CS 401

Computational Complexity

Xiaorui Sun

Shortest Paths with Negative Edge Weights

Shortest Paths with Neg Edge Weights

Given a weighted directed graph $G=(V, E)$ and a source vertex s, where the weight of edge (u, v) is $c_{u, v}$ (that can be negative)
Goal: Find the shortest path from s to all vertices of G.

Recall that Dikjstra's Algorithm fails when weights are negative

Impossibility on Graphs with Neg Cycles

Observation: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the cycle again and again.

So, suppose G does not have a negative cycle.

DP for Shortest Path (First Attempt)

Def: Let $O P T(v)$ be the length of the shortest $s-v$ path

$$
O P T(v)=\left\{\begin{array}{lr}
0 & \text { if } v=s \\
u:(u, v) \text { an edge } & O P T(u)+c_{u, v}
\end{array}\right.
$$

The formula is correct. But it is not clear how to compute it.

DP for Shortest Path

Def: Let $\operatorname{OPT}(v, i)$ be the length of the shortest $s-v$ path with at most i edges.
Let us characterize $\operatorname{OPT}(v, i)$.

Case 1: $O P T(v, i)$ path has less than i edges.

- Then, $\operatorname{OPT}(v, i)=O P T(v, i-1)$.

Case 2: $\operatorname{OPT}(v, i)$ path has exactly i edges.

- Let $s, v_{1}, v_{2}, \ldots, v_{i-1}, v$ be the $O P T(v, i)$ path with i edges.
- Then, $s, v_{1}, \ldots, v_{i-1}$ must be the shortest $s-v_{i-1}$ path with at most i - 1 edges. So,

$$
O P T(v, i)=O P T\left(v_{i-1}, i-1\right)+c_{v_{i-1}, v}
$$

DP for Shortest Path

Def: Let $\operatorname{OPT}(v, i)$ be the length of the shortest $s-v$ path with at most i edges.
$\operatorname{OPT}(v, i)=\left\{\begin{array}{lr}0 & \text { if } v=s \\ \infty & \text { if } v \neq s, i=0 \\ \min \left(\operatorname{OPT}(v, i-1), \min _{u:(u, v) \text { an edge }} \operatorname{OPT}(u, i-1)+c_{u, v}\right)\end{array}\right.$

So, for every $\mathrm{v}, \operatorname{OPT}(v, ?)$ is the shortest path from s to v. But how long do we have to run?
Since G has no negative cycle, it has at most $n-1$ edges. So, $\operatorname{OPT}(v, n-1)$ is the answer.

Bellman Ford Algorithm

$$
\begin{aligned}
& \text { for } v=1 \text { to } n \\
& \text { if } v \neq s \text { then } \\
& M[v, 0]=\infty \\
& M[s, 0]=0 . \\
& \text { for i=1 to } n-1 \\
& \text { for } v=1 \text { to } n \\
& M[v, i]=M[v, i-1 \\
& \text { for every edge } \\
& M[v, i]=m i n(
\end{aligned}
$$

Complexity	Author
$O\left(n^{4}\right)$	Shimbel (1955) [30]
$*$	$O\left(W n^{2} m\right)$
$O(n m)$	Ford (1956) [14]
	$O\left(n^{\frac{3}{4}} m \log W\right)$
	$O(\sqrt{n} m \log (n W))$
$O(\sqrt{n} m \log (W))$	Bellman (1958) [1], Moore (1959) [25]
$\tilde{O}\left(W n^{\omega}\right)$	Gabow (1983) [9]
$\tilde{O}\left(m^{10 / 7} \log W\right)$	Gankowski (2005) [27] Yuster and Zwick (2005) [35]

Table 1: The complexity results for the SSSP problem with negative weights (* indicates asymptotically the best bound for some range of parameters).
$m^{1+o(1)} \log W$ algorithm
By Bernstein, Nanongkai, and Wulff-Nilsen;
Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva
2022

