
CS 401

NP-Complete / Final Review

Xiaorui Sun

1

NP Completeness

Complexity Theorists Approach: We don’t know how to prove
any problem in NP is hard. So, let’s find hardest problems in NP.

NP-complete: A problem Y in NP with the property that for every
problem X in NP, X £ p Y.

2

CIRCUIT-SAT. Given a combinational circuit built out of AND, OR,
and NOT gates, is there a way to set the circuit inputs so that the
output is 1?
Theorem. CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973]

Ù

¬

Ù Ú

Ù

Ú

1 0 ? ? ?

output

inputshard-coded inputs

yes: 1 0 1

The "First" NP-Complete Problem

Read KT 8.4 for
the proof

Establishing NP-Completeness
Remark. Once we establish first "natural" NP-complete problem,
others fall like dominoes.

Recipe to establish NP-completeness of problem Y.
• Step 1. Show that Y is in NP.
• Step 2. Choose a known NP-complete problem X.
• Step 3. Prove that X £ p Y.

Justification. If X is an NP-complete problem, and Y is a
problem in NP with the property that X £ P Y then Y is NP-
complete.

Pf. Let W be any problem in NP. Then W £ P X £ P Y.
• By transitivity, W £ P Y.
• Hence Y is NP-complete. ▪

by assumptionby definition of
NP-complete

SAT: Given CNF formula F, does it have a satisfying truth
assignment?

3-SAT: SAT where each clause contains exactly 3 literals.

Theorem. 3-SAT is NP-complete.

Based on CIRCUIT-SAT is NP complete, how to show 3-SAT is NP-
complete?

5

3-SAT is NP-Complete

Ex:

Yes: x1 = true, x2 = true x3 = false.

€

x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3()

3-SAT is NP-Complete
Theorem. 3-SAT is NP-complete.
Pf. Suffices to show that CIRCUIT-SAT £ P 3-SAT since 3-SAT is in NP.

• Let K be any circuit.
• Create a 3-SAT variable xi for each circuit element i.
• Make circuit compute correct values at each node:

• x2 = ¬ x3 Þ add 2 clauses:
• x1 = x4 Ú x5 Þ add 3 clauses:
• x0 = x1 Ù x2 Þ add 3 clauses:

• Hard-coded input values and output value.
• x5 = 0 Þ add 1 clause:
• x0 = 1 Þ add 1 clause:

• Final step: turn clauses of length < 3 into
clauses of length exactly 3. ▪

Ú

Ù

¬

0 ? ?

output

x0

x2x1

€

x2 ∨ x3 , x2 ∨ x3

€

x1 ∨ x4 , x1 ∨ x5 , x1 ∨ x4 ∨ x5

€

x0 ∨ x1 , x0 ∨ x2 , x0 ∨ x1 ∨ x2

x3x4x5

€

x5

€

x0

Observation. All problems below are NP-complete and
polynomial reduce to one another!

CIRCUIT-SAT

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

3-SAT reduces to

INDEPENDENT SET

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

NP-Completeness

by definition of NP-completeness

Summary
To show a problem is in NP:

• Make sure it is a decision problem
• And give a polynomial time certifier

Recipe to show a problem Y is NP-Complete
• Step 1. Show that Y is in NP.
• Step 2. Choose a known NP-complete problem X.
• Step 3. Prove that X £ p Y.

Final Exam Review

Stuff
Teaching evaluation
• Extra 1% score for all the students if overall response rate >= 80%
• May improve the final grade
• Teaching evaluation will close on Sunday April 28

My office hour next week will be Wednesday May 1 3pm– 5pm

TA’s office hour next week will be schedule to another time (Monday or
Thursday)

Study materials
Homework 5 will be helpful for you to prepare final exam

A sample final exam will be released later today

Additional algorithm design problems that help you to prepare final
exam will also be released later today
• Leetcode problems
• Mostly about divide and conquer and dynamic programming

Final Exam
Final exam: May 3 (Friday) 8am-10am
• Location: TBH 180F

• Closed textbook exam

• You may use a sheet with notes on both sides, but not textbook and
any other paper materials

• You may use a calculator, but not any device with transmitting
functions, especially ones that can access the wireless or the Internet

Final Exam
True or False / Short answer
• Basic facts throughout the semester
• True or False: just answer yes/no, no justification needed
• Short answer: read the question carefully

Divide and Conquer

Dynamic programming

NP and NP-completeness

Final Exam
True or False / Short answer
• Basic facts throughout the semester
• True or False: just answer yes/no, no justification needed
• Short answer: read the question carefully

Divide and Conquer

Dynamic programming

NP and NP-completeness

Cover knowledge learned throughout the
semester!

Also check midterm review!

