CS 401

Polynomial Time Reduction

Xiaorui Sun



Stuff

Homework 4 due today 11:59pm
Homework 5 will be released tomorrow

Final exam: Wednesday May 7 3:30pm — 5:30pm

 If you have exam conflicts, please let me know ASAP via
email



Polynomial Time Reduction

Def A <, B: if there is an algorithm for problem A using a
‘black box’ (subroutine) that solve problem B s.t.,

 Algorithm uses only a polynomial number of steps
« Makes only a polynomial number of calls to a subroutine for B

Example Algorithm for A:
Int i=0, i'=0;
Int j=0, j'=0;

I=i+j;

(computationon i, j, I, j')
Int x = B(i, j)

Inty =B(i', )

(compute z based on x and y)
Return z



Polynomial Time Reduction

Def A <, B: if there is an algorithm for problem A using a
‘black box’ (subroutine) that solve problem B s.t.,

 Algorithm uses only a polynomial number of steps
Makes only a polynomial number of calls to a subroutine for B

Question: Is the following polynomial time reduction
correct?

Interval Scheduling <, Max Independent Set

* Yes. Without the blackbox of max independent set, we
still have a polynomial time algorithm for interval
scheduling.

 If problem A can be solved in polynomial time, then A <
B holds for any problem B



Polynomial Time Reduction

Def A <, B: if there is an algorithm for problem A using a
‘black box’ (subroutine) that solve problem B s.t.,

 Algorithm uses only a polynomial number of steps
Makes only a polynomial number of calls to a subroutine for B

Question: Is the following polynomial time reduction
correct?

Max Independent Set <; Interval Scheduling

* Unlikely. If there is such a polynomial time reduction,
then MIS can be solved in polynomial time.

* If A<, B, then Ais no harder than B



Polynomial Time Reduction

Def A <, B: if there is an algorithm for problem A using a
‘black box’ (subroutine) that solve problem B s.t.,

 Algorithm uses only a polynomial number of steps
« Makes only a polynomial number of calls to a subroutine for B

B is Polynomial ‘ Ais Polynomial
[ time solvable ] [ time solvable ]

Conversely,
No efficient - No efficient
[Algorithm for A] [Algorithm for B]
In words,

* Problem A is polynomial-time reducible to problem B
« Bis as hard as A (it can be even harder)
« Informally, A is a special case of B

So,




Polynomial Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If A<y B and B can be solved in polynomial-
time, then A can also be solved in polynomial time.

Establish intractability. If A <p B and A cannot be solved in
polynomial-time, then B cannot be solved in polynomial time.

Establish equivalence. If A<y B and B <y A, we use notation
A =,B. !

up to cost of reduction



Polynomial Time Reduction

Basic reduction strategies

= Reduction by simple equivalence.
» Reduction from special case to general case.

» Reduction by encoding with gadgets.



Example 1: Vertex Cover =, Indep Set

INDEPENDENT SET:. Given a graph G = (V, E) and an integer k, is there

a subset of vertices S — V such that |S| > k, and for each edge at most
one of its endpoints is in S?

Ex. Isthere an independent set of size > 6?7 Yes.
Ex. Is there an independent set of size > 77 No.
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Example 1: Vertex Cover =, Indep Set

VERTEX COVER: Given a graph G = (V, E) and an integer Kk, is there a

subset of vertices S — V such that |S| < k, and for each edge, at least
one of its endpoints is in S7?

Ex. Is there a vertex cover of size <47 Yes.
Ex. Isthere a vertex cover of size < 3?7 No.
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Example 1: Vertex Cover =, Indep Set

Claim: For any graph ¢ = (V,E), S is an independent set iff
V — S is a vertex cover

Pf. =>

Let S be a independent set of G

Then, S has at most one endpoint of every edge of G
So, V — S has at least one endpoint of every edge of G
So, V — S is a vertex cover.

<= Suppose V — S is a vertex cover

Then, there is no edge between vertices of S (otherwise, V — S is
not a vertex cover)

So, S is an independent set.
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Polynomial Time Reduction

Basic reduction strategies

= Reduction by simple equivalence.
» Reduction from special case to general case.

