CS 401

NP-Complete

Xiaorui Sun

Stuff

Teaching evaluation

- Extra 1% score for all the students if overall response rate >= 80%
- Additional to the final score cut
- May improve the final grade (if overall response rate >= 80%)
- Current response rate ~ 50%

Next lecture: Final exam review

NP Completeness

NP-complete: Hardest problems in NP

The "first" NP-complete problem: CIRCUIT-SAT

Recipe to establish NP-completeness of problem Y.

- Step 1. Show that Y is in NP.
- Step 2. Choose a known NP-complete problem X.
- Step 3. Prove that $X \leq_p Y$.

Example: 3-SAT is NP-complete by CIRCUIT-SAT \leq_P 3-SAT

3-COLOR: Given an undirected graph G does there exists a way to color the nodes red, green, and blue so that no adjacent nodes have the same color?

Claim. 3-SAT $\leq P$ 3-COLOR.

Pf. Given 3-SAT instance Φ , we construct an instance of 3-COLOR that is 3-colorable iff Φ is satisfiable.

Construction.

- i. For each literal, create a node.
- ii. Create 3 new nodes T, F, B; connect them in a triangle, and connect each literal to B.
- iii. Connect each literal to its negation.

Construction.

- i. For each literal, create a node.
- ii. Create 3 new nodes T, F, B; connect them in a triangle, and connect each literal to B.
- iii. Connect each literal to its negation.
- iv. For each clause, add gadget of 6 nodes and 13 edges.

Claim. Graph is 3-colorable iff Φ is satisfiable.

- Pf. \Rightarrow Suppose graph is 3-colorable.
 - Consider assignment that sets all T literals to true.
 - (ii) ensures each literal is T or F.
 - (iii) ensures a literal and its negation are opposites.

Claim. Graph is 3-colorable iff Φ is satisfiable.

- Pf. \Rightarrow Suppose graph is 3-colorable.
 - Consider assignment that sets all T literals to true.
 - (ii) ensures each literal is T or F.
 - (iii) ensures a literal and its negation are opposites.
 - (iv) ensures at least one literal in each clause is T.

Claim. Graph is 3-colorable iff Φ is satisfiable.

- Pf. \Rightarrow Suppose graph is 3-colorable.
 - Consider assignment that sets all T literals to true.
 - (ii) ensures each literal is T or F.
 - (iii) ensures a literal and its negation are opposites.
 - (iv) ensures at least one literal in each clause is T.

Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. \leftarrow Suppose 3-SAT formula Φ is satisfiable.

- Color all true literals T.
- Color node below green node F, and node below that B.
- Color remaining middle row nodes B.
- Color remaining bottom nodes T or F as forced.

NP-Completeness

Observation. All problems below are NP-complete and polynomial reduce to one another!

Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic examples.

- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Are all the problems in NP either in P or NP-complete?

Answer: Most NP problems are either kn NP-intermediate problems complete.

Notable exceptions. Factoring, graph isomorphism.

Determine if a composite number c has a factor $\leq k$

NP-Hard

Not every computational problem is a decision problem

• E.g. compute edit distance of two strings

How do we compare hardness of general problems?

NP-hard: A problem B is NP-hard iff for any problem $A \in NP$, we have $A \leq_p B$

Remark: NP-hard problems may not necessarily belong to NP

Summary

We learned the crucial idea of polynomial-time reduction. This can be even used in algorithm design, e.g., we know how to solve max-flow so we reduce image segmentation to max-flow

Polynomial-time reductions are transitive relations

NP: Set of all decision problems for which there exists a polytime certifier.

NP-complete problems are the hardest problem in NP

Advanced algorithm design techniques

Approximation algorithm

Many NP-hard problems have no efficient exact algorithm

Alternatively, people try to design efficient algorithms to solve problems approximately

For a maximization problem, we say an algorithm achieves α (for some $0 < \alpha < 1$) multiplicative approximation factor if for every input instance,

$SOL \ge \alpha OPT$

- SOL is the solution given by the algorithm
- OPT is the optimal solution

Def. OPT(i, v) = min weight of a knapsack for which we can obtain a solution of value $\ge v$ using a subset of items 1,..., *i*.

$$OPT(i, v) = \begin{cases} 0 & \text{if } v \le 0\\ \infty & \text{if } i = 0 \text{ and } v > 0\\ \min \left\{ OPT(i-1, v), \ w_i + OPT(i-1, v-v_i) \right\} & \text{otherwise} \end{cases}$$

Theorem. Dynamic programming algorithm computes the optimal value in $O(n^2 v_{\text{max}})$ time, where v_{max} is the maximum of any value.

