
CS 401

Polynomial Reduction

Xiaorui Sun

1

Computational Complexity

Goal: Classify problems according to the amount of
computational resources used by the best algorithms that
solve them
 Here we focus on time complexity

2

Polynomial Time Reduction

Def A £P
 B: if there is an algorithm for problem A using a

‘black box’ (subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps
• Makes only a polynomial number of calls to a subroutine for B

Example

3

Algorithm for A:
Int i=0, i’=0;
Int j=0, j’=0;
…..
i=i+j;
(computation on i, j, i’, j')
…..
Int x = B(i, j)
Int y = B(i’, j’)
…..
(compute z based on x and y)
Return z

Polynomial Time Reduction

Def A £P
 B: if there is an algorithm for problem A using a

‘black box’ (subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps
• Makes only a polynomial number of calls to a subroutine for B

Question: Is the following polynomial time reduction
correct?

Interval Scheduling ≤P Max Independent Set

• Yes. Without the blackbox of max independent set, we
still have a polynomial time algorithm for interval
scheduling.

• If problem A can be solved in polynomial time, then A ≤P
B holds for any problem B 4

Polynomial Time Reduction

Def A £P
 B: if there is an algorithm for problem A using a

‘black box’ (subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps
• Makes only a polynomial number of calls to a subroutine for B

So,

Conversely,

In words,
• Problem A is polynomial-time reducible to problem B
• B is as hard as A (it can be even harder)
• Informally, A is a special case of B

5

B is Polynomial
time solvable

A is Polynomial
time solvable

No efficient
Algorithm for A

No efficient
Algorithm for B

Polynomial Time Reduction
Purpose. Classify problems according to relative difficulty.

Design algorithms. If A £ P B and B can be solved in polynomial-
time, then A can also be solved in polynomial time.

Establish intractability. If A £ P B and A cannot be solved in
polynomial-time, then B cannot be solved in polynomial time.

Establish equivalence. If A £ P B and B £ P A, we use notation
A º P B.

up to cost of reduction

6

Polynomial Time Reduction

Basic reduction strategies

§ Reduction by simple equivalence.

§ Reduction from special case to general case.

§ Reduction by encoding with gadgets.

7

More advanced technique, read KT 8.2

8

INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is there
a subset of vertices S Í V such that |S| ³ k, and for each edge at most
one of its endpoints is in S?

Ex. Is there an independent set of size ³ 6? Yes.
Ex. Is there an independent set of size ³ 7? No.

independent set

Example 1: Vertex Cover º! Indep Set

8

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a
subset of vertices S Í V such that |S| £ k, and for each edge, at least
one of its endpoints is in S?

Ex. Is there a vertex cover of size £ 4? Yes.
Ex. Is there a vertex cover of size £ 3? No.

vertex cover

Example 1: Vertex Cover º! Indep Set

9

Example 1: Vertex Cover º! Indep Set

Claim: For any graph 𝐺 = 𝑉, 𝐸 , S is an independent set iff
𝑉 − 𝑆 is a vertex cover

Pf: =>
Let S be a independent set of G
Then, 𝑆 has at most one endpoint of every edge of G
So, 𝑉 − 𝑆 has at least one endpoint of every edge of G
So, 𝑉 − 𝑆 is a vertex cover.

<= Suppose 𝑉 − 𝑆 is a vertex cover
Then, there is no edge between vertices of S (otherwise, 𝑉 − 𝑆 is
not a vertex cover)
So, 𝑆 is an independent set.

10

Polynomial Time Reduction

Basic reduction strategies

§ Reduction by simple equivalence.

§ Reduction from special case to general case.

§ Reduction by encoding with gadgets.

11

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a
subset of vertices S Í V such that |S| £ k, and for each edge, at least
one of its endpoints is in S?

Ex. Is there a vertex cover of size £ 4? Yes.
Ex. Is there a vertex cover of size £ 3? No.

vertex cover

Example 2: Vertex Cover ≤! Set Cover

12

Example 2: Vertex Cover ≤! Set Cover
SET COVER: Given a set U of elements, a collection S1, S2, . . . ,
Sm of subsets of U, and an integer k, does there exist a
collection of £ k of these sets whose union is equal to U?

Ex:

U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
S1 = {3, 7} S4 = {2, 4}
S2 = {3, 4, 5, 6} S5 = {5}
S3 = {1} S6 = {1, 2, 6, 7}

13

14

SET COVER

U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf= {1, 2, 6, 7}

Claim: VERTEX-COVER £ P SET-COVER.
Pf: Given a VERTEX-COVER instance G = (V, E), k, we
construct a set cover instance whose size equals the size of the
vertex cover instance.
Construction:

Create SET-COVER instance:
• k = k, U = E, Sv = {e Î E : e incident to v }

Set-cover of size £ k iff vertex cover of size £ k. ▪
a

d

b

e

f c

VERTEX COVER

k = 2
e1

e2 e3

e5

e4

e6

e7

Example 2: Vertex Cover ≤! Set Cover

14

