CS 401

NP-Complete / Final Review

Xiaorui Sun

NP Completeness

Complexity Theorists Approach: We don't know how to prove any problem in NP is hard. So, let's find hardest problems in NP.

NP-complete: A problem Y in NP with the property that for every problem X in $N P, X \leq_{p} Y$.

The "First" NP-Complete Problem

CIRCUIT-SAT. Given a combinational circuit built out of AND, OR, and NOT gates, is there a way to set the circuit inputs so that the output is 1 ?
Theorem. CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973]
yes: 101

Establishing NP-Completeness

Remark. Once we establish first "natural" NP-complete problem, others fall like dominoes.

Recipe to establish NP-completeness of problem Y.

- Step 1. Show that Y is in NP.
- Step 2. Choose a known NP-complete problem X .
- Step 3. Prove that $X \leq_{p} Y$.

Justification. If X is an NP-complete problem, and Y is a problem in NP with the property that $X \leq_{P} Y$ then Y is NPcomplete.

Pf. Let W be any problem in NP. Then $W \leq_{P} X \leq_{P} Y$.

- By transitivity, $\mathrm{W} \leq_{\mathrm{P}} \mathrm{Y}$.
- Hence Y is NP-complete. •

3-SAT is NP-Complete

SAT: Given CNF formula Φ, does it have a satisfying truth assignment?

$$
\begin{aligned}
& \text { Ex: }\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \\
& \text { Yes: } x_{1}=\text { true, } \mathrm{x}_{2}=\text { true } \mathrm{x}_{3}=\text { false. }
\end{aligned}
$$

3-SAT: SAT where each clause contains exactly 3 literals.

Theorem. 3-SAT is NP-complete.

Based on CIRCUIT-SAT is NP complete, how to show 3-SAT is NPcomplete?

3-SAT is NP-Complete

Theorem. 3-SAT is NP-complete.
Pf. Suffices to show that CIRCUIT-SAT $\leq_{P} 3$-SAT since 3-SAT is in NP.

- Let K be any circuit.
- Create a 3-sat variable x_{i} for each circuit element i.
- Make circuit compute correct values at each node:
- $\mathrm{x}_{2}=\neg \mathrm{x}_{3} \quad \Rightarrow$ add 2 clauses: $x_{2} \vee x_{3}, \overline{x_{2}} \vee \overline{x_{3}}$
- $\mathrm{X}_{1}=\mathrm{X}_{4} \vee \mathrm{X}_{5} \Rightarrow$ add 3 clauses: $x_{1} \vee \overline{x_{4}}, x_{1} \vee \overline{x_{5}}, \overline{x_{1}} \vee x_{4} \vee x_{5}$
- $\mathrm{x}_{0}=\mathrm{x}_{1} \wedge \mathrm{x}_{2} \Rightarrow$ add 3 clauses: $\overline{x_{0}} \vee x_{1}, \overline{x_{0}} \vee x_{2}, x_{0} \vee \overline{x_{1}} \vee \overline{x_{2}}$
- Hard-coded input values and output value.
- $\mathrm{x}_{5}=0 \Rightarrow$ add 1 clause: $\overline{x_{5}}$
- $\mathrm{x}_{0}=1 \Rightarrow$ add 1 clause: x_{0}
- Final step: turn clauses of length < 3 into clauses of length exactly 3 .

NP-Completeness

Observation. All problems below are NP-complete and polynomial reduce to one another!
by definition of NP-completeness

Summary

To show a problem is in NP:

- Make sure it is a decision problem
- And give a polynomial time certifier

Recipe to show a problem Y is NP-Complete

- Step 1. Show that Y is in NP.
- Step 2. Choose a known NP-complete problem X .
- Step 3. Prove that $X \leq_{p} Y$.

Final Exam Review

Stuff

Teaching evaluation

- Extra 1% score for all the students if overall response rate $>=80 \%$
- May improve the final grade
- Teaching evaluation will close on Sunday April 28

My office hour next week will be Wednesday May $13 p m-5 p m$

TA's office hour next week will be schedule to another time (Monday or Thursday)

Study materials

Homework 5 will be helpful for you to prepare final exam

A sample final exam will be released later today

Additional algorithm design problems that help you to prepare final exam will also be released later today

- Leetcode problems
- Mostly about divide and conquer and dynamic programming

Final Exam

Final exam: May 3 (Friday) 8am-10am

- Location: TBH 180F
- Closed textbook exam
- You may use a sheet with notes on both sides, but not textbook and any other paper materials
- You may use a calculator, but not any device with transmitting functions, especially ones that can access the wireless or the Internet

Final Exam

True or False / Short answer

- Basic facts throughout the semester
- True or False: just answer yes/no, no justification needed
- Short answer: read the question carefully

Divide and Conquer

Dynamic programming

NP and NP-completeness

Final Exam

True or False / Short answer

- Basic facts throughout the semester
- True or False: just answer yes/no, no justification needed
- Chort oncuor. rond tho aunction norofully

Di Cover knowledge learned throughout the semester!
D

Also check midterm review!

