
CS 401

NP-Complete

Xiaorui Sun

1

Stuff

Teaching evaluation

• Extra 1% score for all the students if overall response rate >= 80%

• Additional to the final score cut

• May improve the final grade (if overall response rate >= 80%)

• Current response rate ~ 50%

Next lecture: Final exam review

2

NP Completeness

NP-complete: Hardest problems in NP

The “first” NP-complete problem: CIRCUIT-SAT

Recipe to establish NP-completeness of problem Y.

• Step 1. Show that Y is in NP.

• Step 2. Choose a known NP-complete problem X.

• Step 3. Prove that X  p Y.

Example: 3-SAT is NP-complete by CIRCUIT-SAT  P 3-SAT

3

3-Colorability

3-COLOR: Given an undirected graph G does there exists a

way to color the nodes red, green, and blue so that no adjacent

nodes have the same color?

yes instance

3-Colorability

Claim. 3-SAT  P 3-COLOR.

Pf. Given 3-SAT instance , we construct an instance of 3-COLOR

that is 3-colorable iff  is satisfiable.

3-Colorability

Construction.

i. For each literal, create a node.

ii. Create 3 new nodes T, F, B; connect them in a triangle, and

connect each literal to B.

iii. Connect each literal to its negation.

T

B

F



x1



x
1



x2



x
2



xn



x
n



x3



x
3

true false

base

3-Colorability

Construction.

i. For each literal, create a node.

ii. Create 3 new nodes T, F, B; connect them in a triangle, and

connect each literal to B.

iii. Connect each literal to its negation.

iv. For each clause, add gadget of 6 nodes and 13 edges.

T F

B



x1



x
2



x3



Ci = x1 V x2 V x3

6-node gadget

true false

3-Colorability

Claim. Graph is 3-colorable iff  is satisfiable.

Pf.  Suppose graph is 3-colorable.

• Consider assignment that sets all T literals to true.

• (ii) ensures each literal is T or F.

• (iii) ensures a literal and its negation are opposites.

T

B

F



x1



x
1



x2



x
2



xn



x
n



x3



x
3

true false

base

3-Colorability

Claim. Graph is 3-colorable iff  is satisfiable.

Pf.  Suppose graph is 3-colorable.

• Consider assignment that sets all T literals to true.

• (ii) ensures each literal is T or F.

• (iii) ensures a literal and its negation are opposites.

• (iv) ensures at least one literal in each clause is T.

T F

B



x1



x
2



x3



Ci = x1 V x2 V x3

6-node gadget

true false

3-Colorability

Claim. Graph is 3-colorable iff  is satisfiable.

Pf.  Suppose graph is 3-colorable.

• Consider assignment that sets all T literals to true.

• (ii) ensures each literal is T or F.

• (iii) ensures a literal and its negation are opposites.

• (iv) ensures at least one literal in each clause is T.



Ci = x1 V x2 V x3

T F

B



x1



x
2



x3

not 3-colorable if all are red

true false

contradiction

3-Colorability
Claim. Graph is 3-colorable iff  is satisfiable.

Pf.  Suppose 3-SAT formula  is satisfiable.

• Color all true literals T.

• Color node below green node F, and node below that B.

• Color remaining middle row nodes B.

• Color remaining bottom nodes T or F as forced.

T F

B



x1



x
2



x3

a literal set to true in 3-SAT assignment



Ci = x1 V x2 V x3

true false

Observation. All problems below are NP-complete and

polynomial reduce to one another!

CIRCUIT-SAT

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

NP-Completeness

by definition of NP-completeness

Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic

examples.

• Packing problems: SET-PACKING, INDEPENDENT SET.

• Covering problems: SET-COVER, VERTEX-COVER.

• Constraint satisfaction problems: SAT, 3-SAT.

• Sequencing problems: HAMILTONIAN-CYCLE, TSP.

• Partitioning problems: 3D-MATCHING 3-COLOR.

• Numerical problems: SUBSET-SUM, KNAPSACK.

Are all the problems in NP either in P or NP-complete?

Answer: Most NP problems are either known to be in P or NP-

complete.

Notable exceptions. Factoring, graph isomorphism.

Determine if a composite number c has a factor ≤ k

NP-intermediate problems

NP-Hard

Not every computational problem is a decision problem

• E.g. compute edit distance of two strings

How do we compare hardness of general problems?

NP-hard: A problem B is NP-hard iff for any problem 𝐴 ∈ 𝑁𝑃, we
have 𝐴 ≤𝑝 𝐵

Remark: NP-hard problems may not necessarily belong to NP

14

Summary

We learned the crucial idea of polynomial-time reduction. This
can be even used in algorithm design, e.g., we know how to
solve max-flow so we reduce image segmentation to max-flow

Polynomial-time reductions are transitive relations

NP: Set of all decision problems for which there exists a poly-
time certifier.

NP-complete problems are the hardest problem in NP

Advanced algorithm design

techniques

Approximation algorithm

Many NP-hard problems have no efficient exact algorithm

Alternatively, people try to design efficient algorithms to solve
problems approximately

For a maximization problem, we say an algorithm achieves 𝛼 (for
some 0 < 𝛼 < 1) multiplicative approximation factor if for every
input instance,

SOL ≥ 𝛼 OPT

• SOL is the solution given by the algorithm

• OPT is the optimal solution

18

19

20

-

21

22

23

24

What is next?
CS 402: Algorithms in Practice
• Hashing, sketching, local algorithms, approximate and randomized algorithms, linear

programming based algorithms

CS 501: Computer Algorithms II (Graduate Algorithms Course)
• Instructor: Gyorgy Turan

• Advanced randomized and approximation algorithms

CS 505: Computability and Complexity Theory
• How to prove lower bounds on algorithms?

CS 506: An Introduction to Quantum Computing
• How to design algorithms for quantum computers?

	Slide 1: CS 401
	Slide 2: Stuff
	Slide 3: NP Completeness
	Slide 4: 3-Colorability
	Slide 5: 3-Colorability
	Slide 6: 3-Colorability
	Slide 7: 3-Colorability
	Slide 8: 3-Colorability
	Slide 9: 3-Colorability
	Slide 10: 3-Colorability
	Slide 11: 3-Colorability
	Slide 12: NP-Completeness
	Slide 13: Some NP-Complete Problems
	Slide 14: NP-Hard
	Slide 15: Summary
	Slide 16: Advanced algorithm design techniques
	Slide 17: Approximation algorithm
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: What is next?