» Reduction by encoding with gadgets.
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Example 2: Vertex Cover <, Set Cover

VERTEX COVER: Given a graph G = (V, E) and an integer Kk, is there a

subset of vertices S — V such that |S| < k, and for each edge, at least
one of its endpoints is in S7?

Ex. Is there a vertex cover of size <47 Yes.
Ex. Isthere a vertex cover of size < 3?7 No.
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Example 2: Vertex Cover <, Set Cover

SET COVER: Given a set U of elements, a collection S4, S,, . . .,

S, of subsets of U, and an integer k, does there exist a
collection of < k of these sets whose union is equal to U?

EXx:

U={1,2,3,4,56,7}

k=2

5:={3,7} S4={2,4}
S2={3,4,5,6} S5={5)

S3 = {1} Se={1,2,6,7)
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Example 2: Vertex Cover <, Set Cover

Claim: VERTEX-COVER <p SET-COVER.

Pf. Given a VERTEX-COVER instance G = (V, E), k, we
construct a set cover instance whose size equals the size of the
vertex cover instance.

Construction:
Create SET-COVER instance:
k=k, U=E, S,={e € E:eincidenttov}
Set-cover of size < Kk iff vertex cover of size < k. =

VERTEX COVER SET COVER
e, . 1,2,3,4,5,6,7}

U={
X k=2
& e ) Sa: {3: 7} Sb = {2, 4}
° S.={3,4,5,6) S, = {5}
es S.= {1} S5¢{1.2,6,7}

15



Polynomial Time Reduction

Basic reduction strategies

= Reduction by simple equivalence.
» Reduction from special case to general case.

= Reduction by encoding with gadgets.
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Satisfiability )

Literal: A Boolean variable or its negation.  x; or x,
Clause: A disjunction of literals. C; =x [ x, [ x;

Conjunctive normal form: A propositional

_ _ _ ®© = CUGC OGO C,
formula @ that is the conjunction of clauses.

SAT: Given CNF formula @, does it have a satisfying truth
assignment?

3-SAT: SAT where each clause contains exactly 3 literals.

Ex: (JZsz Dx3)D(xle_2Dx3)D(x2 Dx3)D(x_1Dx_2Dx_3)
Yes: x; = true, x, = true x3 = false.
17



3 Satisfiability Reduces to Independent Set

Claim: 3-SAT <, INDEPENDENT-SET.

Pf. Given an instance ® of 3-SAT, we construct an instance (G,
k) of INDEPENDENT-SET that has an independent set of size k
if and only if @ is satisfiable.

Construction
G contains 3 vertices for each clause, one for each literal.

« Connect 3 literals in a clause in a triangle.
« Connect literal to each of its negations.

X X3 X

X, X5 X X5 X, Xy

k-3 O = (x5 Ux, 0x;) 0 (x 0x, 0x) O(x 0x, 0 xy) 18



3 Satisfiability Reduces to Independent Set

Claim: G contains independent set of size k = |®| iff D is
satisfiable.

Pf = Let S be independent set of size k.
* S must contain exactly one vertex in each triangle.
e Setthese literals to true. <« and any other variables in a consistent way

« Truth assignment is consistent and all clauses are
satisfied.

Pf « Given satisfying assignment, select one true literal from

each triangle. This is an independent set of size k. =
X, X2 X,

k=3 CD:()ZDX2DX3)D(XIDX_2DX3)D(x_lmx2mx4) 19



Review

Basic reduction strategies:

« Simple equivalence: INDEPENDENT-SET = VERTEX-
COVER.

« Special case to general case: VERTEX-COVER <y SET-
COVER.

. Encoding with gadgets: 3-SAT < » INDEPENDENT-SET.

Transitivity. f X<pYandY <pZ, then X<p Z.
Pfidea. Compose the two algorithms.

Ex: 3-SAT < p INDEPENDENT-SET < VERTEX-COVER <p
SET-COVER.

20
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