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Computational Complexity

Goal: Classify problems according to the amount of 
computational resources used by the best algorithms that 
solve them
   Here we focus on time complexity
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Polynomial Time Reduction

Def A £P
 B: if there is an algorithm for problem A using a 

‘black box’ (subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps 
• Makes only a polynomial number of calls to a subroutine for B

Example
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Algorithm for A:
Int i=0, i’=0;
Int j=0, j’=0;
…..
i=i+j;
(computation on i, j, i’, j')
…..
Int x = B(i, j)
Int y = B(i’, j’)
…..
(compute z based on x and y)
Return z



Polynomial Time Reduction

Def A £P
 B: if there is an algorithm for problem A using a 

‘black box’ (subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps 
• Makes only a polynomial number of calls to a subroutine for B

Question: Is the following polynomial time reduction 
correct?

Interval Scheduling ≤P Max Independent Set

• Yes. Without the blackbox of max independent set, we 
still have a polynomial time algorithm for interval 
scheduling. 

• If problem A can be solved in polynomial time, then A ≤P 
B holds for any problem B 4



Polynomial Time Reduction

Def A £P
 B: if there is an algorithm for problem A using a 

‘black box’ (subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps 
• Makes only a polynomial number of calls to a subroutine for B

So, 

Conversely,

In words, 
• Problem A is polynomial-time reducible to problem B 
• B is as hard as A (it can be even harder)
• Informally, A is a special case of B
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B is Polynomial
time solvable

A is Polynomial
time solvable

No efficient 
Algorithm for A

No efficient 
Algorithm for B



Polynomial Time Reduction
Purpose.  Classify problems according to relative difficulty.

Design algorithms.  If A £ P B and B can be solved in polynomial-
time,  then A can also be solved in polynomial time.

Establish intractability.  If A £ P B and A cannot be solved in 
polynomial-time, then B cannot be solved in polynomial time.

Establish equivalence.  If A £ P B and B £ P A, we use notation 
A º P B.

up to cost of reduction
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Polynomial Time Reduction

Basic reduction strategies

§ Reduction by simple equivalence.

§ Reduction from special case to general case.

§ Reduction by encoding with gadgets.
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More advanced technique, read KT 8.2 
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INDEPENDENT SET:  Given a graph G = (V, E) and an integer k, is there 
a subset of vertices S Í V such that |S| ³ k, and for each edge at most 
one of its endpoints is in S?

Ex.  Is there an independent set of size ³ 6?  Yes.
Ex.  Is there an independent set of size ³ 7?  No.

independent set

Example 1: Vertex Cover º! Indep Set

8



VERTEX COVER:  Given a graph G = (V, E) and an integer k, is there a 
subset of vertices S Í V such that |S| £ k, and for each edge, at least 
one of its endpoints is in S?

Ex.  Is there a vertex cover of size £ 4?  Yes.
Ex.  Is there a vertex cover of size £ 3?  No.

vertex cover

Example 1: Vertex Cover º! Indep Set
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Example 1: Vertex Cover º! Indep Set

Claim: For any graph 𝐺 = 𝑉, 𝐸 , S is an independent set iff    
𝑉 − 𝑆 is a vertex cover

Pf: => 
Let S be a independent set of G
Then, 𝑆 has at most one endpoint of every edge of G
So, 𝑉 − 𝑆 has at least one endpoint of every edge of G
So, 𝑉 − 𝑆 is a vertex cover.

<= Suppose 𝑉 − 𝑆 is a vertex cover
Then, there is no edge between vertices of S (otherwise, 𝑉 − 𝑆 is 
not a vertex cover)
So, 𝑆 is an independent set.
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Polynomial Time Reduction

Basic reduction strategies

§ Reduction by simple equivalence.

§ Reduction from special case to general case.

§ Reduction by encoding with gadgets.
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VERTEX COVER:  Given a graph G = (V, E) and an integer k, is there a 
subset of vertices S Í V such that |S| £ k, and for each edge, at least 
one of its endpoints is in S?

Ex.  Is there a vertex cover of size £ 4?  Yes.
Ex.  Is there a vertex cover of size £ 3?  No.

vertex cover

Example 2: Vertex Cover ≤! Set Cover
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Example 2: Vertex Cover ≤! Set Cover
SET COVER:  Given a set U of elements, a collection S1, S2, . . . , 
Sm of subsets of U, and an integer k, does there exist a 
collection of £ k of these sets whose union is equal to U?

Ex:

U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
S1 = {3, 7} S4 = {2, 4}
S2 = {3, 4, 5, 6} S5 = {5}
S3 = {1}  S6 =  {1, 2, 6, 7}
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SET COVER

U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
Sa = {3, 7}  Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1}  Sf= {1, 2, 6, 7}

Claim:  VERTEX-COVER £ P SET-COVER.
Pf:  Given a VERTEX-COVER instance G = (V, E), k, we 
construct a set cover instance whose size equals the size of the 
vertex cover instance.
Construction:  

Create SET-COVER instance:
• k = k,  U = E,  Sv = {e Î E : e incident to v }

Set-cover of size £ k iff vertex cover of size £ k.  ▪
a

d

b

e

f c

VERTEX COVER

k = 2
e1 

e2 e3 

e5 

e4 

e6 

e7 

Example 2: Vertex Cover ≤! Set Cover
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