
CS 401

NP-Complete

Xiaorui Sun

1

Stuff

Teaching evaluation

• Extra 1% score for all the students if overall response rate >= 80%

• Additional to the final score cut

• May improve the final grade (if overall response rate >= 80%)

2

Last Lecture

Decision problem: Problems that only outputs yes or no.

P: Decision problems for which there is a poly-time

algorithm.

NP Decision problems for which there exists a poly-time

certifier.

A certifier is to verify if a given certificate (proposed proof) t

correctly proves that input s is a yes instance

• If the the certificate t proves that s is a yes instance, then the

algorithm output yes

• If the the certificate t does not prove that s is a yes instance, then

the algorithm output no

• (If t is a wrong proof for a yes input, the certifier still outputs no. If s

is a no instance, the certifier should always output no because no

certificate can prove s to be a yes instance.) 3

P, NP, EXP
P: Decision problems for which there is a poly-time algorithm.

EXP: Decision problems for which there is an exponential-time

algorithm.

NP: Decision problems for which there is a poly-time certifier.

Claim P  NP.

Pf. Consider any problem X in P.

• By definition, there exists a poly-time algorithm A(s) that

solves X.

• Certificate: t = empty string, certifier C(s, t) = A(s).

Claim NP  EXP.

Pf. Consider any problem X in NP.

• By definition, there exists a poly-time certifier C(s, t) for X.

• To solve input s, run C(s, t) on all strings t with |t|  p(|s|).

• Return yes, if C(s, t) returns yes for any of these.

The Main Question: P Versus NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

• Is the decision problem as easy as the certification

problem?

• Clay $1 million prize.

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, …

If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, …

Consensus opinion on P = NP? Probably no.

EXP NP

P

If P  NP If P = NP

EXP

P = NP

would break RSA cryptography
(and potentially collapse economy)

6

The Simpson's: P = NP?

Copyright © 1990, Matt Groening

Summary
P: Decision problems for which there is a poly-time algorithm.

EXP: Decision problems for which there is an exponential-time

algorithm.

NP: Decision problems for which there is a poly-time certifier.

Claim P  NP, NP  EXP.

Open question: Does P = NP? [Cook 1971, Edmonds, Levin,

Yablonski, Gödel]

• Is the decision problem as easy as the certification

problem?

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, …

If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, …

would break RSA cryptography
(and potentially collapse economy)

NP-Complete

NP Completeness

Complexity Theorists Approach: We don’t know how to prove
any problem in NP is hard. So, let’s find hardest problems in NP.

NP-complete: A problem Y in NP with the property that for every
problem X in NP, X  p Y.

Motivations:

If 𝑃 ≠ 𝑁𝑃, then every NP-Complete problems is not in P. So, we
shouldn’t try to design polytime algorithms

To show 𝑃 = 𝑁𝑃, it is enough to design a polynomial time
algorithm for just one NP-complete problem.

9

CIRCUIT-SAT. Given a combinational circuit built out of AND, OR,

and NOT gates, is there a way to set the circuit inputs so that the

output is 1?

Theorem. CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973]





 





1 0 ? ? ?

output

inputshard-coded inputs

yes: 1 0 1

The "First" NP-Complete Problem

Read KT 8.4 for

the proof

Establishing NP-Completeness

Remark. Once we establish first "natural" NP-complete problem,

others fall like dominoes.

Recipe to establish NP-completeness of problem Y.

• Step 1. Show that Y is in NP.

• Step 2. Choose a known NP-complete problem X.

• Step 3. Prove that X  p Y.

Justification. If X is an NP-complete problem, and Y is a

problem in NP with the property that X  P Y then Y is NP-

complete.

Pf. Let W be any problem in NP. Then W  P X  P Y.

• By transitivity, W  P Y.

• Hence Y is NP-complete.
by assumptionby definition of

NP-complete

3-SAT is NP-Complete

Theorem. 3-SAT is NP-complete.

Pf. Suffices to show that CIRCUIT-SAT  P 3-SAT since 3-SAT is in NP.

• Let K be any circuit.

• Create a 3-SAT variable xi for each circuit element i.

• Make circuit compute correct values at each node:

• x2 =  x3  add 2 clauses:

• x1 = x4  x5  add 3 clauses:

• x0 = x1  x2  add 3 clauses:

• Hard-coded input values and output value.

• x5 = 0  add 1 clause:

• x0 = 1  add 1 clause:

• Final step: turn clauses of length < 3 into

clauses of length exactly 3.







