CS 401

NP-Complete

Xiaorui Sun

Stuff

Teaching evaluation

« Extra 1% score for all the students if overall response rate >= 80%
« Additional to the final score cut

« May improve the final grade (if overall response rate >= 80%)

* Current response rate ~ 50%

Next lecture: Final exam review

NP Completeness

NP-complete: Hardest problems in NP

The “first” NP-complete problem: CIRCUIT-SAT

Recipe to establish NP-completeness of problem Y.
« Step 1. Show that Y is in NP.
« Step 2. Choose a known NP-complete problem X.
- Step 3. Provethat X< Y.

Example: 3-SAT is NP-complete by CIRCUIT-SAT <, 3-SAT

3-Colorability

3-COLOR: Given an undirected graph G does there exists a
way to color the nodes red, green, and blue so that no adjacent
nodes have the same color?

yes instance

3-Colorability

Claim. 3-sAT < p 3-COLOR.

Pf. Given 3-sAT instance @, we construct an instance of 3-coOLOR
that is 3-colorable iff ® is satisfiable.

3-Colorability

Construction.
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a triangle, and
connect each literal to B.

iii. Connect each literal to its negation.

true

3-Colorability

Construction.

ii.
iv. For each clause, add gadget of 6 nodes and 13 edges.

For each literal, create a node.

Create 3 new nodes T, F, B; connect them in a triangle, and

connect each literal to B.
Connect each literal to its negation.

X1 25 X3

6-node gadget

3-Colorability

Claim. Graph is 3-colorable iff @ is satisfiable.

Pf. = Suppose graph is 3-colorable.
« Consider assignment that sets all T literals to true.
« (ii) ensures each literal is T or F.
« (iii) ensures a literal and its negation are opposites.

true false

3-Colorability

Claim. Graph is 3-colorable iff @ is satisfiable.

Pf. = Suppose graph is 3-colorable.

Consider assignment that sets all T literals to true.
(if) ensures each literal is T or F.

(iii) ensures a literal and its negation are opposites.
(iv) ensures at least one literal in each clause is T.

X1 25 X3 C =X V X V X
I 1 2 3

6-node gadget

true ‘ ‘ ‘ G false

3-Colorability

Claim. Graph is 3-colorable iff @ is satisfiable.

Pf. = Suppose graph is 3-colorable.

Consider assignment that sets all T literals to true.
(if) ensures each literal is T or F.

(iii) ensures a literal and its negation are opposites.
(iv) ensures at least one literal in each clause is T.

not 3-colorable if all are red

/

C,=x;, Vx, Vx

l

%‘/‘ contradiction
. . G false

true

3-Colorability

Claim. Graph is 3-colorable iff @ is satisfiable.

Pf. < Suppose 3-SAT formula @ is satisfiable.

Color all true literals T.

Color node below green node F, and node below that B.
Color remaining middle row nodes B.

Color remaining bottom nodes T or F as forced. =

a literal set to true in 3-SAT assignment

true . . . G false

NP-Completeness

Observation. All problems below are NP-complete and
polynomial reduce to one another!

by definition of NP-completeness
CIRCUIT-SAT -

3-SAT

INDEPENDENT SET DIR-HAM-CYCLE GRAPH 3-COLOR SUBSET-SUM

VERTEX COVER HAM-CYCLE PLANAR 3-COLOR SCHEDULING

SET COVER TSP

Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic
examples.

Packing problems: SET-PACKING, INDEPENDENT SET.
Covering problems: SET-COVER, VERTEX-COVER.
Constraint satisfaction problems: sAT, 3-SAT.
Sequencing problems: HAMILTONIAN-CYCLE, TSP.
Partitioning problems: 3D-MATCHING 3-COLOR.
Numerical problems: SUBSET-SUM, KNAPSACK.

Are all the problems in NP either in P or NP-complete?
Answer: Most NP problems are either k”‘wwiate problems

complete.

Notable exceptions. Factoring, graph isomorphism.
"

Determine if a composite number ¢ has a factor < k

NP-Hard

Not every computational problem is a decision problem
« E.g. compute edit distance of two strings

How do we compare hardness of general problems?

NP-hard: A problem B is NP-hard iff for any problem 4 € NP, we
have A <, B

Remark: NP-hard problems may not necessarily belong to NP

NP-hard

q‘ NP-complete

of what we think the world looks like. 14

Summary

We learned the crucial idea of polynomial-time reduction. This
can be even used in algorithm design, e.g., we know how to
solve max-flow so we reduce image segmentation to max-flow

Polynomial-time reductions are transitive relations

NP: Set of all decision problems for which there exists a poly-
time certifier.