Divide and Conquer
Divide: We reduce a problem to several subproblems.
Typically, each sub-problem is
 at most a constant fraction of
 the size of the original problem

Conquer: Recursively solve each
 subproblem
Combine: Merge the solutions

Examples:
• Mergesort, Counting Inversions, Binary Search

Lo
g

n
le

ve
ls

n

n/2n/2

n/4

Master Theorem
Suppose 𝑇 𝑛 = 𝑎	𝑇 !

" + 𝑐𝑛# for all 𝑛 > 𝑏. Then,

• If 𝑎 < 𝑏# then 𝑇 𝑛 = Θ 𝑛#

• If 𝑎 = 𝑏# then 𝑇 𝑛 = Θ 𝑛#log	𝑛

• If 𝑎 > 𝑏# then 𝑇 𝑛 = Θ 𝑛$%&!'

Example: For mergesort algorithm we have
𝑇 𝑛 = 2𝑇

𝑛
2
+ 𝑂 𝑛 .

So, 𝑘 = 1, 𝑎 = 𝑏# and 𝑇 𝑛 = Θ(𝑛 log 𝑛)

17

Divide and conquer: give an array, find the maximum
subarray sum
• Divide: partition the array into two halves
• Conquer: Find the solution of each halves
• Combine: What if the solution contains elements from

both halves? (for [6,-2, -3, 1,5], [6, -2] is from the first
half, and [-3, 1, 5] is from the second half)

Problem 4 of Homework 3

18

If the solution contains elements from both halves,
• The elements in the solution from the first half

• Form an interval contains the last element of the first half
• Have largest sum among all the intervals of the first half containing the

last element of the first half ([6, -2] is the interval of [-2, -5, -6, -2] that
(1) contains the last element and (2) has the largest sum)

• The elements in the solution from the second half
• Form an interval contains the first element of the second half
• Have largest sum among all the intervals of the second half containing

the first element of the second half

Problem 4 of Homework 3

19

Redefine problem: give an array, find
(1)𝑠 : the maximum subarray sum
(2)𝑎	: the maximum of subarray sum among all subarrays

containing the first element
(3)𝑏	: the maximum of subarray sum among all subarrays

containing the last element

Problem 4 of Homework 3

20

Given 𝑠(, 𝑎(, 𝑏(for the first half, and 𝑠), 𝑎), 𝑏) for the
second half, how to find the 𝑠, 𝑎, 𝑏?
• 𝑠 = max{𝑠(, 𝑠), 𝑏(+ 𝑎)}
• 𝑎 = max{𝑎(, 𝑠𝑢𝑚(+ 𝑎)}
• 𝑏 = max{𝑏), 𝑠𝑢𝑚) + 𝑏(}

T(n) = 2 T(n/2) + O(n) ⟹ T(n) = O(n log n)

Problem 4 of Homework 3

𝑠𝑢𝑚!: sum of all the elements in
the first half

𝑠𝑢𝑚": sum of all the elements in
the second half

Dynamic Programming
Principle:
• Optimal substructure: Remove certain part of the optimal solution (for the

entire problem) is an optimal solution of a subproblem
• Carefully define a collection of subproblems. Typically, only a polynomial

number of subproblems
• Parameterization/Memorization

Recipe:
• Find optimal substructure by investigating the optimal solution
• Find out additional assumptions/variables/subproblems that you need to do

the induction
• Strengthen the hypothesis and define w.r.t. new subproblems

Dynamic programming techniques
• One dimensional dynamic programming: weighted interval scheduling,

segmented least square
• Adding a new variable: knapsack.
• Order subproblems in the right way: RNA secondary structure / Shortest

path with negative weights 21

P and NP

A decision problem is a computational problem where the
answer is just yes/no

P: all decision problems solvable in polynomial time

NP: all decision problems with polynomial time certifier
• Certifier: Algorithm C(x, t) is a certifier for problem A if for every

string x, the answer is “yes” iff there exists a string t such that C(x,
t) = yes.

• Intuition: Certifier doesn't determine whether answer is “yes” on its
own; rather, it checks a proposed proof t that answer is “yes”.

How to Prove a Problem is in NP?
Make sure it is a decision problem, and give a polynomial time
certifier

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a
simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly once,
and that there is an edge between each pair of adjacent nodes in the
permutation.

Conclusion. HAM-CYCLE is in NP.

instance s certificate t

NP Completeness

Hardest problems in NP

NP-complete: A problem Y in NP with the property that for every
problem X in NP, X £ p Y.

Recipe to establish NP-completeness of problem Y.
• Step 1. Show that Y is in NP.
• Step 2. Choose an NP-complete problem X.
• Step 3. Prove that X £ p Y.

Def A £P
 B: if there is an algorithm for problem A using a ‘black box’

(subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps
• Makes only a polynomial number of calls to a subroutine for B

Good Luck!

