
CS 401: Computer

Algorithm I

Running Time Analysis

Xiaorui Sun

1

Last Lecture: O and  Notations

Given two positive functions f and g

• f(N) is O(g(N)) iff there is a constant c0 s.t.,

 f(N) is eventually always  c g(N)

• f(N) is (g(N)) iff there is a constant c 0 s.t.,

 f(N) is eventually always  c g(N)

Question: If f1 is (g1) and f2 is (g2), Is f1 + f2 (g1 + g2)?

2

Answer: Yes

-Notation

Given two positive functions f and g

• f(N) is (g(N)) iff there are c00, c1>0 and N0  0 s.t.

 c0 ⋅ g(N)  f(N)  c1 ⋅ g(N) for all N  N0

E.g. f(N)=32N2+17N+1

• f(N) is (N2).

• f(N) is neither (N) nor (N3).

Typical usage: Gale-Sharpley makes (n2) proposals in the

worst case.

3

Choose c0=32, c1=50, N0=1

Summary

Given two positive functions f and g

• f(N) is O(g(N)) iff there is a constant c0 s.t.,

 f(N) is eventually always  c g(N)

• f(N) is (g(N)) iff there is a constant c 0 s.t.,

 f(N) is eventually always  c g(N)

• f(N) is (g(N)) iff there are constants c1, c2>0 so that

 eventually always c1g(N)  f(N)  c2g(N)

4

Practice 1

Suppose 𝑓 𝑛 = 𝑛!, 𝑔 𝑛 = 2𝑛

Is 𝑓 = 𝑂 𝑔 ?

=> If
𝑓(𝑛)

𝑔(𝑛)
≤ 𝑐 for all large enough 𝑛, then 𝑓 is 𝑂(𝑔)

But if as 𝑛 increases, 𝑓/𝑔 also increases (sometimes

can be verified by your calculator), then 𝑓 is not 𝑂(𝑔)

5

Definition: f(N) is O(g(N)) iff there is a constant c0 and N0 

0 s.t., 0 f(N)  c⋅g(N) for all N  N0

Practice 1

Suppose 𝑓 𝑛 = 𝑛!, 𝑔 𝑛 = 2𝑛

Is 𝑓 = 𝑂 𝑔 ?

=> If
𝑓(𝑛)

𝑔(𝑛)
≤ 𝑐 for all large enough 𝑛, then 𝑓 is 𝑂(𝑔)

𝑓 𝑛

𝑔 𝑛
=

1

2

2

2
…

𝑛

2
≥

𝑛

4
…

𝑛

2
≥

𝑛

4

𝑛
2

Which is bigger than any constant c for large enough n.

So, 𝑓 is not 𝑂(𝑔).
6

𝑛 terms 𝑛/2 terms

Definition: f(N) is O(g(N)) iff there is a constant c0 and N0 

0 s.t., 0 f(N)  c⋅g(N) for all N  N0

Practice 2

Question: 𝑓 = 𝑛, 𝑔 = 2 log2 𝑛 2
, Is 𝑓 𝑂(𝑔)?

Approach 1: As 𝑛 increases, 𝑓/𝑔 approaches 0 (can be

verified by your calculator)

So, 𝑓 = 𝑂(𝑔)

7

Practice 2

Question: 𝑓 = 𝑛, 𝑔 = 2 log2 𝑛 2
, Is 𝑓 𝑂(𝑔)?

Property: For two functions 𝑓 and 𝑔, if log 𝑓 is 𝑂(log 𝑔), but

log 𝑔 is not 𝑂(log 𝑓) then 𝑓 is 𝑂(𝑔).

Approach 2: log2 𝑓 = log2 𝑛 , log2 𝑔 = log2 𝑛 2, and thus

log 𝑓 is 𝑂(log 𝑔), log 𝑔 is not 𝑂(log 𝑓), so 𝑓 is 𝑂(𝑔)

Question: 𝑓 = 𝑛, 𝑔 = 20.9 log2 𝑛, Is 𝑓 𝑂(𝑔)?

log2 𝑓 = log2 𝑛 , log2 𝑔 = 0.9 log2 𝑛, log 𝑓 is 𝑂(log 𝑔), log 𝑔 is

also 𝑂(log 𝑓), we cannot conclude 𝑓 is 𝑂(𝑔)
8

A Survey of Common

Running Times

Linear Time: O(n)

Linear time. Running time is at most a constant factor

times the size of the input.

