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NP Completeness

Complexity Theorists Approach: We don’t know how to prove 
any problem in NP is hard. So, let’s find hardest problems in NP.

NP-complete:  A problem Y in NP with the property that for every 
problem X in NP, X £ p Y.
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CIRCUIT-SAT.  Given a combinational circuit built out of AND, OR, 
and NOT gates, is there a way to set the circuit inputs so that the 
output is 1?
Theorem.  CIRCUIT-SAT is NP-complete.  [Cook 1971, Levin 1973]
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The "First" NP-Complete Problem

Read KT 8.4 for 
the proof



Establishing NP-Completeness
Remark. Once we establish first "natural" NP-complete problem,
others fall like dominoes.

Recipe to establish NP-completeness of problem Y.
• Step 1.  Show that Y is in NP.
• Step 2.  Choose a known NP-complete problem X.
• Step 3.  Prove that X £ p Y. 

Justification.  If X is an NP-complete problem, and Y is a 
problem in NP with the property that X £ P Y then Y is NP-
complete.

Pf.  Let W be any problem in NP.  Then W  £ P  X   £ P Y.
• By transitivity, W £ P Y. 
• Hence Y is NP-complete.  ▪

by assumptionby definition of
NP-complete



SAT:  Given CNF formula F, does it have a satisfying truth 
assignment?

3-SAT:  SAT where each clause contains exactly 3 literals.

Theorem.  3-SAT is NP-complete.

Based on CIRCUIT-SAT is NP complete, how to show 3-SAT is NP-
complete?
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3-SAT is NP-Complete

Ex: 

Yes:  x1 = true, x2 = true x3 = false.

€ 

x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( )



3-SAT is NP-Complete
Theorem.  3-SAT is NP-complete.
Pf.  Suffices to show that CIRCUIT-SAT £ P 3-SAT since 3-SAT is in NP.

• Let K be any circuit.
• Create a 3-SAT variable xi for each circuit element i.
• Make circuit compute correct values at each node:

• x2 = ¬ x3      Þ  add 2 clauses:
• x1 = x4 Ú x5   Þ  add 3 clauses:
• x0 = x1 Ù x2   Þ  add 3 clauses:

• Hard-coded input values and output value.
• x5 = 0  Þ  add 1 clause:
• x0 = 1  Þ  add 1 clause:

• Final step:  turn clauses of length < 3 into
clauses of length exactly 3.  ▪
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Observation.  All problems below are NP-complete and 
polynomial reduce to one another!

CIRCUIT-SAT

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

3-SAT reduces to 

INDEPENDENT SET

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

NP-Completeness

by definition of NP-completeness



Summary
To show a problem is in NP:

• Make sure it is a decision problem
• And give a polynomial time certifier

Recipe to show a problem Y is NP-Complete
• Step 1.  Show that Y is in NP.
• Step 2.  Choose a known NP-complete problem X.
• Step 3.  Prove that X £ p Y. 



Final Exam Review



Stuff
Teaching evaluation
• Extra 1% score for all the students if overall response rate >= 80%
• May improve the final grade
• Teaching evaluation will close on Sunday April 28

My office hour next week will be Wednesday May 1 3pm– 5pm

TA’s office hour next week will be schedule to another time (Monday or 
Thursday)



Study materials
Homework 5 will be helpful for you to prepare final exam

A sample final exam will be released later today

Additional algorithm design problems that help you to prepare final 
exam will also be released later today 
• Leetcode problems
• Mostly about divide and conquer and dynamic programming



Final Exam
Final exam: May 3 (Friday) 8am-10am
• Location: TBH 180F

• Closed textbook exam

• You may use a sheet with notes on both sides, but not textbook and 
any other paper materials

• You may use a calculator, but not any device with transmitting 
functions, especially ones that can access the wireless or the Internet



Final Exam
True or False / Short answer
• Basic facts throughout the semester
• True or False: just answer yes/no, no justification needed
• Short answer: read the question carefully

Divide and Conquer

Dynamic programming

NP and NP-completeness



Final Exam
True or False / Short answer
• Basic facts throughout the semester
• True or False: just answer yes/no, no justification needed
• Short answer: read the question carefully

Divide and Conquer

Dynamic programming

NP and NP-completeness

Cover knowledge learned throughout the 
semester!

Also check midterm review!



Divide and Conquer 
Divide: We reduce a problem to several subproblems.
Typically, each sub-problem is 
   at most a constant fraction of 
   the size of the original problem

Conquer: Recursively solve each 
  subproblem
Combine: Merge the solutions

Examples:
• Mergesort, Counting Inversions, Binary Search
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Master Theorem
Suppose 𝑇 𝑛 = 𝑎	𝑇 !

