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Last Lecture: O and  Notations

Given two positive functions f and g

• f(N) is O(g(N))  iff there is a constant c0 s.t.,        

  f(N) is eventually always  c g(N)

• f(N) is (g(N)) iff there is a constant c 0 s.t., 

            f(N) is eventually always  c g(N)

Question: If f1 is (g1) and f2 is (g2), Is f1 + f2 (g1 + g2)?
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Answer: Yes



-Notation

Given two positive functions f and g

• f(N) is (g(N))  iff there are c00, c1>0 and N0  0 s.t. 

    c0 ⋅ g(N)  f(N)  c1 ⋅ g(N) for all N  N0 

E.g. f(N)=32N2+17N+1

• f(N) is (N2).

• f(N) is neither (N) nor (N3).

Typical usage: Gale-Sharpley makes (n2) proposals in the 

worst case.
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Choose c0=32, c1=50, N0=1



Summary

Given two positive functions f and g

• f(N) is O(g(N))  iff there is a constant c0 s.t.,        

  f(N) is eventually always  c g(N)

• f(N) is (g(N)) iff there is a constant c 0 s.t., 

            f(N) is eventually always  c g(N) 

• f(N) is (g(N))  iff there are constants c1, c2>0 so that 

   eventually always c1g(N)  f(N)  c2g(N)
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Practice 1

Suppose 𝑓 𝑛 = 𝑛!, 𝑔 𝑛 = 2𝑛

Is 𝑓 = 𝑂 𝑔 ?

=> If 
𝑓(𝑛)

𝑔(𝑛)
≤ 𝑐 for all large enough 𝑛, then 𝑓 is 𝑂(𝑔)

But if as 𝑛 increases, 𝑓/𝑔 also increases (sometimes 

can be verified by your calculator), then 𝑓 is not 𝑂(𝑔)
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Definition: f(N) is O(g(N))  iff there is a constant c0 and N0  

0 s.t.,       0 f(N)  c⋅g(N) for all N  N0 



Practice 1

Suppose 𝑓 𝑛 = 𝑛!, 𝑔 𝑛 = 2𝑛

Is 𝑓 = 𝑂 𝑔 ?

=> If 
𝑓(𝑛)

𝑔(𝑛)
≤ 𝑐 for all large enough 𝑛, then 𝑓 is 𝑂(𝑔)
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2

2

2
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𝑛

2
≥

𝑛

4
…

𝑛

2
≥

𝑛

4

𝑛
2

Which is bigger than any constant c for large enough n. 

So, 𝑓 is not 𝑂(𝑔).
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𝑛 terms 𝑛/2 terms

Definition: f(N) is O(g(N))  iff there is a constant c0 and N0  

0 s.t.,       0 f(N)  c⋅g(N) for all N  N0 



Practice 2

Question: 𝑓 = 𝑛, 𝑔 = 2 log2 𝑛 2
, Is 𝑓 𝑂(𝑔)?

Approach 1: As 𝑛 increases, 𝑓/𝑔 approaches 0 (can be 

verified by your calculator)

So, 𝑓 =  𝑂(𝑔)
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Practice 2

Question: 𝑓 = 𝑛, 𝑔 = 2 log2 𝑛 2
, Is 𝑓 𝑂(𝑔)?

Property: For two functions 𝑓 and 𝑔, if log 𝑓 is 𝑂(log 𝑔), but 

log 𝑔 is not 𝑂(log 𝑓) then 𝑓 is 𝑂(𝑔). 

Approach 2: log2 𝑓 = log2 𝑛 , log2 𝑔 = log2 𝑛 2, and thus 

log 𝑓 is 𝑂(log 𝑔), log 𝑔 is not 𝑂(log 𝑓), so 𝑓 is 𝑂(𝑔)

Question: 𝑓 = 𝑛, 𝑔 = 20.9 log2 𝑛, Is 𝑓 𝑂(𝑔)?

log2 𝑓 = log2 𝑛 , log2 𝑔 = 0.9 log2 𝑛, log 𝑓 is 𝑂(log 𝑔), log 𝑔 is 

also 𝑂(log 𝑓), we cannot conclude 𝑓 is 𝑂(𝑔)
8



A Survey of Common 

Running Times



Linear Time:  O(n)

Linear time.  Running time is at most a constant factor 

times the size of the input. 

