
CS 401: Computer

Algorithm I

Running Time Analysis

Xiaorui Sun

1

Last Lecture: O and Notations

Given two positive functions f and g

• f(N) is O(g(N)) iff there is a constant c0 s.t.,

 f(N) is eventually always c g(N)

• f(N) is (g(N)) iff there is a constant c 0 s.t.,

 f(N) is eventually always c g(N)

Question: If f1 is (g1) and f2 is (g2), Is f1 + f2 (g1 + g2)?

2

Answer: Yes

-Notation

Given two positive functions f and g

• f(N) is (g(N)) iff there are c00, c1>0 and N0 0 s.t.

 c0 ⋅ g(N) f(N) c1 ⋅ g(N) for all N N0

E.g. f(N)=32N2+17N+1

• f(N) is (N2).

• f(N) is neither (N) nor (N3).

Typical usage: Gale-Sharpley makes (n2) proposals in the

worst case.

3

Choose c0=32, c1=50, N0=1

Summary

Given two positive functions f and g

• f(N) is O(g(N)) iff there is a constant c0 s.t.,

 f(N) is eventually always c g(N)

• f(N) is (g(N)) iff there is a constant c 0 s.t.,

 f(N) is eventually always c g(N)

• f(N) is (g(N)) iff there are constants c1, c2>0 so that

 eventually always c1g(N) f(N) c2g(N)

4

Practice 1

Suppose 𝑓 𝑛 = 𝑛!, 𝑔 𝑛 = 2𝑛

Is 𝑓 = 𝑂 𝑔 ?

=> If
𝑓(𝑛)

𝑔(𝑛)
≤ 𝑐 for all large enough 𝑛, then 𝑓 is 𝑂(𝑔)

But if as 𝑛 increases, 𝑓/𝑔 also increases (sometimes

can be verified by your calculator), then 𝑓 is not 𝑂(𝑔)

5

Definition: f(N) is O(g(N)) iff there is a constant c0 and N0

0 s.t., 0 f(N) c⋅g(N) for all N N0

Practice 1

Suppose 𝑓 𝑛 = 𝑛!, 𝑔 𝑛 = 2𝑛

Is 𝑓 = 𝑂 𝑔 ?

=> If
𝑓(𝑛)

𝑔(𝑛)
≤ 𝑐 for all large enough 𝑛, then 𝑓 is 𝑂(𝑔)

𝑓 𝑛

𝑔 𝑛
=

1

2

2

2
…

𝑛

2
≥

𝑛

4
…

𝑛

2
≥

𝑛

4

𝑛
2

Which is bigger than any constant c for large enough n.

So, 𝑓 is not 𝑂(𝑔).
6

𝑛 terms 𝑛/2 terms

Definition: f(N) is O(g(N)) iff there is a constant c0 and N0

0 s.t., 0 f(N) c⋅g(N) for all N N0

Practice 2

Question: 𝑓 = 𝑛, 𝑔 = 2 log2 𝑛 2
, Is 𝑓 𝑂(𝑔)?

Approach 1: As 𝑛 increases, 𝑓/𝑔 approaches 0 (can be

verified by your calculator)

So, 𝑓 = 𝑂(𝑔)

7

Practice 2

Question: 𝑓 = 𝑛, 𝑔 = 2 log2 𝑛 2
, Is 𝑓 𝑂(𝑔)?

Property: For two functions 𝑓 and 𝑔, if log 𝑓 is 𝑂(log 𝑔), but

log 𝑔 is not 𝑂(log 𝑓) then 𝑓 is 𝑂(𝑔).

Approach 2: log2 𝑓 = log2 𝑛 , log2 𝑔 = log2 𝑛 2, and thus

log 𝑓 is 𝑂(log 𝑔), log 𝑔 is not 𝑂(log 𝑓), so 𝑓 is 𝑂(𝑔)

Question: 𝑓 = 𝑛, 𝑔 = 20.9 log2 𝑛, Is 𝑓 𝑂(𝑔)?

log2 𝑓 = log2 𝑛 , log2 𝑔 = 0.9 log2 𝑛, log 𝑓 is 𝑂(log 𝑔), log 𝑔 is

also 𝑂(log 𝑓), we cannot conclude 𝑓 is 𝑂(𝑔)
8

A Survey of Common

Running Times

Linear Time: O(n)

Linear time. Running time is at most a constant factor

times the size of the input.

