CS 401

NP and NP-Complete

Xiaorui Sun

Stuff

Homework 5 due May 6

- Helpful for final exam preparation

Teaching evaluation

- Extra 1% score for all the students if overall response rate $>=80 \%$
- Additional to the final score cut
- May improve the final grade (if overall response rate >=80\%)

Final exam review this Thursday

Decision Problems

Decision problem

- X is a set of strings.
- Instance: string s.
- Algorithm A solves problem $X: A(s)=$ yes iff $s \in X$.

Polynomial time Algorithm A runs in poly-time if for every string $s, A(s)$ terminates in at most $p(|s|)$ "steps", where $p(\cdot)$ is some polynomial.

```
length of \(s\)
```

P: Decision problems for which there is a poly-time algorithm.

NP

Certification algorithm intuition

- Certifier views things from "managerial" viewpoint.
- Certifier doesn't determine whether $s \in X$ on its own; rather, it checks a proposed proof t that $s \in X$.

Def Algorithm $\mathrm{C}(\mathrm{s}, \mathrm{t})$ is a certifier for problem X if for every string $s, s \in X$ iff there exists a string t such that $C(s, t)=$ yes.
"certificate" or "witness"
NP Decision problems for which there exists a poly-time certifier.

Remark NP stands for nondeterministic polynomial-time.

Certifiers and Certificates: Composite

 COMPOSITES. Given an integer s, is s composite?Certificate. A nontrivial factor t of s. Note that such a certificate exists iff s is composite. Moreover $|\mathrm{t}| \leq|\mathrm{s}|$.
Certifier.

```
boolean C(s,t) {
    if (t \leq 1 or t \geq s)
        return false
    else if (s is a multiple of t)
        return true
    else
        return false
}
```

Instance. s=437,669.
Certificate. $\mathrm{t}=541$ or 809 . $\longleftarrow 437,669=541 \times 809$

Conclusion. composites is in NP.

Certifiers and Certificates: Hamiltonian Cycle

 HAM-CYCLE. Given an undirected graph $G=(V, E)$, does there exist a simple cycle C that visits every node?Certificate. A permutation of the n nodes.
Certifier. Check that the permutation contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

Conclusion. ham-cycle is in NP.

3-Satisfiability

Literal: A Boolean variable or its negation. x_{i} or $\overline{x_{i}}$

Clause: A disjunction of literals.

$$
C_{j}=x_{1} \vee \overline{x_{2}} \vee x_{3}
$$

Conjunctive normal form: A propositional formula Φ that is the conjunction of clauses.

$$
\Phi=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}
$$

SAT: Given CNF formula Φ, does it have a satisfying truth assignment?

3-SAT: SAT where each clause contains exactly 3 literals.

$$
\begin{aligned}
& \text { Ex: }\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \\
& \text { Yes: } x_{1}=\text { true, } x_{2}=\text { true } x_{3}=\text { false. }
\end{aligned}
$$

Certifiers and Certificates: 3-Satisfiability

SAT. Given a CNF formula Φ, is there a satisfying assignment?

Certificate. An assignment of truth values to the n boolean variables.

Certifier. Check that each clause in Φ has at least one true literal.

Ex.

$$
\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)
$$

instances

$$
x_{1}=1, x_{2}=1, x_{3}=0, x_{4}=1
$$

certificate \dagger
Conclusion. SAT is in NP.

P and $N P$

P: Decision problems for which there is a poly-time algorithm.

NP: Decision problems for which there is a poly-time certifier.

Claim $\mathrm{P} \subseteq \mathrm{NP}$.
Pf. Consider any problem X in P.

- By definition, there exists a poly-time algorithm $A(s)$ that solves X .
- Certificate: $\mathrm{t}=$ empty string, certifier $\mathrm{C}(\mathrm{s}, \mathrm{t})=\mathrm{A}(\mathrm{s})$.

The Main Question: P Versus NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

- Is the decision problem as easy as the certification problem?
- Clay $\$ 1$ million prize.

would break RSA cryptography (and potentially collapse economy)

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, ...
If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, ...
Consensus opinion on $P=N P ?$ Probably no.

Summary

P: Decision problems for which there is a poly-time algorithm.

