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Stuff

Teaching evaluation

• Extra 1% score for all the students if overall response rate >= 80%

• Additional to the final score cut

• May improve the final grade (if overall response rate >= 80%)

• Current response rate ~ 50%

Next lecture: Final exam review
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NP Completeness

NP-complete:  Hardest problems in NP

The “first” NP-complete problem: CIRCUIT-SAT

Recipe to establish NP-completeness of problem Y.

• Step 1.  Show that Y is in NP.

• Step 2.  Choose a known NP-complete problem X.

• Step 3.  Prove that X  p Y. 

Example: 3-SAT is NP-complete by CIRCUIT-SAT  P 3-SAT
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3-Colorability

3-COLOR:  Given an undirected graph G does there exists a 

way to color the nodes red, green, and blue so that no adjacent 

nodes have the same color?

yes instance



3-Colorability

Claim.  3-SAT  P 3-COLOR.

Pf.  Given 3-SAT instance , we construct an instance of 3-COLOR 

that is 3-colorable iff  is satisfiable.



3-Colorability

Construction.

i. For each literal, create a node.

ii. Create 3 new nodes T, F, B; connect them in a triangle, and 

connect each literal to B.

iii. Connect each literal to its negation.
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3-Colorability

Construction.

i. For each literal, create a node.

ii. Create 3 new nodes T, F, B; connect them in a triangle, and 

connect each literal to B.

iii. Connect each literal to its negation.

iv. For each clause, add gadget of 6 nodes and 13 edges.
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Ci = x1 V x2 V x3

6-node gadget

true false



3-Colorability

Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.    Suppose graph is 3-colorable.

• Consider assignment that sets all T literals to true.

• (ii) ensures each literal is T or F.

• (iii) ensures a literal and its negation are opposites.
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3-Colorability

Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.    Suppose graph is 3-colorable.

• Consider assignment that sets all T literals to true.

• (ii) ensures each literal is T or F.

• (iii) ensures a literal and its negation are opposites.

• (iv) ensures at least one literal in each clause is T.
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Ci = x1 V x2 V x3

6-node gadget

true false



3-Colorability

Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.    Suppose graph is 3-colorable.

• Consider assignment that sets all T literals to true.

• (ii) ensures each literal is T or F.

• (iii) ensures a literal and its negation are opposites.

• (iv) ensures at least one literal in each clause is T.

  

 

Ci = x1 V x2 V x3
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not 3-colorable if all are red

true false

contradiction



3-Colorability
Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.     Suppose 3-SAT formula  is satisfiable.

• Color all true literals T.

• Color node below green node F, and node below that B.

• Color remaining middle row nodes B.

• Color remaining bottom nodes T or F as forced.  
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a literal set to true in 3-SAT assignment
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true false



Observation.  All problems below are NP-complete and 

polynomial reduce to one another!

CIRCUIT-SAT

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

NP-Completeness

by definition of NP-completeness



Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic 

examples.

• Packing problems:  SET-PACKING, INDEPENDENT SET.

• Covering problems:  SET-COVER, VERTEX-COVER.

• Constraint satisfaction problems:  SAT, 3-SAT.

• Sequencing problems:  HAMILTONIAN-CYCLE, TSP.

• Partitioning problems: 3D-MATCHING 3-COLOR.

• Numerical problems:  SUBSET-SUM, KNAPSACK.

Are all the problems in NP either in P or NP-complete? 

Answer: Most NP problems are either known to be in P or NP-

complete.

Notable exceptions.  Factoring, graph isomorphism.

Determine if a composite number c has a factor ≤ k

NP-intermediate problems



NP-Hard

Not every computational problem is a decision problem

• E.g. compute edit distance of two strings

How do we compare hardness of general problems?

NP-hard: A problem B is NP-hard iff for any problem 𝐴 ∈ 𝑁𝑃, we 
have 𝐴 ≤𝑝 𝐵

Remark: NP-hard problems may not necessarily belong to NP
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Summary

We learned the crucial idea of polynomial-time reduction. This 
can be even used in algorithm design, e.g., we know how to 
solve max-flow so we reduce image segmentation to max-flow

Polynomial-time reductions are transitive relations

NP:  Set of all decision problems for which there exists a poly-
time certifier.

NP-complete problems are the hardest problem in NP



Advanced algorithm design 

techniques



Approximation algorithm

Many NP-hard problems have no efficient exact algorithm

Alternatively, people try to design efficient algorithms to solve 
problems approximately

For a maximization problem, we say an algorithm achieves 𝛼 (for 
some 0 < 𝛼 < 1) multiplicative approximation factor if for every 
input instance, 

SOL ≥ 𝛼 OPT

• SOL is the solution given by the algorithm

• OPT is the optimal solution
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What is next?
CS 402: Algorithms in Practice
• Hashing, sketching, local algorithms, approximate and randomized algorithms, linear 

programming based algorithms

CS 501: Computer Algorithms II (Graduate Algorithms Course)
• Instructor: Gyorgy Turan

• Advanced randomized and approximation algorithms

CS 505: Computability and Complexity Theory
• How to prove lower bounds on algorithms?

CS 506: An Introduction to Quantum Computing
• How to design algorithms for quantum computers?
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