
CS 401: Computer
Algorithm I

Running Time Analysis

Xiaorui Sun

1

Time Complexity

Problem: An algorithm can have different running time on
different inputs

Solution: The complexity of an algorithm associates a
number T(N), the “time” the algorithm takes on problem
size N.

Mathematically,
T is a function that maps positive integers giving

problem size to positive integers giving number of
simple operations

2

On which inputs of size N?

Time Complexity (N)

Worst Case Complexity: max # simple operations algorithm
takes on any input of size N

Average Case Complexity: avg # simple operations
algorithm takes on inputs of size N

Best Case Complexity: min # simple operations algorithm
takes on any input of size N

3

This Course

4

Time Complexity on Worst Case Inputs

Problem size N

T(N)

𝑁 log2𝑁

2𝑁 log2𝑁

O-Notation

Given two positive functions f and g

• f(N) is O(g(N)) iff there is a constant c0 and N0  0 s.t.,
0 f(N)  c⋅g(N) for all N  N0

E.g. f(N)=32N2+17N+1
• f(N)=O(N2).
• f(N) is neither O(N) nor O(N log N).

Typical usage: Gale-Sharpley makes O(n2) proposals.

5

Choose c=50, N0=1

Quiz

Let f(N) = 32N2 + 17N log2 N + 1000. Which of the
following are true?

A. f(N) is O(N2).

B. f(N) is O(N3).

C. Both A and B.

D. Neither A nor B.

6

Answer: C

Answer at:
pollev.com/xiaoruisun673

All the quizzes in this course are to encourage you to think and
participate the course.

If you participate the quiz, then you get the participation credit.

http://pollev.com/xiaoruisun673

Properties

Reflexivity. f is O(f).

Constants. If f is O(g) and c > 0, then c⋅f is O(g).

Products. If f1 is O(g1) and f2 is O(g2), then f1⋅f2 is
O(g1⋅g2).

Sums. If f1 is O(g1) and f2 is O(g2), then f1 + f2 is
O(max {g1, g2}).

Transitivity. If f is O(g) and g is O(h), then f is O(h)
7

Fastest growing term dominates

Asymptotic Bounds for common fns

• Polynomials:
 𝑎0 + 𝑎1𝑛 + ⋯ + 𝑎𝑑𝑛𝑑 is 𝑂 𝑛𝑑

• Logarithms:
 log𝑎 𝑛 = 𝑂(log𝑏 𝑛) for all constants 𝑎, 𝑏 > 0

• Logarithms: log grows slower than every polynomial
 For all 𝑘 > 0, log 𝑛 = 𝑂(𝑛𝑘)

• 𝑛 log 𝑛 = 𝑂 𝑛1.01

8

Asymptotic Bounds for common fns

• Exponential: For all 𝑘, 𝑙 > 0, 𝑛𝑘 = 𝑂(exp(𝑛𝑙))

• Practice: when 𝑛𝑘 = 𝑂(exp(log2 𝑛 𝑙))?
• 𝑘 = 1, 𝑙 = 10?
• 𝑘 = 100, 𝑙 = 10?
• 𝑘 = 0.01, 𝑙 = 10?
• 𝑘 = 1, 𝑙 = 0.1?
• 𝑘 = 100, 𝑙 = 0.1?
• 𝑘 = 0.01, 𝑙 = 0.1?

9

This is not an exponential function

exponential function

-Notation

Given two positive functions f and g

• f(N) is (g(N)) iff there is a constant c0 and N0  0 s.t.,
f(N)  c ⋅ g(N)  0 for all N  N0

E.g. f(N)=32N2+17N+1
• f(N) is both (N2) and (N).
• f(N) is not (N3).

Typical usage: Gale-Sharpley makes (n2) proposals in the
worst case.

10

Choose c=32, N0=1

Fastest growing term dominates

Question

Which is an equivalent definition of big Omega notation?

A. f(N) is (g(N)) iff g(N) is O(f(N)).

B. f(N) is (g(N)) iff there is a constant c0 s.t.
 f(N)  c⋅g(N)  0 for infinitely many N.

C. Both A and B.

D. Neither A nor B.

11

Answer: A

	Default Section
	Slide 1: CS 401: Computer Algorithm I
	Slide 2: Time Complexity
	Slide 3: Time Complexity (N)
	Slide 4: Time Complexity on Worst Case Inputs
	Slide 5: O-Notation
	Slide 6: Quiz
	Slide 7: Properties
	Slide 8: Asymptotic Bounds for common fns
	Slide 9: Asymptotic Bounds for common fns
	Slide 10: W-Notation
	Slide 11: Question
	Slide 12: Q-Notation
	Slide 13: Question
	Slide 14: Summary
	Slide 15: Question
	Slide 16: Question
	Slide 17: Question
	Slide 18: Question