Computing the maximum.  Compute maximum of n 

numbers a1, …, an.

max  a1
for i = 2 to n {

   if (ai > max)

      max  ai
}
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Linear Time:  O(n)

Merge.  Combine two sorted lists A = a1,a2,…,an with B = 

b1,b2,…,bn  into sorted whole.

Claim.  Merging two lists of size n takes O(n) time.

Pf.  After each comparison, the length of output list 

increases by 1.

i = 1, j = 1

while (both lists are nonempty) {

   if (ai  bj) append ai to output list and increment i

   else(ai > bj)append bj to output list and increment j

}

append remainder of nonempty list to output list
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O(n log n) Time
O(n log n) time.  Arises in divide-and-conquer algorithms.

Sorting.  Mergesort and heapsort are sorting algorithms 

that perform O(n log n) comparisons.

Largest empty interval.  Given n time-stamps x1, …, xn on 

which copies of a file arrive at a server, what is largest 

interval of time when no copies of the file arrive?

O(n log n) solution.  Sort the time-stamps.  Scan the sorted 

list in order, identifying the maximum gap between 

successive time-stamps.

also referred to as linearithmic time
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Quadratic Time:  O(n2)

Quadratic time.  Enumerate all pairs of elements.

Closest pair of points.  Given a list of n points in the plane 

(x1, y1), …, (xn, yn), find the pair that is closest.

O(n2) solution.  Try all pairs of points.

Remark.  (n2) seems inevitable, but this is just an illusion.

min  (x1 - x2)
2 + (y1 - y2)

2

for i = 1 to n {

   for j = i+1 to n {

      d  (xi - xj)
2 + (yi - yj)

2

      if (d < min)

         min  d

   }

}

don't need to
take square roots

see chapter 5



Polynomial Time:  O(nk) Time
Independent set of size k.  Given a graph, are there k 

nodes such that no two are joined by an edge?

O(nk) solution.  Enumerate all subsets of k nodes.

Check whether S is an independent set = O(k2).

Number of k element subsets = 

O(k2 nk / k!) = O(nk).

foreach subset S of k nodes {

   check whether S in an independent set

   if (S is an independent set)

      report S is an independent set

   }

}

 

n

k

 

 
 

 

 
 =
n (n−1) (n− 2) (n− k +1)

k (k −1) (k − 2) (2) (1)
   

nk

k!

poly-time for k=17,
but not practical

k is a constant
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Exponential Time

Independent set.  Given a graph, what is maximum size of 

an independent set?

O(n2 2n) solution.  Enumerate all subsets.

S*  

foreach subset S of nodes {

   check whether S in an independent set

   if (S is largest independent set seen so far)

      update S*  S

   }

}
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Efficiency
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An algorithm runs in polynomial time if 𝑇 𝑛 = 𝑛𝑂(1).

Equivalently, 𝑇 𝑛 = 𝑂(𝑛𝑑) for some constant d.



Why it matters?
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Suppose we can do 1 million operations per second.

not only get very big, but do so abruptly, which likely yields 
erratic performance on small  instances

Outdated: Nvidia announced a “computer” this Tue that do 2 quadrillion (2 × 1015) operations/sec.

It brings down the 31,710 years to 500 sec.

However, 2100 operations still takes millions of years.



Why “Polynomial”?

Point is not that n2000 is a practical bound, or that the 

differences among n and 2n and n2 are negligible.

Rather, simple theoretical tools may not easily capture 

such differences, whereas exponentials are qualitatively 

different from polynomials, so more amenable to theoretical 

analysis.

• “My problem is in P” is a starting point for a more 

detailed analysis

• “My problem is not in P” may suggest that you need to 

shift to a more tractable variant

18



Summary

Asymptotic notations: O, ,  

Efficient algorithm: polynomial running time
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