NP-complete problems are the hardest problem in NP

Advanced algorithm design
techniques

Approximation algorithm

Many NP-hard problems have no efficient exact algorithm

Alternatively, people try to design efficient algorithms to solve
problems approximately

For a maximization problem, we say an algorithm achieves «a (for
some 0 < a < 1) multiplicative approximation factor if for every
Input instance,

SOL = a OPT

« SOL is the solution given by the algorithm
 OPT is the optimal solution

Knapsack is NP-complete

Def. OPT(i,v) = min weight of a knapsack for which we can obtain a solution
of value = v using a subset of items 1,..., .

0 if v <0
OPT (i,v) = { c© ifi=0and v>0
min {OPT (i — 1,v), w; + OPT(i —1,v —v;)} otherwise

Theorem. Dynamic programming algorithm computes the optimal value
in O(n2 vmax) time, where viax is the maximum of any value.

18

Knapsack problem: polynomial-time approximation scheme

Intuition for approximation algorithm.
* Round all values up to lie in smaller range.
* Run dynamic programming algorithm Il on rounded/scaled instance.
« Return optimal items in rounded instance.

934221
2 5956342 2 2 6 2
3 17810013 5 3 18 5
4 21217800 6 4 22 6
5 27343199 7 5 28 7

original instance (W = 11) rounded instance (W = 11)

Knapsack problem: polynomialtime approximation scheme

Round up all values:
* 0 < e =<1 =precision parameter.
© Vo = largest value in original instance. v; = {EW 0, v, = [
- 0 = scaling factor=¢v_,, / 2n.

Observation. Optimal solutions to problem with v are equivalent to
optimal solutions to problem with V.

Intuition. v close to v so optimal solution using v is nearly optimal;
v small and integral so dynamic programming algorithm Il is fast.

Theorem. For any £ >0, the rounding algorithm computes a feasible solution
whose value is within a (1- ¢) factor of the optimum in O®3/ €) time.

20

Randomization

in practice, access to a pseudo-random number generator

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for
a particular problem.

Ex. Symmetry-breaking protocols, graph algorithms, quicksort, hashing,
load balancing, closest pair, Monte Carlo integration, cryptography,

21

Maximum 3-satisfiability

exactly 3 literals per clause and
— each literal corresponds to a different variable

Maximum 3-satisfiability. Given a 3-SAT formula, find a truth assignment
that satisfies as many clauses as possible.

C, = X VX3V X,
C, = X, VX3VX,
C; = X, VX,V x4
C, = X VX, V X3
Ci = X, VxXx,Vx,

Remark. NP-hard optimization problem.

Simple idea. Flip a coin, and set each variable true with probability /2,

independently for each variable. ”

Maximum 3-satisfiability: analysis

Claim. Given a 3-SAT formula with & clauses, the expected number of
clauses satisfied by a random assignment is 7k/ 8.

Pf. Consider random variable Z, = {1 if clause C ; 15 satisfied

0 otherwise.

* Let Z= number of clauses satisfied by random assignment.

k
E[Z] = 3 E[Z,]

A

. : _ k

linearity of expectation _ 2 Pr[clause Cj is satlsﬁed]
j=1

8

23

The probabilistic method

Corollary. For any instance of 3-SaT, there exists a truth assignment that
satisfies at least a 7/8 fraction of all clauses.

Q. Can we turn this idea into a 7/8-approximation algorithm?
A. Yes (but a random variable can almost always be below its mean).

Lemma. The probability that a random assignment satisfies > 7k / 8 clauses
is at least 1/ (8k).

Johnson’s algorithm. Repeatedly generate random truth assignments until
one of them satisfies > 7k /8 clauses.

Theorem. Johnson’s algorithm is a 7/8-approximation algorithm.

What is next?
CS 402: Algorithms in Practice

« Hashing, sketching, local algorithms, approximate and randomized algorithms, linear
programming based algorithms

CS 501: Computer Algorithms |l (Graduate Algorithms Course)

* Instructor: Gyorgy Turan
 Advanced randomized and approximation algorithms

CS 505: Computability and Complexity Theory

* How to prove lower bounds on algorithms?

CS 506: An Introduction to Quantum Computing

« How to design algorithms for quantum computers?

	Slide 1: CS 401
	Slide 2: Stuff
	Slide 3: NP Completeness
	Slide 4: 3-Colorability
	Slide 5: 3-Colorability
	Slide 6: 3-Colorability
	Slide 7: 3-Colorability
	Slide 8: 3-Colorability
	Slide 9: 3-Colorability
	Slide 10: 3-Colorability
	Slide 11: 3-Colorability
	Slide 12: NP-Completeness
	Slide 13: Some NP-Complete Problems
	Slide 14: NP-Hard
	Slide 15: Summary
	Slide 16: Advanced algorithm design techniques
	Slide 17: Approximation algorithm
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: What is next?