Computing the maximum. Compute maximum of n

numbers a1, …, an.

max a1
for i = 2 to n {

 if (ai > max)

 max ai
}

10

Linear Time: O(n)

Merge. Combine two sorted lists A = a1,a2,…,an with B =

b1,b2,…,bn into sorted whole.

Claim. Merging two lists of size n takes O(n) time.

Pf. After each comparison, the length of output list

increases by 1.

i = 1, j = 1

while (both lists are nonempty) {

 if (ai bj) append ai to output list and increment i

 else(ai > bj)append bj to output list and increment j

}

append remainder of nonempty list to output list

11

O(n log n) Time
O(n log n) time. Arises in divide-and-conquer algorithms.

Sorting. Mergesort and heapsort are sorting algorithms

that perform O(n log n) comparisons.

Largest empty interval. Given n time-stamps x1, …, xn on

which copies of a file arrive at a server, what is largest

interval of time when no copies of the file arrive?

O(n log n) solution. Sort the time-stamps. Scan the sorted

list in order, identifying the maximum gap between

successive time-stamps.

also referred to as linearithmic time

12

Quadratic Time: O(n2)

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane

(x1, y1), …, (xn, yn), find the pair that is closest.

O(n2) solution. Try all pairs of points.

Remark. (n2) seems inevitable, but this is just an illusion.

min (x1 - x2)
2 + (y1 - y2)

2

for i = 1 to n {

 for j = i+1 to n {

 d (xi - xj)
2 + (yi - yj)

2

 if (d < min)

 min d

 }

}

don't need to
take square roots

see chapter 5

Polynomial Time: O(nk) Time
Independent set of size k. Given a graph, are there k

nodes such that no two are joined by an edge?

O(nk) solution. Enumerate all subsets of k nodes.

Check whether S is an independent set = O(k2).

Number of k element subsets =

O(k2 nk / k!) = O(nk).

foreach subset S of k nodes {

 check whether S in an independent set

 if (S is an independent set)

 report S is an independent set

 }

}

n

k

 =
n (n−1) (n− 2) (n− k +1)

k (k −1) (k − 2) (2) (1)

nk

k!

poly-time for k=17,
but not practical

k is a constant

14

Exponential Time

Independent set. Given a graph, what is maximum size of

an independent set?

O(n2 2n) solution. Enumerate all subsets.

S*

foreach subset S of nodes {

 check whether S in an independent set

 if (S is largest independent set seen so far)

 update S* S

 }

}

15

Efficiency

16

An algorithm runs in polynomial time if 𝑇 𝑛 = 𝑛𝑂(1).

Equivalently, 𝑇 𝑛 = 𝑂(𝑛𝑑) for some constant d.

Why it matters?

17

Suppose we can do 1 million operations per second.

not only get very big, but do so abruptly, which likely yields
erratic performance on small instances

Outdated: Nvidia announced a “computer” this Tue that do 2 quadrillion (2 × 1015) operations/sec.

It brings down the 31,710 years to 500 sec.

However, 2100 operations still takes millions of years.

Why “Polynomial”?

Point is not that n2000 is a practical bound, or that the

differences among n and 2n and n2 are negligible.

Rather, simple theoretical tools may not easily capture

such differences, whereas exponentials are qualitatively

different from polynomials, so more amenable to theoretical

analysis.

• “My problem is in P” is a starting point for a more

detailed analysis

• “My problem is not in P” may suggest that you need to

shift to a more tractable variant

18

Summary

Asymptotic notations: O, ,

Efficient algorithm: polynomial running time

19

	Default Section
	Slide 1: CS 401: Computer Algorithm I
	Slide 2: Last Lecture: O and W Notations
	Slide 3: Q-Notation
	Slide 4: Summary
	Slide 5: Practice 1
	Slide 6: Practice 1
	Slide 7: Practice 2
	Slide 8: Practice 2
	Slide 9: A Survey of Common Running Times
	Slide 10: Linear Time: O(n)
	Slide 11: Linear Time: O(n)
	Slide 12: O(n log n) Time
	Slide 13: Quadratic Time: O(n2)
	Slide 14: Polynomial Time: O(nk) Time
	Slide 15: Exponential Time
	Slide 16: Efficiency
	Slide 17: Why it matters?
	Slide 18: Why “Polynomial”?
	Slide 19: Summary