N

Divide and Conquer

Divide: We reduce a problem to several subproblems.
Typically, each sub-problem is at most a constant fraction of the size of the original problem

Conquer: Recursively solve each subproblem
Combine: Merge the solutions

Examples:

- Mergesort, Counting Inversions, Binary Search

Master Theorem

Suppose $T(n)=a T\left(\frac{n}{b}\right)+c n^{k}$ for all $n>b$. Then,

- If $a<b^{k}$ then $T(n)=\Theta\left(n^{k}\right)$
- If $a=b^{k}$ then $T(n)=\Theta\left(n^{k} \log n\right)$
- If $a>b^{k}$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$

Example: For mergesort algorithm we have

$$
T(n)=2 T\left(\frac{n}{2}\right)+O(n)
$$

So, $k=1, a=b^{k}$ and $T(n)=\Theta(n \log n)$

Problem 4 of Homework 3

Given an integer array nums, find the subarray with the largest sum, and return its sum.

Divide and conquer: give an array, find the maximum subarray sum

- Divide: partition the array into two halves
- Conquer: Find the solution of each halves
- Combine: What if the solution contains elements from both halves? (for [6,-2, $-3,1,5]$, [6, -2] is from the first half, and $[-3,1,5]$ is from the second half)

Problem 4 of Homework 3

Given an integer array nums, find the subarray with the largest sum, and return its sum.

If the solution contains elements from both halves,

- The elements in the solution from the first half
- Form an interval contains the last element of the first half
- Have largest sum among all the intervals of the first half containing the last element of the first half ($[6,-2]$ is the interval of $[-2,-5,-6,-2]$ that (1) contains the last element and (2) has the largest sum)
- The elements in the solution from the second half
- Form an interval contains the first element of the second half
- Have largest sum among all the intervals of the second half containing the first element of the second half

Problem 4 of Homework 3

Given an integer array nums, find the subarray with the largest sum, and return its sum.

Redefine problem: give an array, find
(1) s : the maximum subarray sum
(2) a : the maximum of subarray sum among all subarrays containing the first element
(3) b : the maximum of subarray sum among all subarrays containing the last element

Problem 4 of Homework 3

Given an integer array nums, find the subarray with the largest sum, and return its sum.

Given s_{1}, a_{1}, b_{1} for the first half, and s_{2}, a_{2}, b_{2} for the second half, how to find the s, a, b ?

- $s=\max \left\{s_{1}, s_{2}, b_{1}+a_{2}\right\}$
- $a=\max \left\{a_{1}\right.$, sum $\left._{1}+a_{2}\right\}$
- $b=\max \left\{b_{2}\right.$, sum $\left._{2}+b_{1}\right\}$
sum $_{1}$: sum of all the elements in the first half sum $_{2}$: sum of all the elements in the second half

$$
T(n)=2 T(n / 2)+O(n) \Rightarrow T(n)=O(n \log n)
$$

Dynamic Programming

Principle:

- Optimal substructure: Remove certain part of the optimal solution (for the entire problem) is an optimal solution of a subproblem
- Carefully define a collection of subproblems. Typically, only a polynomial number of subproblems
- Parameterization/Memorization

Recipe:

- Find optimal substructure by investigating the optimal solution
- Find out additional assumptions/variables/subproblems that you need to do the induction
- Strengthen the hypothesis and define w.r.t. new subproblems

Dynamic programming techniques

- One dimensional dynamic programming: weighted interval scheduling, segmented least square
- Adding a new variable: knapsack.
- Order subproblems in the right way: RNA secondary structure / Shortest path with negative weights

P and $N P$

A decision problem is a computational problem where the answer is just yes/no
P : all decision problems solvable in polynomial time
NP: all decision problems with polynomial time certifier

- Certifier: Algorithm $C(x, t)$ is a certifier for problem A if for every string x, the answer is "yes" iff there exists a string t such that $C(x$, t) $=$ yes.
- Intuition: Certifier doesn't determine whether answer is "yes" on its own; rather, it checks a proposed proof t that answer is "yes".

How to Prove a Problem is in NP?

Make sure it is a decision problem, and give a polynomial time certifier

HAM-CYCLE. Given an undirected graph $G=(V, E)$, does there exist a simple cycle C that visits every node?

Certificate. A permutation of the n nodes.
Certifier. Check that the permutation contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

Conclusion. ham-cycle is in NP.

NP Completeness

Hardest problems in NP
NP-complete: A problem Y in NP with the property that for every problem X in $\mathrm{NP}, \mathrm{X} \leq_{\mathrm{p}} \mathrm{Y}$.

Recipe to establish NP-completeness of problem Y.

- Step 1. Show that Y is in NP.
- Step 2. Choose an NP-complete problem X.
- Step 3. Prove that $X \leq_{p} \mathrm{Y}$.

Def $\mathrm{A} \leq_{p} \mathrm{~B}$: if there is an algorithm for problem A using a 'black box' (subroutine) that solve problem B s.t.,

- Algorithm uses only a polynomial number of steps
- Makes only a polynomial number of calls to a subroutine for B

Good Luck!

