CS 401: Computer
Algorithm |

Running Time Analysis

Xiaorul Sun

Last Lecture: O and Q Notations

Given two positive functions f and g

« f(N)is O(g(N)) iff there is a constant c>0 s.t.,
f(N) is eventually always < c g(N)

« f(N)is Q(g(N)) iff there is a constant ¢ >0 s.t.,
f(N) is eventually always > c g(N)

Question: If f; Is Q(g,) and f, is Q(g,), Isf; + f, Q(g, + g,)?

Answer: Yes

®-Notation

Given two positive functions f and g

* f(N)Iis ®(g(N)) iff there are c,>0, c,>0 and N, = 0 s.t.
Co-9(N)<f(N)<c,;-g(N)forallN >N,

E.g. f(N)=32N%+17N+1
« f(N)is @(N?). <+ Choose cy=32, ¢,=50, Ny=1

« f(N) is neither ®(N) nor ®(N?3).

Typical usage: Gale-Sharpley makes ®(n?) proposals in the
worst case.

Summary

Given two positive functions f and g

« f(N)is O(g(N)) iff there is a constant c>0 s.t.,
f(N) is eventually always < c g(N)

« f(N)is Q(g(N)) iff there is a constant ¢ >0 s.t.,
f(N) is eventually always > c g(N)

* f(N)is ®(g(N)) iff there are constants c,, ¢,>0 so that
eventually always c,g(N) <f(N) <c,g(N)

Practice 1

Suppose f(n) =n!l,gn) = 2"
Is f = 0(g)?

Definition: f(N) is O(g(N)) iff there is a constant c>0 and N, >
0 s.t., O<f(N) < c-g(N) for all N > N,

=> |f % < c for all large enough n, then f is 0(g)

But if as n increases, f/g also increases (sometimes
can be verified by your calculator), then f is not 0(g)

Practice 1

Suppose f(n) =n!l,gn) = 2"
Is f = 0(g)?

Definition: f(N) is O(g(N)) iff there is a constant c>0 and N, >
0 s.t., O<f(N) < c-g(N) for all N > N,

=> |f % < c for all large enough n, then f is 0(g)

W (E)-0=0 Q=0

| v J _'_,

n terms n/2 terms

Which is bigger than any constant c for large enough n.
So, fisnot 0(g).

Practice 2
Question: f =n, g = 20082M* |5 £ 0(g)?

Approach 1: As n increases, f /g approaches 0 (can be
verified by your calculator)

So, f = 0(g)

Practice 2
Question: f =n, g = 20082M* |5 £ 0(g)?

Property: For two functions f and g, if log f is O(log g), but
loggisnot O(log f)then f is O(g).

Approach 2: log, f = log, n,log, g = (log, n)?, and thus
log fis O(logg), loggisnot O(logf), so fis O(g)

Question: f =n,g = 2°°1082" |5 £ 0(g)?

log, f =log, n,log, g =09log,n, logfis O(logg), logg is
also O(log f), we cannot conclude f is 0(g)

A Survey of Common
Running Times

Linear Time: O(n)

Linear time. Running time is at most a constant factor
times the size of the input.

Computing the maximum. Compute maximum of n
numbers a,, ..., a,.

max <« a;
for 1 = 2 to n {
if (a; > max)
max < a;

10

Linear Time: O(n)

Merge. Combine two sorted lists A = a;,a,,...,a, with B =
b,,b,,...,b, Into sorted whole.

/ /171774 A
Merged result \
/// |b

i=1, 3 =1

while (both lists are nonempty) ({
if (a; < b;) append a; to output list and increment i
else(a; > bj)append b; to output list and increment j

}

append remainder of nonempty list to output 1list

Claim. Merging two lists of size n takes O(n) time.

Pf. After each comparison, the length of output list
Increases by 1. 11

O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.
\

also referred to as linearithmic time

Sorting. Mergesort and heapsort are sorting algorithms
that perform O(n log n) comparisons.

Largest empty interval. Given n time-stamps X, ..., X, on
which copies of a file arrive at a server, what is largest
Interval of time when no copies of the file arrive?

O(n log n) solution. Sort the time-stamps. Scan the sorted
list in order, identifying the maximum gap between

successive time-stamps.
12

Quadratic Time: O(n?)

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane
(X1, Y1), ---, (Xny ¥;), find the pair that is closest.

O(n?) solution. Try all pairs of points.

min « (x; - %)% + (y1 - y2)?
for 1 =1 to n {
for j = i+l to n {
d « (%3 - %x3)% + (yi - y3)?
if (d < min)
min <« d

don't need to
take square roots

}
__— see chapter 5

Remark. ©Q(n?) seems inevitable, but this is just an illusion.

Polynomial Time: O(nX) Time

Independent set of size k. Given a graph, are there k
nodes such that no two are joined by an edge? A

k is a constant

O(nX) solution. Enumerate all subsets of k nodes.

foreach subset S of k nodes {
check whether S in an independent set
if (S is an independent set)
report S is an independent set

}

Check whether S is an independent set = O(k?).