NP: Decision problems for which there is a poly-time certifier.
Claim $\mathrm{P} \subseteq \mathrm{NP}$

Open question: Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

- Is the decision problem as easy as the certification problem?

If yes: Efficient algorithms for 3-COLOR, TSP, FAOđOR, SAT, ...
If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, ...

NP-Complete

NP Completeness

Complexity Theorists Approach: We don't know how to prove that some problems in NP, like Independent Set, are hard. So, let's find hardest problems in NP.

NP-complete: A problem Y in NP with the property that for every problem X in $N P, X \leq_{p} Y$.

Motivations:
If $P \neq N P$, then every NP-Complete problems is not in P . So, we shouldn't try to design polytime algorithms
To show $P=N P$, it is enough to design a polynomial time algorithm for just one NP-complete problem.

The "First" NP-Complete Problem

CIRCUIT-SAT. Given a combinational circuit built out of AND, OR, and NOT gates, is there a way to set the circuit inputs so that the output is 1 ?
Theorem. CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973]
yes: 101

Establishing NP-Completeness

Remark. Once we establish first "natural" NP-complete problem, others fall like dominoes.

Recipe to establish NP-completeness of problem Y.

- Step 1. Show that Y is in NP.
- Step 2. Choose a known NP-complete problem X .
- Step 3. Prove that $X \leq_{p} Y$.

Justification. If X is an NP-complete problem, and Y is a problem in NP with the property that $X \leq_{P} Y$ then Y is NPcomplete.

Pf. Let W be any problem in NP. Then $W \leq_{P} X \leq_{P} Y$.

- By transitivity, $\mathrm{W} \leq_{\mathrm{P}} \mathrm{Y}$.
- Hence Y is NP-complete. •

3-SAT is NP-Complete

Theorem. 3-SAT is NP-complete.

We know circuit-sat is NP complete.

To show 3-SAT is NP-complete, what do we need to prove?

$$
\text { CIRCUIT-SAT } \leq_{P} \text { 3-SAT Or } 3-\text { SAT } \leq_{P} \text { CIRCUIT-SAT? }
$$

Answer: CIRCUIT-SAT $\leq_{P} 3$-SAT

3-SAT is NP-Complete

Theorem. 3-SAT is NP-complete.
Pf. Suffices to show that CIRCUIT-SAT $\leq_{P} 3$-SAT since 3-SAT is in NP.

- Let K be any circuit.
- Create a 3-sat variable x_{i} for each circuit element i.
- Make circuit compute correct values at each node:
- $\mathrm{x}_{2}=\neg \mathrm{x}_{3} \quad \Rightarrow$ add 2 clauses: $x_{2} \vee x_{3}, \overline{x_{2}} \vee \overline{x_{3}}$
- $\mathrm{X}_{1}=\mathrm{X}_{4} \vee \mathrm{X}_{5} \Rightarrow$ add 3 clauses: $x_{1} \vee \overline{x_{4}}, x_{1} \vee \overline{x_{5}}, \overline{x_{1}} \vee x_{4} \vee x_{5}$
- $\mathrm{x}_{0}=\mathrm{x}_{1} \wedge \mathrm{x}_{2} \Rightarrow$ add 3 clauses: $\overline{x_{0}} \vee x_{1}, \overline{x_{0}} \vee x_{2}, x_{0} \vee \overline{x_{1}} \vee \overline{x_{2}}$
- Hard-coded input values and output value.
- $\mathrm{x}_{5}=0 \Rightarrow$ add 1 clause: $\overline{x_{5}}$
- $\mathrm{x}_{0}=1 \Rightarrow$ add 1 clause: x_{0}
- Final step: turn clauses of length < 3 into clauses of length exactly 3 .

NP-Completeness

Observation. All problems below are NP-complete and polynomial reduce to one another!
by definition of NP-completeness

Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic examples.

- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: Set-cover, vertex-cover.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: hamiltonian-cycle, tSp.
- Partitioning problems: 3D-MATCHING 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are either known to be in P or NPcomplete.

Notable exceptions. Factoring, graph isomorphism.
Determine if a composite number c has a factor $\leq \mathrm{k}$

