
CS 401: Computer
Algorithm I

Running Time Analysis

Xiaorui Sun

1

Time Complexity

Problem: An algorithm can have different running time on
different inputs

Solution: The complexity of an algorithm associates a
number T(N), the “time” the algorithm takes on problem
size N.

Mathematically,
T is a function that maps positive integers giving

problem size to positive integers giving number of
simple operations

2

On which inputs of size N?

Time Complexity (N)

Worst Case Complexity: max # simple operations algorithm
takes on any input of size N

Average Case Complexity: avg # simple operations
algorithm takes on inputs of size N

Best Case Complexity: min # simple operations algorithm
takes on any input of size N

3

This Course

4

Time Complexity on Worst Case Inputs

Problem size N

Ti
m

e

T(N)

𝑁	log!𝑁

2𝑁	log2𝑁

O-Notation

Given two positive functions f and g

• f(N) is O(g(N)) iff there is a constant c>0 and N0 ³ 0 s.t.,
0£ f(N) £ c⋅g(N) for all N ³ N0

E.g. f(N)=32N2+17N+1
• f(N)=O(N2).
• f(N) is neither O(N) nor O(N log N).

Typical usage: Gale-Sharpley makes O(n2) proposals.

5

Choose c=50, N0=1

Question

Let f(N) = 32N2 + 17N log2 N + 1000. Which of the
following are true?

A. f(N) is O(N2).

B. f(N) is O(N3).

C. Both A and B.

D. Neither A nor B.

6

Answer: C

Properties

Reflexivity. f is O(f).

Constants. If f is O(g) and c > 0, then c⋅f is O(g).

Products. If f1 is O(g1) and f2 is O(g2), then f1⋅f2 is
O(g1⋅g2).

Sums. If f1 is O(g1) and f2 is O(g2), then f1 + f2 is
O(max {g1, g2}).

Transitivity. If f is O(g) and g is O(h), then f is O(h)
7

Fastest growing term dominates

Asymptotic Bounds for common fns

• Polynomials:
 𝑎! + 𝑎"𝑛 +⋯+ 𝑎#𝑛# is 𝑂 𝑛#

• Logarithms:
 log$ 𝑛 = 𝑂(log% 𝑛) for all constants 𝑎, 𝑏 > 0

• Logarithms: log grows slower than every polynomial
 For all 𝑘 > 0, log 𝑛 = 𝑂(𝑛&)

• 𝑛 log 𝑛 = 𝑂 𝑛".!"

8

Asymptotic Bounds for common fns

• Exponential: For all 𝑘, 𝑙	 > 	0, 𝑛& 	= 	𝑂(exp(𝑛())

• Practice: when 𝑛& 	= 	𝑂(exp(log) 𝑛 ())?
• 𝑘 = 1, 𝑙 = 10?
• 𝑘 = 100, 𝑙 = 10?
• 𝑘 = 0.01, 𝑙 = 10?
• 𝑘 = 1, 𝑙 = 0.1?
• 𝑘 = 100, 𝑙 = 0.1?
• 𝑘 = 0.01, 𝑙 = 0.1?

9

This is not an exponential function

exponential function

W-Notation

Given two positive functions f and g

• f(N) is W(g(N)) iff there is a constant c>0 and N0 ³ 0 s.t.,
f(N) ³ c ⋅	g(N) ³ 0 for all N ³ N0

E.g. f(N)=32N2+17N+1
• f(N) is both W(N2) and W(N).
• f(N) is not W(N3).

Typical usage: Gale-Sharpley makes W(n2) proposals in the
worst case.

10

Choose c=32, N0=1

Fastest growing term dominates

Q-Notation

Given two positive functions f and g

• f(N) is Q(g(N)) iff there are c0>0, c1>0 and N0 ³ 0 s.t.
 c0 ⋅	g(N) £ f(N) £ c1 ⋅	g(N) for all N ³ N0

E.g. f(N)=32N2+17N+1
• f(N) is Q(N2).
• f(N) is neither Q(N) nor Q(N3).

Typical usage: Gale-Sharpley makes Q(n2) proposals in the
worst case.

11

Choose c0=32, c1=50, N0=1

Question

Which is an equivalent definition of big Theta notation?

A. f(N) is Q(g(N)) iff f(N) is both O(g(N)) and W(g(N)).

B. f(N) is Q(g(N)) iff lim
*→,

- *
. * = 𝑐 for some constant

 0 < c < ∞.

C. Both A and B.

D. Neither A nor B.

12

Answer: A

Summary

Given two positive functions f and g

• f(N) is O(g(N)) iff there is a constant c>0 s.t.,
 f(N) is eventually always £ c g(N)

• f(N) is W(g(N)) iff there is a constant e>0 s.t.,
 f(N) is ³ e g(N) for infinitely

• f(N) is Q(g(N)) iff there are constants c1, c2>0 so that
 eventually always c1g(N) £ f(N) £ c2g(N)

13