Number of k element subsets = (”J: n(n=1)(n=2)-(n=k+l) _ n*
— — !

O(K2 nk / K1) = O(n¥). . k) k(k=1)(k=2)---(2) (1) k!

poly-time for k=17,
but not practical

14

Exponential Time

Independent set. Given a graph, what is maximum size of
an independent set?

O(n? 2™ solution. Enumerate all subsets.

S* «— ¢
foreach subset S of nodes {
check whether S in an independent set
if (S is largest independent set seen so far)
update S* « S

}

15

Efficiency

An algorithm runs in polynomial time if T(n) = n°®.
Equivalently, T(n) = 0(n%) for some constant d.

<@

Name ¢ Complexity class ¢ Running time (T(n)) ¢ Examples of running times ¢ Example algorithms
constant time o(1) 10 Determining if an integer (represented in binary) is even or odd
inverse Ackermann time O(a(n)) Amortized time per operation using a disjoint set
iterated logarithmic time O(log™ n) Distributed coloring of cycles
log-logarithmic O(log log n) Amortized time per operation using a bounded priority queuel?]
logarithmic time DLOGTIME O(log n) log n, log(n?) Binary search
polylogarithmic time poly(log n) (log m)?
fractional power Om)where 0 <c <1 | n'2 p23 Searching in a kd-tree
linear time O(n) n Finding the smallest or largest item in an unsorted array
"n log star n" time O(nlog™ n) Seidel's polygon triangulation algorithm.
quasilinear time O(n log n) nlog n, log n! Fastest possible comparison sort; Fast Fourier transform.
quadratic time o(n?) n? Bubble sort; Insertion sort; Direct convolution
cubic time 0o(n?) n® Naive multiplication of two nxn matrices. Calculating partial correlation.
polynomial time P 20(log n) = poly(n) n, nlog n, n1° Karmarkar's algorithm for linear programming; AKS primality test
quasi-polynomial time | QP 2poly(log n) R EIR, 77 Best-known O(log? n)-approximation algorithm for the directed Steiner tree problem.

sub-exponential time

i o oralle> ssuming complexity theoretic conjectures, is contained in)
(st definition) SUBEXP 0(2™) forall e > 0 O(2log 9" Assumi lexity theoretic conject BPP is contained in SUBEXP.[?]
sub-exponential time 3 : - .

(second definition) 20(n) 28 Best-known algorithm for integer factorization sttt
exponential time) .) .]

with b 20(n) 1.17, 10" Solving the traveling salesman problem using dynamic programming

with linear exponen

exponential time EXPTIME 2poly(n) an, 2n’ Solving matrix chain multiplication via brute-force search

factorial time o(n') nl Solving the traveling salesman problem via brute-force search

double exponential time 2-EXPTIME 2l 22" Deciding the truth of a given statement in Presburger arithmetic

16

Why it matters?

Suppose we can do 1 million operations per second.

n nlog, n n? n3 1.58 A n!
n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec
n=230 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 18 min 10%° years
n=>50 < 1 sec < 1 sec < 1 sec < 1 sec 11 min 36 years very long
n =100 <lsec <lsec <1sec 1sec 12,892 years 107 years very long

n = 1,000 < 1 sec < 1 sec 1 sec 18 min very long very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1sec 2 sec 3 hours 32 years very long very long very long

n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long.
Y

not only get very big, but do so abruptly, which likely yields
erratic performance on small instances

Outdated: Nvidia announced a “computer” this Tue that do 2 quadrillion (2 x 10°) operations/sec.
It brings down the 31,710 years to 500 sec.
However, 21°9 operations still takes millions of years.

17

Why “Polynomial™?

Point is not that n?°%° js a practical bound, or that the
differences among n and 2n and n? are negligible.

Rather, simple theoretical tools may not easily capture
such differences, whereas exponentials are qualitatively
different from polynomials, so more amenable to theoretical
analysis.

* “My problem is in P” is a starting point for a more
detailed analysis

« “My problem is not in P” may suggest that you need to
shift to a more tractable variant

18

Summary

Asymptotic notations: O, Q, ®

Efficient algorithm: polynomial running time

19

	Default Section
	Slide 1: CS 401: Computer Algorithm I
	Slide 2: Last Lecture: O and W Notations
	Slide 3: Q-Notation
	Slide 4: Summary
	Slide 5: Practice 1
	Slide 6: Practice 1
	Slide 7: Practice 2
	Slide 8: Practice 2
	Slide 9: A Survey of Common Running Times
	Slide 10: Linear Time: O(n)
	Slide 11: Linear Time: O(n)
	Slide 12: O(n log n) Time
	Slide 13: Quadratic Time: O(n2)
	Slide 14: Polynomial Time: O(nk) Time
	Slide 15: Exponential Time
	Slide 16: Efficiency
	Slide 17: Why it matters?
	Slide 18: Why “Polynomial”?
	Slide 19: Summary

