CS 401: Computer Algorithm I

Running Time Analysis

Xiaorui Sun

Time Complexity

Problem: An algorithm can have different running time on different inputs

Solution: The complexity of an algorithm associates a number **T(N)**, the "time" the algorithm takes on problem size **N**.

On which inputs of size N?

Mathematically,

T is a function that maps positive integers giving problem size to positive integers giving number of simple operations

Time Complexity (N)

Worst Case Complexity: max # simple operations algorithm takes on any input of size N

This Course

Average Case Complexity: **avg** # simple operations algorithm takes on inputs of size **N**

Best Case Complexity: min # simple operations algorithm takes on any input of size N

Time Complexity on Worst Case Inputs

O-Notation

Given two positive functions f and g

- f(N) is O(g(N)) iff there is a constant c>0 and $N_0 \ge 0$ s.t., $0 \le f(N) \le c \cdot g(N)$ for all $N \ge N_0$
- E.g. f(N)=32N²+17N+1
- f(N)=O(N²).
 Choose c=50, N₀=1
- f(N) is neither O(N) nor O(N log N).

Typical usage: Gale-Sharpley makes O(n²) proposals.

Quiz

Let $f(N) = 32N^2 + 17N \log_2 N + 1000$. Which of the following are true?

- A. f(N) is O(N²).
- B. f(N) is O(N³).

C. Both A and B.

Answer at: pollev.com/xiaoruisun673

D. Neither A nor B.

All the quizzes in this course are to encourage you to think and participate the course. If you participate the quiz, then you get the participation credit.

Properties

Reflexivity. **f** is **O(f)**.

Constants. If **f** is O(g) and c > 0, then $c \cdot f$ is O(g).

Products. If f_1 is $O(g_1)$ and f_2 is $O(g_2)$, then $f_1 \cdot f_2$ is $O(g1 \cdot g2)$.

Sums. If f_1 is $O(g_1)$ and f_2 is $O(g_2)$, then $f_1 + f_2$ is $O(max \{g_1, g_2\})$.

Fastest growing term dominates

Transitivity. If **f** is **O(g)** and **g** is **O(h)**, then **f** is **O(h)**

Asymptotic Bounds for common fns

• Polynomials:

$$a_0 + a_1 n + \dots + a_d n^d$$
 is $O(n^d)$

• Logarithms:

 $\log_a n = O(\log_b n)$ for all constants a, b > 0

- Logarithms: log grows slower than every polynomial
 For all k > 0, log n = O(n^k)
- $n \log n = O(n^{1.01})$

Asymptotic Bounds for common fns

exponential function

- Exponential: For all $k, l > 0, n^k = O(\exp(n^l))$
- Practice: when $n^k = O(\exp((\log_2 n)^l))$?
 - k = 1, l = 10?
 - k = 100, l = 10?
 - k = 0.01, l = 10?
 - k = 1, l = 0.1?
 - k = 100, l = 0.1?
 - k = 0.01, l = 0.1?

This is not an exponential function

Ω -Notation

Given two positive functions f and g

f(N) is Ω(g(N)) iff there is a constant c>0 and N₀ ≥ 0 s.t.,
 f(N) ≥ c ⋅ g(N) ≥ 0 for all N ≥ N₀

E.g. f(N)=32N²+17N+1

- f(N) is both $\Omega(N^2)$ and $\Omega(N)$. Choose c=32, N₀=1
- **f(N)** is not **Ω(N³)**.

Fastest growing term dominates

Typical usage: Gale-Sharpley makes $\Omega(n^2)$ proposals in the worst case.

Question

Which is an equivalent definition of big Omega notation?

- A. f(N) is $\Omega(g(N))$ iff g(N) is O(f(N)).
- B. f(N) is $\Omega(g(N))$ iff there is a constant c>0 s.t. $f(N) \ge c \cdot g(N) \ge 0$ for infinitely many N.
- C. Both A and B.
- D. Neither A nor B.