Computing the maximum. Compute maximum of n

numbers a1, …, an.

max  a1
for i = 2 to n {

 if (ai > max)

 max  ai
}

10

Linear Time: O(n)

Merge. Combine two sorted lists A = a1,a2,…,an with B =

b1,b2,…,bn into sorted whole.

Claim. Merging two lists of size n takes O(n) time.

Pf. After each comparison, the length of output list

increases by 1.

i = 1, j = 1

while (both lists are nonempty) {

 if (ai  bj) append ai to output list and increment i

 else(ai > bj)append bj to output list and increment j

}

append remainder of nonempty list to output list

11

O(n log n) Time
O(n log n) time. Arises in divide-and-conquer algorithms.

Sorting. Mergesort and heapsort are sorting algorithms

that perform O(n log n) comparisons.

Largest empty interval. Given n time-stamps x1, …, xn on

which copies of a file arrive at a server, what is largest

interval of time when no copies of the file arrive?

O(n log n) solution. Sort the time-stamps. Scan the sorted

list in order, identifying the maximum gap between

successive time-stamps.

also referred to as linearithmic time

12

Quadratic Time: O(n2)

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane

(x1, y1), …, (xn, yn), find the pair that is closest.

O(n2) solution. Try all pairs of points.

Remark. (n2) seems inevitable, but this is just an illusion.

min  (x1 - x2)
2 + (y1 - y2)

2

for i = 1 to n {

 for j = i+1 to n {

 d  (xi - xj)
2 + (yi - yj)

2

 if (d < min)

 min  d

 }

}

don't need to
take square roots

see chapter 5

Polynomial Time: O(nk) Time
Independent set of size k. Given a graph, are there k

nodes such that no two are joined by an edge?

O(nk) solution. Enumerate all subsets of k nodes.

Check whether S is an independent set = O(k2).

Number of k element subsets =

O(k2 nk / k!) = O(nk).

foreach subset S of k nodes {

 check whether S in an independent set

 if (S is an independent set)

 report S is an independent set

 }

}



n

k









 =
n (n−1) (n− 2) (n− k +1)

k (k −1) (k − 2) (2) (1)
 

nk

k!

poly-time for k=17,
but not practical

k is a constant

14

Exponential Time

Independent set. Given a graph, what is maximum size of

an independent set?

O(n2 2n) solution. Enumerate all subsets.

S*  

foreach subset S of nodes {

 check whether S in an independent set

 if (S is largest independent set seen so far)

 update S*  S

 }

}

15

Efficiency

16

An algorithm runs in polynomial time if 𝑇 𝑛 = 𝑛𝑂(1).

Equivalently, 𝑇 𝑛 = 𝑂(𝑛𝑑) for some constant d.

Why it matters?

17

Suppose we can do 1 million operations per second.

not only get very big, but do so abruptly, which likely yields
erratic performance on small instances

Outdated: Nvidia announced a “computer” this Tue that do 2 quadrillion (2 × 1015) operations/sec.

It brings down the 31,710 years to 500 sec.

However, 2100 operations still takes millions of years.

Why “Polynomial”?

Point is not that n2000 is a practical bound, or that the

differences among n and 2n and n2 are negligible.

Rather, simple theoretical tools may not easily capture

such differences, whereas exponentials are qualitatively

different from polynomials, so more amenable to theoretical

analysis.

• “My problem is in P” is a starting point for a more

detailed analysis

• “My problem is not in P” may suggest that you need to

shift to a more tractable variant

18

Summary

Asymptotic notations: O, , 

Efficient algorithm: polynomial running time

19

	Default Section
	Slide 1: CS 401: Computer Algorithm I
	Slide 2: Last Lecture: O and W Notations
	Slide 3: Q-Notation
	Slide 4: Summary
	Slide 5: Practice 1
	Slide 6: Practice 1
	Slide 7: Practice 2
	Slide 8: Practice 2
	Slide 9: A Survey of Common Running Times
	Slide 10: Linear Time: O(n)
	Slide 11: Linear Time: O(n)
	Slide 12: O(n log n) Time
	Slide 13: Quadratic Time: O(n2)
	Slide 14: Polynomial Time: O(nk) Time
	Slide 15: Exponential Time
	Slide 16: Efficiency
	Slide 17: Why it matters?
	Slide 18: Why “Polynomial”?
	Slide 19: Summary