Knapsack problem: polynomial-time approximation scheme

Intuition for approximation algorithm.

- Round all values up to lie in smaller range.
- Run dynamic programming algorithm II on rounded/scaled instance.
- Return optimal items in rounded instance.

item	value	weight	item	value	weight
1	934221	1	1	1	1
2	5956342	2	2	6	2
3	17810013	5	3	18	5
4	21217800	6	4	22	6
5	27343199	7	5	28	7

original instance (W = 11)

rounded instance (W = 11)

Round up all values:

- $0 < \varepsilon \le 1$ = precision parameter.
- v_{max} = largest value in original instance.

•
$$\theta$$
 = scaling factor = $\varepsilon v_{max} / 2n$.

$$\bar{v}_i = \left\lceil \frac{v_i}{\theta} \right\rceil \, \theta \,, \quad \hat{v}_i = \left\lceil \frac{v_i}{\theta} \right\rceil$$

Observation. Optimal solutions to problem with \overline{v} are equivalent to optimal solutions to problem with \hat{v} .

Intuition. \overline{v} close to v so optimal solution using \overline{v} is nearly optimal; \hat{v} small and integral so dynamic programming algorithm II is fast.

Theorem. For any $\varepsilon > 0$, the rounding algorithm computes a feasible solution whose value is within a $(1 - \varepsilon)$ factor of the optimum in $O(n^3 / \varepsilon)$ time.

in practice, access to a pseudo-random number generator

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem.

Ex. Symmetry-breaking protocols, graph algorithms, quicksort, hashing, load balancing, closest pair, Monte Carlo integration, cryptography,

exactly 3 literals per clause and each literal corresponds to a different variable

Maximum 3-satisfiability. Given a 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.

$$C_{1} = x_{2} \lor \overline{x_{3}} \lor \overline{x_{4}}$$

$$C_{2} = x_{2} \lor x_{3} \lor \overline{x_{4}}$$

$$C_{3} = \overline{x_{1}} \lor x_{2} \lor x_{4}$$

$$C_{4} = \overline{x_{1}} \lor \overline{x_{2}} \lor x_{3}$$

$$C_{5} = x_{1} \lor \overline{x_{2}} \lor \overline{x_{4}}$$

Remark. NP-hard optimization problem.

Simple idea. Flip a coin, and set each variable true with probability ½, independently for each variable.

Maximum 3-satisfiability: analysis

Claim. Given a 3-SAT formula with k clauses, the expected number of clauses satisfied by a random assignment is 7k/8.

- **Pf.** Consider random variable $Z_j = \begin{cases} 1 & \text{if clause } C_j \text{ is satisfied} \\ 0 & \text{otherwise.} \end{cases}$
 - Let *Z* = number of clauses satisfied by random assignment.

$$E[Z] = \sum_{j=1}^{k} E[Z_j]$$

linearity of expectation
$$= \sum_{j=1}^{k} Pr[clause C_j \text{ is satisfied}]$$
$$= \frac{7}{8}k$$

The probabilistic method

Corollary. For any instance of 3-SAT, there exists a truth assignment that satisfies at least a 7/8 fraction of all clauses.

- Q. Can we turn this idea into a 7/8-approximation algorithm?
- A. Yes (but a random variable can almost always be below its mean).

Lemma. The probability that a random assignment satisfies $\ge 7k / 8$ clauses is at least 1 / (8k).

Johnson's algorithm. Repeatedly generate random truth assignments until one of them satisfies $\ge 7k / 8$ clauses.

Theorem. Johnson's algorithm is a 7/8-approximation algorithm.

What is next?

CS 402: Algorithms in Practice

• Hashing, sketching, local algorithms, approximate and randomized algorithms, linear programming based algorithms

CS 501: Computer Algorithms II (Graduate Algorithms Course)

- Instructor: Gyorgy Turan
- Advanced randomized and approximation algorithms

CS 505: Computability and Complexity Theory

• How to prove lower bounds on algorithms?

CS 506: An Introduction to Quantum Computing

• How to design algorithms for quantum computers?