E : e \text{ incident to } v\}$ 

Set-cover of size  $\leq k$  iff vertex cover of size  $\leq k$ .



| SET COVER                                                                                         |                                                                                         |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| U = { 1, 2, 3, 4, 5, 6, 7<br>k = 2<br>$S_a = \{3, 7\}$<br>$S_c = \{3, 4, 5, 6\}$<br>$S_e = \{1\}$ | 7 }<br>S <sub>b</sub> = {2, 4}<br>S <sub>d</sub> = {5}<br>S <sub>f</sub> = {1, 2, 6, 7} |

### **Basic reduction strategies**

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.

# Satisfiability

Literal: A Boolean variable or its negation.  $x_i$  or  $\overline{x_i}$ 

Clause: A disjunction of literals.

$$C_j = x_1 \text{ ú} \overline{x_2} \text{ ú} x_3$$

Conjunctive normal form: A propositional formula  $\Phi$  that is the conjunction of clauses.

 $\Phi = C_1 \, \dot{\mathsf{U}} C_2 \, \dot{\mathsf{U}} \, C_3 \, \dot{\mathsf{U}} \, C_4$ 

SAT: Given CNF formula  $\Phi$ , does it have a satisfying truth assignment?

3-SAT: SAT where each clause contains exactly 3 literals.

Ex: 
$$(\overline{x_1} \ U \ x_2 \ U \ x_3) \ U (x_1 \ U \ \overline{x_2} \ U \ x_3) \ U (x_2 \ U \ x_3) \ U (\overline{x_1} \ U \ \overline{x_2} \ U \ \overline{x_3})$$
  
Yes:  $x_1 = \text{true}, x_2 = \text{true} \ x_3 = \text{false}.$ 

### **3 Satisfiability Reduces to Independent Set**

#### Claim: $3-SAT \leq_{P} INDEPENDENT-SET$ .

**Pf**: Given an instance  $\Phi$  of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k if and only if  $\Phi$  is satisfiable.

#### Construction

G

k = 3

- G contains 3 vertices for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.



### **3 Satisfiability Reduces to Independent Set**

Claim: G contains independent set of size  $k = |\Phi|$  iff  $\Phi$  is satisfiable.

 $Pf \Rightarrow Let S$  be independent set of size k.

G

k = 3

- S must contain exactly one vertex in each triangle.
- Set these literals to true. and any other variables in a consistent way
- Truth assignment is consistent and all clauses are satisfied.

 $Pf \leftarrow Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k. •$ 



### Review

#### **Basic reduction strategies:**

- Simple equivalence: INDEPENDENT-SET  $\equiv_{P}$  VERTEX-COVER.
- Special case to general case: VERTEX-COVER ≤ P SET-COVER.
- Encoding with gadgets:  $3-SAT \leq_P INDEPENDENT-SET$ .

Transitivity. If  $X \leq_P Y$  and  $Y \leq_P Z$ , then  $X \leq_P Z$ . Pf idea. Compose the two algorithms.

**EX:**  $3-SAT \leq_P INDEPENDENT-SET \leq_P VERTEX-COVER \leq_P SET-COVER.$