0 ? ?

output

x0

x2x1

x2 Ú x3 , x2 Ú x3

x1 Ú x4 , x1 Ú x5 , x1 Ú x4 Ú x5

x0 Ú x1 , x0 Ú x2 , x0 Ú x1 Ú x2

x3x4x5

x5

x0

3-Colorability

3-COLOR: Given an undirected graph G does there exists a

way to color the nodes red, green, and blue so that no adjacent

nodes have the same color?

yes instance

3-Colorability

Claim. 3-SAT  P 3-COLOR.

Pf. Given 3-SAT instance , we construct an instance of 3-COLOR

that is 3-colorable iff  is satisfiable.

3-Colorability

Construction.

i. For each literal, create a node.

ii. Create 3 new nodes T, F, B; connect them in a triangle, and

connect each literal to B.

iii. Connect each literal to its negation.

T

B

F



x1



x
1



x2



x
2



xn



x
n



x3



x
3

true false

base

3-Colorability

Construction.

i. For each literal, create a node.

ii. Create 3 new nodes T, F, B; connect them in a triangle, and

connect each literal to B.

iii. Connect each literal to its negation.

iv. For each clause, add gadget of 6 nodes and 13 edges.

T F

B



x1



x
2



x3



Ci = x1 V x2 V x3

6-node gadget

true false

3-Colorability

Claim. Graph is 3-colorable iff  is satisfiable.

Pf.  Suppose graph is 3-colorable.

• Consider assignment that sets all T literals to true.

• (ii) ensures each literal is T or F.

• (iii) ensures a literal and its negation are opposites.

T

B

F



x1



x
1



x2



x
2



xn



x
n



x3



x
3

true false

base

3-Colorability

Claim. Graph is 3-colorable iff  is satisfiable.

Pf.  Suppose graph is 3-colorable.

• Consider assignment that sets all T literals to true.

• (ii) ensures each literal is T or F.

• (iii) ensures a literal and its negation are opposites.

• (iv) ensures at least one literal in each clause is T.

T F

B



x1



x
2



x3



Ci = x1 V x2 V x3

6-node gadget

true false

3-Colorability

Claim. Graph is 3-colorable iff  is satisfiable.

Pf.  Suppose graph is 3-colorable.

• Consider assignment that sets all T literals to true.

• (ii) ensures each literal is T or F.

• (iii) ensures a literal and its negation are opposites.

• (iv) ensures at least one literal in each clause is T.



Ci = x1 V x2 V x3

T F

B



x1



x
2



x3

not 3-colorable if all are red

true false

contradiction

3-Colorability
Claim. Graph is 3-colorable iff  is satisfiable.

Pf.  Suppose 3-SAT formula  is satisfiable.

• Color all true literals T.

• Color node below green node F, and node below that B.

• Color remaining middle row nodes B.

• Color remaining bottom nodes T or F as forced.

T F

B



x1



x
2



x3

a literal set to true in 3-SAT assignment



Ci = x1 V x2 V x3

true false

Observation. All problems below are NP-complete and

polynomial reduce to one another!

CIRCUIT-SAT

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

NP-Completeness

by definition of NP-completeness

Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic

examples.

• Packing problems: SET-PACKING, INDEPENDENT SET.

• Covering problems: SET-COVER, VERTEX-COVER.

• Constraint satisfaction problems: SAT, 3-SAT.

• Sequencing problems: HAMILTONIAN-CYCLE, TSP.

• Partitioning problems: 3D-MATCHING 3-COLOR.

• Numerical problems: SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are either known to be in P or NP-

complete.

Notable exceptions. Factoring, graph isomorphism.

Determine if a composite number c has a factor ≤ k

Summary

We learned the crucial idea of polynomial-time reduction. This
can be even used in algorithm design, e.g., we know how to
solve max-flow so we reduce image segmentation to max-flow

Polynomial-time reductions are transitive relations

NP: Set of all decision problems for which there exists a poly-
time certifier.

NP-complete problems are the hardest problem in NP

	Slide 1: CS 401
	Slide 2: Stuff
	Slide 3: Last Lecture
	Slide 4: P, NP, EXP
	Slide 5: The Main Question: P Versus NP
	Slide 6: The Simpson's: P = NP?
	Slide 7: Summary
	Slide 8: NP-Complete
	Slide 9: NP Completeness
	Slide 10: The "First" NP-Complete Problem
	Slide 11: Establishing NP-Completeness
	Slide 12: 3-SAT is NP-Complete
	Slide 13: 3-Colorability
	Slide 14: 3-Colorability
	Slide 15: 3-Colorability
	Slide 16: 3-Colorability
	Slide 17: 3-Colorability
	Slide 18: 3-Colorability
	Slide 19: 3-Colorability
	Slide 20: 3-Colorability
	Slide 21: NP-Completeness
	Slide 22: Some NP-Complete Problems
	Slide 23: Summary

