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Stuff

Teaching evaluation

• Extra 1% score for all the students if overall response rate >= 80%

• Additional to the final score cut

• May improve the final grade (if overall response rate >= 80%)
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Last Lecture

Decision problem: Problems that only outputs yes or no.

P: Decision problems for which there is a poly-time 

algorithm.

NP  Decision problems for which there exists a poly-time 

certifier.

A certifier is to verify if a given certificate (proposed proof) t 

correctly proves that input s is a yes instance

• If the the certificate t proves that s is a yes instance, then the 

algorithm output yes

• If the the certificate t does not prove that s is a yes instance, then 

the algorithm output no

• (If t is a wrong proof for a yes input, the certifier still outputs no. If s 

is a no instance, the certifier should always output no because no 

certificate can prove s to be a yes instance.) 3



P, NP, EXP
P:  Decision problems for which there is a poly-time algorithm.

EXP:  Decision problems for which there is an exponential-time 

algorithm.

NP:  Decision problems for which there is a poly-time certifier.

Claim  P    NP.

Pf.  Consider any problem X in P.

• By definition, there exists a poly-time algorithm A(s) that 

solves X.

• Certificate: t = empty string, certifier C(s, t) = A(s). 

Claim  NP    EXP.

Pf.  Consider any problem X in NP.

• By definition, there exists a poly-time certifier C(s, t) for X.

• To solve input s, run C(s, t) on all strings t with |t|  p(|s|).

• Return yes, if C(s, t) returns yes for any of these. 



The Main Question:  P Versus NP

Does P = NP?  [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

• Is the decision problem as easy as the certification 

problem?

• Clay $1 million prize.

If yes:  Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, …

If no:  No efficient algorithms possible for 3-COLOR, TSP, SAT, …

Consensus opinion on P = NP?  Probably no.

EXP NP

P

If  P  NP If  P = NP

EXP

P = NP

would break RSA cryptography
(and potentially collapse economy)
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The Simpson's:  P = NP?

Copyright © 1990, Matt Groening



Summary
P:  Decision problems for which there is a poly-time algorithm.

EXP:  Decision problems for which there is an exponential-time 

algorithm.

NP:  Decision problems for which there is a poly-time certifier.

Claim  P    NP, NP    EXP.

Open question: Does P = NP?  [Cook 1971, Edmonds, Levin, 

Yablonski, Gödel]

• Is the decision problem as easy as the certification 

problem?

If yes:  Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, …

If no:  No efficient algorithms possible for 3-COLOR, TSP, SAT, …

would break RSA cryptography
(and potentially collapse economy)



NP-Complete



NP Completeness

Complexity Theorists Approach: We don’t know how to prove 
any problem in NP is hard. So, let’s find hardest problems in NP.

NP-complete:  A problem Y in NP with the property that for every 
problem X in NP, X  p Y.

Motivations: 

If 𝑃 ≠ 𝑁𝑃, then every NP-Complete problems is not in P. So, we 
shouldn’t try to design polytime algorithms

To show 𝑃 = 𝑁𝑃, it is enough to design a polynomial time 
algorithm for just one NP-complete problem.
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CIRCUIT-SAT.  Given a combinational circuit built out of AND, OR, 

and NOT gates, is there a way to set the circuit inputs so that the 

output is 1?

Theorem.  CIRCUIT-SAT is NP-complete.  [Cook 1971, Levin 1973]





 





1 0 ? ? ?

output

inputshard-coded inputs

yes:  1 0 1

The "First" NP-Complete Problem

Read KT 8.4 for 

the proof



Establishing NP-Completeness

Remark. Once we establish first "natural" NP-complete problem,

others fall like dominoes.

Recipe to establish NP-completeness of problem Y.

• Step 1.  Show that Y is in NP.

• Step 2.  Choose a known NP-complete problem X.

• Step 3.  Prove that X  p Y. 

Justification.  If X is an NP-complete problem, and Y is a 

problem in NP with the property that X  P Y then Y is NP-

complete.

Pf.  Let W be any problem in NP.  Then W   P  X    P Y.

• By transitivity, W  P Y. 

• Hence Y is NP-complete.  
by assumptionby definition of

NP-complete



3-SAT is NP-Complete

Theorem.  3-SAT is NP-complete.

Pf.  Suffices to show that CIRCUIT-SAT  P 3-SAT since 3-SAT is in NP.

• Let K be any circuit.

