
CS 401: Computer
Algorithm I

Representative Problems / Running
Time Analysis

Xiaorui Sun
1

Staff

• Website: http://www.cs.uic.edu/~xiaorui/cs401
• Lecture slides, homework

• Piazza:https://piazza.com/uic/spring2024/cs401434524345343457
43458

• Announcements, online discussion forum
• TA will answer course related questions

• Blackboard
• Office hour, lecture video recordings, homework submission

• Office hours
• Myself: Tuesday 10am-12pm SEO 1241 and blackboard
• Chenye Zhao: Friday 1pm-3pm TBH180B and blackboard

2

http://www.cs.uic.edu/~xiaorui/cs401
https://piazza.com/uic/spring2024/cs40143452434534345743458
https://piazza.com/uic/spring2024/cs40143452434534345743458

Stable Matching Summary

• Q: What is a computational problem?
• A: Defined by input and output

• Q: How to describe an algorithm?
• A: Describe what to do in each step (pseudocode)

• Q: Does an algorithm correctly solve a problem?
• A: Show the algorithm gives the correct solution on each

input

• Q: How to implement an algorithm efficiently?
• A: Different implementations may have different running

time
3

Why this problem is important?

In 1962, Gale and Shapley published the paper
“College Admissions and the Stability of Marriage”

To
“The American Mathematical Monthly”

4

Why this problem is important?

Alvin Roth modified the Gale-Shapley algorithm and apply it to
• National Residency Match Program (NRMP), a system that assigns new

doctors to hospitals around the country. (90s)

• Public high school assignment process (00s)

• Helping transplant patients find a match (2004)
(Saved >1,000 people every year!)

5

Why this problem is important?

6

Shapley and Roth got the Nobel Prize (Economic) in 2012.
(David Gale passed away in 2008.)

Some of the problems in this
course may seem obscure or
even pointless.

But their abstraction allows for
variety of applications.

7

Representative problems

Interval Scheduling

Input: Set of jobs with start times and finish times
Goal: Find maximum cardinality subset of mutually
compatible jobs

8

Jobs don’t overlap

Weighted Interval Scheduling

Input: Set of jobs with weights, start times and finish times
Goal: Find maximum weight subset of mutually compatible
jobs

9

Bipartite Matching

Input: Bipartite graph
Goal: Find maximum cardinality matching

10

Independent Set

Input: Graph
Goal: Find maximum cardinality independent set

11

Subset of nodes such that
no two joined by an edge

Competitive Facility Location

Input: Graph with weight on each node.
Game: Two competitive players alternate in selecting
nodes. Not allowed to select a node if any of its neighbors
have been selected.
Goal: Select a maximum weight subset of nodes.

12

Second player can guarantee 20, but not 25

Five Representative Problems

Common theme: independent set

Interval scheduling: n log n greedy algorithm
Weighted interval scheduling: n log n dynamic
programming algorithm
Bipartite matching: nk max-flow based algorithm
Independent set: NP-complete
Competitive facility location: PSPACE-complete

13

Different properties make problems
have different running times

14

Complexity

Defining Efficiency

“Runs fast on typical real problem instances”

Pros:
• Sensible

Cons:
• Moving target (diff computers, programming languages)
• Highly subjective (how fast is “fast”? What is “typical”?)

15

Measuring Efficiency

Time » # of instructions executed in a simple programming
language

only simple operations (+,*,-,=,if,call,…)
each operation takes one time step
each memory access takes one time step
no fancy stuff (add these two matrices, copy this long

string,…) built in

16

Time Complexity

Problem: An algorithm can have different running time on
different inputs

Solution: The complexity of an algorithm associates a
number T(N), the “time” the algorithm takes on problem
size N.

Mathematically,
T is a function that maps positive integers giving

problem size to positive integers giving number of
simple operations

17

On which inputs of size N?

Time Complexity (N)

Worst Case Complexity: max # simple operations algorithm
takes on any input of size N

Average Case Complexity: avg # simple operations
algorithm takes on inputs of size N

Best Case Complexity: min # simple operations algorithm
takes on any input of size N

18

This Course

