CS 401: Computer Algorithm I

Running Time Analysis
Xiaorui Sun

Time Complexity

Problem: An algorithm can have different running time on different inputs

Solution: The complexity of an algorithm associates a number $\mathrm{T}(\mathrm{N})$, the "time" the algorithm takes on problem size N .

On which inputs of size \mathbf{N} ?
Mathematically,
T is a function that maps positive integers giving problem size to positive integers giving number of simple operations

Time Complexity (N)

Worst Case Complexity: max \# simple operations algorithm takes on any input of size \mathbf{N}

This Course

Average Case Complexity: avg \# simple operations algorithm takes on inputs of size \mathbf{N}

Best Case Complexity: min \# simple operations algorithm takes on any input of size \mathbf{N}

Time Complexity on Worst Case Inputs

O-Notation

Given two positive functions \mathbf{f} and \mathbf{g}

- $f(N)$ is $\mathbf{O}(g(N))$ iff there is a constant $\mathbf{c}>0$ and $N_{0} \geq 0$ s.t., $0 \leq f(N) \leq c \cdot g(N)$ for all $N \geq N_{0}$
E.g. $f(N)=32 N^{2}+17 N+1$
- $\mathrm{f}(\mathrm{N})=\mathrm{O}\left(\mathrm{N}^{2}\right)$. \longleftarrow Choose $\mathrm{c}=50, \mathrm{~N}_{0}=1$
- $f(N)$ is neither $O(N)$ nor $O(N \log N)$.

Typical usage: Gale-Sharpley makes $\mathrm{O}\left(\mathrm{n}^{2}\right)$ proposals.

Question

Let $f(N)=32 N^{2}+17 N \log _{2} N+1000$. Which of the following are true?
A. $f(N)$ is $O\left(N^{2}\right)$.
B. $\mathrm{f}(\mathrm{N})$ is $\mathrm{O}\left(\mathrm{N}^{3}\right)$.

C. Both A and B.
D. Neither A nor B.

Properties

Reflexivity. \mathbf{f} is $\mathbf{O}(\mathrm{f})$.

Constants. If f is $\mathrm{O}(\mathrm{g})$ and $\mathrm{c}>\mathbf{0}$, then $\mathrm{c} \cdot \mathrm{f}$ is $\mathrm{O}(\mathrm{g})$.

Products. If f_{1} is $O\left(g_{1}\right)$ and f_{2} is $O\left(g_{2}\right)$, then $f_{1} \cdot f_{2}$ is O(g1•g2).

Sums. If f_{1} is $O\left(g_{1}\right)$ and f_{2} is $O\left(g_{2}\right)$, then $f_{1}+f_{2}$ is O(max $\left\{\mathrm{g}_{1}, \mathrm{~g}_{2}\right\}$).

Fastest growing term dominates
Transitivity. If f is $\mathrm{O}(\mathrm{g})$ and g is $\mathrm{O}(\mathrm{h})$, then f is $\mathrm{O}(\mathrm{h})$

Asymptotic Bounds for common fns

- Polynomials:
$a_{0}+a_{1} n+\cdots+a_{d} n^{d}$ is $O\left(n^{d}\right)$
- Logarithms:
$\log _{a} n=O\left(\log _{b} n\right)$ for all constants $a, b>0$
- Logarithms: log grows slower than every polynomial For all $k>0, \log n=O\left(n^{k}\right)$
- $n \log n=O\left(n^{1.01}\right)$

Asymptotic Bounds for common fns

 exponential function- Exponential: For all $k, l>0, n^{k}=O\left(\exp \left(n^{l}\right)\right)$
- Practice: when $n^{k}=O\left(\exp \left(\left(\log _{2} n\right)^{l}\right)\right)$?
- $k=1, l=10$?
- $k=100, l=10$?
- $k=0.01, l=10$?
- $k=1, l=0.1$?
- $k=100, l=0.1$?
- $k=0.01, l=0.1$?

Ω-Notation

Given two positive functions \mathbf{f} and \mathbf{g}

- $f(N)$ is $\Omega(g(N))$ iff there is a constant $\mathbf{c}>\mathbf{0}$ and $N_{0} \geq 0$ s.t., $\mathrm{f}(\mathrm{N}) \geq \mathbf{c} \cdot \mathbf{g}(\mathrm{N}) \geq \mathbf{0}$ for all $\mathbf{N} \geq \mathrm{N}_{0}$
E.g. $f(N)=32 N^{2}+17 N+1$
- $\mathrm{f}(\mathbf{N})$ is both $\Omega\left(\mathbf{N}^{2}\right)$ and $\Omega(\mathbf{N})$. \longleftarrow Choose $\mathrm{c}=32, \mathrm{~N}_{0}=1$
- $f(N)$ is not $\Omega\left(N^{3}\right)$.

Fastest growing term dominates

Typical usage: Gale-Sharpley makes $\Omega\left(n^{2}\right)$ proposals in the worst case.

Θ-Notation

Given two positive functions \mathbf{f} and \mathbf{g}

- $f(N)$ is $\Theta(g(N))$ iff there are $c_{0}>0, c_{1}>0$ and $N_{0} \geq 0$ s.t. $\mathrm{c}_{0} \cdot \mathrm{~g}(\mathrm{~N}) \leq \mathrm{f}(\mathrm{N}) \leq \mathrm{c}_{1} \cdot \mathrm{~g}(\mathrm{~N})$ for all $\mathrm{N} \geq \mathrm{N}_{0}$
E.g. $f(N)=32 N^{2}+17 N+1$
- $f(N)$ is $\Theta\left(N^{2}\right)$.
- $f(N)$ is neither $\Theta(N)$ nor $\Theta\left(N^{3}\right)$.

Typical usage: Gale-Sharpley makes $\Theta\left(\mathrm{n}^{2}\right)$ proposals in the worst case.

Question

Which is an equivalent definition of big Theta notation?
A. $f(N)$ is $\Theta(g(N))$ iff $f(N)$ is both $O(g(N))$ and $\Omega(g(N))$.
B. $\mathbf{f}(\mathbf{N})$ is $\Theta(\mathbf{g}(\mathbf{N}))$ iff $\lim _{N \rightarrow \infty} \frac{f(N)}{g(N)}=c$ for some constant $0<c<\infty$.
C. Both A and B.

D. Neither A nor B.

Summary

Given two positive functions \mathbf{f} and \mathbf{g}

- $f(N)$ is $O(g(N))$ iff there is a constant $c>0$ s.t., $f(N)$ is eventually always $\leq c g(N)$
- $f(N)$ is $\Omega(g(N))$ iff there is a constant $\varepsilon>0$ s.t., $f(N)$ is $\geq \varepsilon g(N)$ for infinitely
- $f(N)$ is $\Theta(g(N))$ iff there are constants $c_{1}, c_{2}>0$ so that eventually always $c_{1} g(N) \leq f(N) \leq c_{2} g(N)$

