CS 401

Polynomial Reduction

Xiaorui Sun

Computational Complexity

Goal: Classify problems according to the amount of computational resources used by the best algorithms that solve them
Here we focus on time complexity

Polynomial Time Reduction

Def $\mathrm{A} \leq_{p} \mathrm{~B}$: if there is an algorithm for problem A using a 'black box' (subroutine) that solve problem B s.t.,

- Algorithm uses only a polynomial number of steps
- Makes only a polynomial number of calls to a subroutine for \mathbf{B}

Example Algorithm for A:
Int $\mathrm{i}=0, \mathrm{i}^{\prime}=0$;
Int $\mathrm{j}=0, \mathrm{j}$ ' $=0$;
$i=i+j$;
(computation on i, j, i', j')
Int $x=B(i, j)$
Int $y=B\left(i^{\prime}, j^{\prime}\right)$
(compute z based on x and y)

Polynomial Time Reduction

Def $\mathrm{A} \leq_{p} \mathrm{~B}$: if there is an algorithm for problem A using a 'black box' (subroutine) that solve problem B s.t.,

- Algorithm uses only a polynomial number of steps
- Makes only a polynomial number of calls to a subroutine for B

Question: Is the following polynomial time reduction correct?

Interval Scheduling \leq_{p} Max Independent Set

- Yes. Without the blackbox of max independent set, we still have a polynomial time algorithm for interval scheduling.
- If problem A can be solved in polynomial time, then $\mathrm{A} \leq_{p}$ B holds for any problem B

Polynomial Time Reduction

Def $\mathrm{A} \leq_{p} \mathrm{~B}$: if there is an algorithm for problem A using a 'black box' (subroutine) that solve problem B s.t.,

- Algorithm uses only a polynomial number of steps
- Makes only a polynomial number of calls to a subroutine for B

So,

> B is Polynomial time solvable

Conversely,

A is Polynomial time solvable

No efficient
 Algorithm for B

In words,

- Problem A is polynomial-time reducible to problem B
- B is as hard as A (it can be even harder)
- Informally, A is a special case of B

Polynomial Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If $A \leq_{p} B$ and B can be solved in polynomialtime, then A can also be solved in polynomial time.

Establish intractability. If $A \leq_{p} B$ and A cannot be solved in polynomial-time, then B cannot be solved in polynomial time.

Establish equivalence. If $\mathrm{A} \leq_{\mathrm{P}} \mathrm{B}$ and $\mathrm{B} \leq_{p} \mathrm{~A}$, we use notation $A \equiv \mathrm{p}$.

up to cost of reduction

Polynomial Time Reduction

Basic reduction strategies

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.

More advanced technique, read KT 8.2

Example 1: Vertex Cover \equiv_{p} Indep Set

INDEPENDENT SET: Given a graph $G=(V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \geq k$, and for each edge at most one of its endpoints is in S ?

Ex. Is there an independent set of size ≥ 6 ? Yes.
Ex. Is there an independent set of size ≥ 7 ? No.

Example 1: Vertex Cover \equiv_{p} Indep Set

VERTEX COVER: Given a graph $G=(V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge, at least one of its endpoints is in S ?

Ex. Is there a vertex cover of size ≤ 4 ? Yes.
Ex. Is there a vertex cover of size ≤ 3 ? No.

Example 1: Vertex Cover \equiv_{p} Indep Set

Claim: For any graph $G=(V, E), \mathrm{S}$ is an independent set iff $V-S$ is a vertex cover

Pf: =>
Let S be a independent set of G
Then, S has at most one endpoint of every edge of G
So, $V-S$ has at least one endpoint of every edge of G
So, $V-S$ is a vertex cover.
<= Suppose $V-S$ is a vertex cover
Then, there is no edge between vertices of S (otherwise, $V-S$ is not a vertex cover)
So, S is an independent set.

Polynomial Time Reduction

Basic reduction strategies

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.

Example 2: Vertex Cover \leq_{p} Set Cover

VERTEX COVER: Given a graph $G=(V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge, at least one of its endpoints is in S ?

Ex. Is there a vertex cover of size ≤ 4 ? Yes.
Ex. Is there a vertex cover of size ≤ 3 ? No.

Example 2: Vertex Cover \leq_{p} Set Cover

SET COVER: Given a set U of elements, a collection S_{1}, S_{2}, \ldots, S_{m} of subsets of U, and an integer k, does there exist a collection of $\leq k$ of these sets whose union is equal to U ?

Ex:

$$
\begin{array}{ll}
U=\{1,2,3,4,5,6,7\} \\
\mathrm{k}=2 \\
S_{1}=\{3,7\} & S_{4}=\{2,4\} \\
S_{2}=\{3,4,5,6\} & S_{5}=\{5\} \\
S_{3}=\{1\} & S_{6}=\{1,2,6,7\}
\end{array}
$$

Example 2: Vertex Cover \leq_{p} Set Cover

Claim: VERTEX-COVER \leq_{p} SET-COVER.
Pf: Given a VERTEX-COVER instance $G=(V, E)$, k, we construct a set cover instance whose size equals the size of the vertex cover instance.

Construction:
Create SET-COVER instance:

- $k=k, U=E, S_{v}=\{e \in E: e$ incident to $v\}$

Set-cover of size $\leq \mathrm{k}$ iff vertex cover of size $\leq \mathrm{k}$. -


```
SET COVER
```

$U=\{1,2,3,4,5,6,7\}$
$\mathrm{k}=2$
$S_{a}=\{3,7\}$
$S_{c}=\{3,4,5,6\}$
$S_{e}=\{1\}$
$S_{b}=\{2,4\}$
$S_{d}=\{5\}$
$S_{f}=\{1,2,6,7\}$