Running Time: $O(n m)$
Can we test if G has negative cycles?
Yes, run for $\mathrm{i}=1 \ldots 3 \mathrm{n}$ and see if the $\mathrm{M}[\mathrm{v}, \mathrm{n}-1]$ is different from $\mathrm{M}[v, 3 \mathrm{n}]$

DP Techniques

Principle:

- Optimal substructure: Remove certain part of the optimal solution (for the entire problem) is an optimal solution of a subproblem
- Carefully define subproblems. Typically, only a polynomial number of subproblems
- Parameterization/Memorization

Recipe:

- Find optimal substructure by investigating the optimal solution
- Find out additional variables/subproblems that you need to do the induction
- Strengthen the hypothesis and define new subproblems

Dynamic programming techniques.

- Adding a new variable: knapsack
- Order subproblems in the right way: RNA secondary structure

Computational Complexity

Algorithm Design Patterns and AntiPatterns

Algorithm design patterns.

- Greed.
- Divide-and-conquer.
- Dynamic programming.
- Reductions.
- Local search.
- Randomization.

Algorithm design anti-patterns.

- NP-completeness.
- PSPACE-completeness. unlikely.
- Undecidability.
$\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$ algorithm unlikely.
$\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$ certification algorithm

No algorithm possible.

Computational Complexity

Goal: Classify problems according to the amount of computational resources used by the best algorithms that solve them
Here we focus on time complexity

Recall: worst-case running time of an algorithm

- max \# steps algorithm takes on any input of size \mathbf{n}

Relative Complexity of Problems

- Want a notion that allows us to compare the complexity of problems
- Want to be able to make statements of the form
"If we could solve problem B in polynomial time then we can solve problem \mathbf{A} in polynomial time"
"Problem B is at least as hard as problem \mathbf{A} "

Polynomial Time Reduction

Def $\mathrm{A} \leq_{p} \mathrm{~B}$: if there is an algorithm for problem A using a 'black box' (subroutine) that solve problem B s.t.,

- Algorithm uses only a polynomial number of steps
- Makes only a polynomial number of calls to a subroutine for \mathbf{B}

Example Algorithm for A:
Int $\mathrm{i}=0, \mathrm{i}^{\prime}=0$;
Int $\mathrm{j}=0, \mathrm{j}$ ' $=0$;
$i=i+j$;
(computation on i, j, i', j')
Int $x=B(i, j)$
Int $y=B\left(i^{\prime}, j^{\prime}\right)$
(compute z based on x and y)
Return z

Polynomial Time Reduction

Def $\mathrm{A} \leq_{p} \mathrm{~B}$: if there is an algorithm for problem A using a 'black box' (subroutine) that solve problem B s.t.,

- Algorithm uses only a polynomial number of steps
- Makes only a polynomial number of calls to a subroutine for B

Question: Is the following polynomial time reduction correct?

Interval Scheduling \leq_{p} Max Independent Set

- Yes. Without the blackbox of max independent set, we still have a polynomial time algorithm for interval scheduling.
- If problem A can be solved in polynomial time, then $\mathrm{A} \leq_{\mathrm{P}}$ B holds for any problem B

Polynomial Time Reduction

Def $\mathrm{A} \leq_{p} \mathrm{~B}$: if there is an algorithm for problem A using a 'black box' (subroutine) that solve problem B s.t.,

- Algorithm uses only a polynomial number of steps
- Makes only a polynomial number of calls to a subroutine for B

So,

> B is Polynomial time solvable

Conversely,

A is Polynomial time solvable

No efficient
 Algorithm for B

In words,

- Problem A is polynomial-time reducible to problem B
- B is as hard as A (it can be even harder)
- Informally, A is a special case of B

Polynomial Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If $A \leq_{p} B$ and B can be solved in polynomialtime, then A can also be solved in polynomial time.

Establish intractability. If $A \leq_{p} B$ and A cannot be solved in polynomial-time, then B cannot be solved in polynomial time.

Establish equivalence. If $\mathrm{A} \leq_{\mathrm{P}} \mathrm{B}$ and $\mathrm{B} \leq_{p} \mathrm{~A}$, we use notation $A \equiv \mathrm{p}$.

up to cost of reduction