" + 𝑐𝑛#  for all 𝑛 > 𝑏. Then,

• If 𝑎 < 𝑏# then 𝑇 𝑛 = Θ 𝑛#

• If 𝑎 = 𝑏# then 𝑇 𝑛 = Θ 𝑛#log	𝑛

• If 𝑎 > 𝑏# then 𝑇 𝑛 = Θ 𝑛$%&!'

Example: For mergesort algorithm we have
𝑇 𝑛 = 2𝑇

𝑛
2
+ 𝑂 𝑛 .

So, 𝑘 = 1, 𝑎 = 𝑏# and 𝑇 𝑛 = Θ(𝑛 log 𝑛) 



17

Divide and conquer: give an array, find the maximum 
subarray sum
• Divide: partition the array into two halves
• Conquer: Find the solution of each halves
• Combine: What if the solution contains elements from 

both halves? (for [6,-2, -3, 1,5], [6, -2] is from the first 
half, and [-3, 1, 5] is from the second half)

Problem 4 of Homework 3
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If the solution contains elements from both halves,
• The elements in the solution from the first half 

• Form an interval contains the last element of the first half
• Have largest sum among all the intervals of the first half containing the 

last element of the first half ([6, -2] is the interval of [-2, -5, -6, -2] that 
(1) contains the last element and (2) has the largest sum)

• The elements in the solution from the second half
• Form an interval contains the first element of the second half
• Have largest sum among all the intervals of the second half containing 

the first element of the second half

Problem 4 of Homework 3
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Redefine problem: give an array, find 
(1)𝑠 : the maximum subarray sum
(2)𝑎	: the maximum of subarray sum among all subarrays 

containing the first element
(3)𝑏	: the maximum of subarray sum among all subarrays 

containing the last element

Problem 4 of Homework 3
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Given 𝑠(, 𝑎(, 𝑏( for the first half, and 𝑠), 𝑎), 𝑏) for the 
second half, how to find the 𝑠, 𝑎, 𝑏?
• 𝑠 = max{𝑠(, 𝑠), 𝑏( + 𝑎)}
• 𝑎 = max{𝑎(, 𝑠𝑢𝑚( + 𝑎)}
• 𝑏 = max{𝑏), 𝑠𝑢𝑚) + 𝑏(}

T(n) = 2 T(n/2) + O(n)  ⟹  T(n) = O(n log n)

Problem 4 of Homework 3

𝑠𝑢𝑚!: sum of all the elements in 
the first half

𝑠𝑢𝑚": sum of all the elements in 
the second half



Dynamic Programming
Principle:
• Optimal substructure: Remove certain part of the optimal solution (for the 

entire problem) is an optimal solution of a subproblem
• Carefully define a collection of subproblems. Typically, only a polynomial 

number of subproblems
• Parameterization/Memorization

Recipe: 
• Find optimal substructure by investigating the optimal solution
• Find out additional assumptions/variables/subproblems that you need to do 

the induction
• Strengthen the hypothesis and define w.r.t. new subproblems

Dynamic programming techniques
• One dimensional dynamic programming: weighted interval scheduling, 

segmented least square
• Adding a new variable:  knapsack.
• Order subproblems in the right way: RNA secondary structure / Shortest 

path with negative weights 21



P and NP

A decision problem is a computational problem where the 
answer is just yes/no

P: all decision problems solvable in polynomial time

NP: all decision problems with polynomial time certifier
• Certifier:  Algorithm C(x, t) is a certifier for problem A if for every 

string x, the answer is “yes”  iff there exists a string t such that C(x, 
t) = yes.

• Intuition: Certifier doesn't determine whether answer is “yes”  on its 
own; rather, it checks a proposed proof t that answer is “yes”.



How to Prove a Problem is in NP?
Make sure it is a decision problem, and give a polynomial time 
certifier

HAM-CYCLE.  Given an undirected graph G = (V, E), does there exist a 
simple cycle C that visits every node?

Certificate.  A permutation of the n nodes.

Certifier.  Check that the permutation contains each node in V exactly once, 
and that there is an edge between each pair of adjacent nodes in the 
permutation.

Conclusion.  HAM-CYCLE is in NP.

instance s certificate t



NP Completeness

Hardest problems in NP

NP-complete:  A problem Y in NP with the property that for every 
problem X in NP, X £ p Y.

Recipe to establish NP-completeness of problem Y.
• Step 1.  Show that Y is in NP.
• Step 2.  Choose an NP-complete problem X.
• Step 3.  Prove that X £ p Y. 

Def A £P
 B: if there is an algorithm for problem A using a ‘black box’ 

(subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps 
• Makes only a polynomial number of calls to a subroutine for B



Good Luck!