• Create a 3-SAT variable xi for each circuit element i.

• Make circuit compute correct values at each node:

• x2 =  x3        add 2 clauses:

• x1 = x4  x5     add 3 clauses:

• x0 = x1  x2     add 3 clauses:

• Hard-coded input values and output value.

• x5 = 0    add 1 clause:

• x0 = 1    add 1 clause:

• Final step:  turn clauses of length < 3 into

clauses of length exactly 3.  







0 ? ?

output

x0

x2x1

  

  

x2 Ú x3  , x2 Ú x3

  

x1 Ú x4 , x1 Ú x5  ,  x1 Ú x4 Ú x5

  

x0 Ú x1 , x0 Ú x2 , x0 Ú x1 Ú x2

x3x4x5

  

   

x5

  

   

x0



3-Colorability

3-COLOR:  Given an undirected graph G does there exists a 

way to color the nodes red, green, and blue so that no adjacent 

nodes have the same color?

yes instance



3-Colorability

Claim.  3-SAT  P 3-COLOR.

Pf.  Given 3-SAT instance , we construct an instance of 3-COLOR 

that is 3-colorable iff  is satisfiable.



3-Colorability

Construction.

i. For each literal, create a node.

ii. Create 3 new nodes T, F, B; connect them in a triangle, and 

connect each literal to B.

iii. Connect each literal to its negation.

T

B

F

 

x1

 

x
1

 

x2

 

x
2

 

xn

 

x
n

 

x3

 

x
3

true false

base



3-Colorability

Construction.

i. For each literal, create a node.

ii. Create 3 new nodes T, F, B; connect them in a triangle, and 

connect each literal to B.

iii. Connect each literal to its negation.

iv. For each clause, add gadget of 6 nodes and 13 edges.

T F

B

 

x1

 

x
2

 

x3   

 

Ci = x1 V x2 V x3

6-node gadget

true false



3-Colorability

Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.    Suppose graph is 3-colorable.

• Consider assignment that sets all T literals to true.

• (ii) ensures each literal is T or F.

• (iii) ensures a literal and its negation are opposites.

T

B

F

 

x1

 

x
1

 

x2

 

x
2

 

xn

 

x
n

 

x3

 

x
3

true false

base



3-Colorability

Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.    Suppose graph is 3-colorable.

• Consider assignment that sets all T literals to true.

• (ii) ensures each literal is T or F.

• (iii) ensures a literal and its negation are opposites.

• (iv) ensures at least one literal in each clause is T.

T F

B

 

x1

 

x
2

 

x3   

 

Ci = x1 V x2 V x3

6-node gadget

true false



3-Colorability

Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.    Suppose graph is 3-colorable.

• Consider assignment that sets all T literals to true.

• (ii) ensures each literal is T or F.

• (iii) ensures a literal and its negation are opposites.

• (iv) ensures at least one literal in each clause is T.

  

 

Ci = x1 V x2 V x3

T F

B

 

x1

 

x
2

 

x3

not 3-colorable if all are red

true false

contradiction



3-Colorability
Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.     Suppose 3-SAT formula  is satisfiable.

• Color all true literals T.

• Color node below green node F, and node below that B.

• Color remaining middle row nodes B.

• Color remaining bottom nodes T or F as forced.  

T F

B

 

x1

 

x
2

 

x3

a literal set to true in 3-SAT assignment

  

 

Ci = x1 V x2 V x3

true false



Observation.  All problems below are NP-complete and 

polynomial reduce to one another!

CIRCUIT-SAT

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

NP-Completeness

by definition of NP-completeness



Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic 

examples.

• Packing problems:  SET-PACKING, INDEPENDENT SET.

• Covering problems:  SET-COVER, VERTEX-COVER.

• Constraint satisfaction problems:  SAT, 3-SAT.

• Sequencing problems:  HAMILTONIAN-CYCLE, TSP.

• Partitioning problems: 3D-MATCHING 3-COLOR.

• Numerical problems:  SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are either known to be in P or NP-

complete.

Notable exceptions.  Factoring, graph isomorphism.

Determine if a composite number c has a factor ≤ k



Summary

We learned the crucial idea of polynomial-time reduction. This 
can be even used in algorithm design, e.g., we know how to 
solve max-flow so we reduce image segmentation to max-flow

Polynomial-time reductions are transitive relations

NP:  Set of all decision problems for which there exists a poly-
time certifier.

NP-complete problems are the hardest problem in NP
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