
CS 401

Computational Complexity

Xiaorui Sun

1

Shortest Paths with Negative Edge
Weights

Shortest Paths with Neg Edge Weights

Given a weighted directed graph 𝐺 = 𝑉, 𝐸 and a source vertex
𝑠, where the weight of edge (u,v) is 𝑐!,# (that can be negative)
Goal: Find the shortest path from s to all vertices of G.

Recall that Dikjstra’s Algorithm fails when weights are negative

3

s

1

3

4

2

2

3 -2

-1

source s

1

3

4

2

2

3 -2

-1

Impossibility on Graphs with Neg Cycles

Observation: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the
cycle again and again.

So, suppose G does not have a negative cycle.

4

s

1

3

4

2

2

3 -2

-1

DP for Shortest Path (First Attempt)

Def: Let 𝑂𝑃𝑇(𝑣) be the length of the shortest 𝑠 - 𝑣 path

𝑂𝑃𝑇 𝑣 = .
0	 if	𝑣 = 𝑠

min
!: !,# 	&'	()*(

𝑂𝑃𝑇 𝑢 + 𝑐!,#

The formula is correct. But it is not clear how to compute it.

5

DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at
most 𝑖 edges.
Let us characterize 𝑂𝑃𝑇(𝑣, 𝑖).

Case 1: 𝑂𝑃𝑇(𝑣, 𝑖) path has less than 𝑖 edges.
• Then, 𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣, 𝑖 − 1 .

Case 2: 𝑂𝑃𝑇(𝑣, 𝑖) path has exactly 𝑖 edges.
• Let 𝑠, 𝑣+, 𝑣,, … , 𝑣-.+, 𝑣 be the 𝑂𝑃𝑇(𝑣, 𝑖)	path with 𝑖 edges.
• Then, 𝑠, 𝑣+, … , 𝑣-.+ must be the shortest 𝑠 - 𝑣-.+ path with at

most 𝑖 − 1 edges. So,
𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣-.+, 𝑖 − 1 + 𝑐#!"#,#

6

DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at
most 𝑖 edges.

𝑂𝑃𝑇 𝑣, 𝑖 = <
0	 if	𝑣 = 𝑠	
∞	 if	𝑣 ≠ 𝑠, 𝑖 = 0	
min(𝑂𝑃𝑇 𝑣, 𝑖 − 1 , min

!: !,# 	&'	()*(
𝑂𝑃𝑇 𝑢, 𝑖 − 1 + 𝑐!,#)

So, for every v, 𝑂𝑃𝑇 𝑣, ? is the shortest path from s to v.
But how long do we have to run?
Since G has no negative cycle, it has at most 𝑛 − 1 edges. So,
𝑂𝑃𝑇(𝑣, 𝑛 − 1) is the answer.

7

Bellman Ford Algorithm

8

for v=1 to n
 if 𝒗 ≠ 𝒔 then
 M[v,0]=∞
M[s,0]=0.

for i=1 to n-1
 for v=1 to n
 M[v,i]=M[v,i-1]
 for every edge (u,v)
 M[v,i]=min(M[v,i], M[u,i-1]+cu,v)

Running Time: 𝑂 𝑛𝑚
Can we test if G has negative cycles?
Yes, run for i=1…3n and see if the M[v,n-1] is different from M[v,3n]

𝑚!"#(!)log	𝑊 algorithm
By Bernstein, Nanongkai, and Wulff-Nilsen;

Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva
2022

DP Techniques
Principle:
• Optimal substructure: Remove certain part of the optimal solution

(for the entire problem) is an optimal solution of a subproblem
• Carefully define subproblems. Typically, only a polynomial number

of subproblems
• Parameterization/Memorization
Recipe:
• Find optimal substructure by investigating the optimal solution
• Find out additional variables/subproblems that you need to do the

induction
• Strengthen the hypothesis and define new subproblems
Dynamic programming techniques.
• Adding a new variable: knapsack
• Order subproblems in the right way: RNA secondary structure

9

Computational Complexity

10

Algorithm Design Patterns and Anti-
Patterns

Algorithm design patterns. Ex.
• Greed. O(n log n) interval scheduling.
• Divide-and-conquer. O(n2) edit distance.
• Dynamic programming.
• Reductions.
• Local search.
• Randomization.

Algorithm design anti-patterns.
• NP-completeness. O(nk) algorithm unlikely.
• PSPACE-completeness. O(nk) certification algorithm

unlikely.
• Undecidability. No algorithm possible.

11

Computational Complexity

Goal: Classify problems according to the amount of
computational resources used by the best algorithms that
solve them
 Here we focus on time complexity

Recall: worst-case running time of an algorithm
• max # steps algorithm takes on any input of size n

12

13

• Want a notion that allows us to compare the complexity
of problems

• Want to be able to make statements of the form
 “If we could solve problem B in polynomial time

then we can solve problem A in polynomial time”

“Problem B is at least as hard as problem A”

Relative Complexity of Problems

Polynomial Time Reduction

Def A £P
 B: if there is an algorithm for problem A using a

‘black box’ (subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps
• Makes only a polynomial number of calls to a subroutine for B

Example

14

Algorithm for A:
Int i=0, i’=0;
Int j=0, j’=0;
…..
i=i+j;
(computation on i, j, i’, j')
…..
Int x = B(i, j)
Int y = B(i’, j’)
…..
(compute z based on x and y)
Return z

Polynomial Time Reduction

Def A £P
 B: if there is an algorithm for problem A using a

‘black box’ (subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps
• Makes only a polynomial number of calls to a subroutine for B

Question: Is the following polynomial time reduction
correct?

Interval Scheduling ≤P Max Independent Set

• Yes. Without the blackbox of max independent set, we
still have a polynomial time algorithm for interval
scheduling.

• If problem A can be solved in polynomial time, then A ≤P
B holds for any problem B 15

Polynomial Time Reduction

Def A £P
 B: if there is an algorithm for problem A using a

‘black box’ (subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps
• Makes only a polynomial number of calls to a subroutine for B

So,

Conversely,

In words,
• Problem A is polynomial-time reducible to problem B
• B is as hard as A (it can be even harder)
• Informally, A is a special case of B

16

B is Polynomial
time solvable

A is Polynomial
time solvable

No efficient
Algorithm for A

No efficient
Algorithm for B

Polynomial Time Reduction
Purpose. Classify problems according to relative difficulty.

Design algorithms. If A £ P B and B can be solved in polynomial-
time, then A can also be solved in polynomial time.

Establish intractability. If A £ P B and A cannot be solved in
polynomial-time, then B cannot be solved in polynomial time.

Establish equivalence. If A £ P B and B £ P A, we use notation
A º P B.

up to cost of reduction

17

