CS 401: Computer Algorithm I

Running Time Analysis

Xiaorui Sun

Last Lecture: O and Ω Notations

Given two positive functions **f** and **g**

- f(N) is O(g(N)) iff there is a constant c>0 s.t.,
 f(N) is eventually always ≤ c g(N)
- f(N) is Ω(g(N)) iff there is a constant c >0 s.t.,
 f(N) is eventually always ≥ c g(N)

Question: If f_1 is $\Omega(g_1)$ and f_2 is $\Omega(g_2)$, Is $f_1 + f_2 \Omega(g_1 + g_2)$?

O-Notation

Given two positive functions **f** and **g**

• f(N) is $\Theta(g(N))$ iff there are $c_0 > 0$, $c_1 > 0$ and $N_0 \ge 0$ s.t. $c_0 \cdot g(N) \le f(N) \le c_1 \cdot g(N)$ for all $N \ge N_0$

E.g. f(N)=32N²+17N+1

- f(N) is $\Theta(N^2)$. Choose $c_0=32$, $c_1=50$, $N_0=1$
- f(N) is neither $\Theta(N)$ nor $\Theta(N^3)$.

Typical usage: Gale-Sharpley makes $\Theta(n^2)$ proposals in the worst case.

Summary

Given two positive functions **f** and **g**

- f(N) is O(g(N)) iff there is a constant c>0 s.t.,
 f(N) is eventually always ≤ c g(N)
- f(N) is Ω(g(N)) iff there is a constant c >0 s.t.,
 f(N) is eventually always ≥ c g(N)
- f(N) is Θ(g(N)) iff there are constants c₁, c₂>0 so that eventually always c₁g(N) ≤ f(N) ≤ c₂g(N)

Suppose
$$f(n) = n!, g(n) = 2^n$$

Is $f = O(g)$?

Definition: f(N) is O(g(N)) iff there is a constant c>0 and $N_0 \ge 0$ s.t., $0 \le f(N) \le c \cdot g(N)$ for all $N \ge N_0$

$$=$$
 If $\frac{f(n)}{g(n)} \leq c$ for all large enough n , then f is $O(g)$

But if as *n* increases, f/g also increases (sometimes can be verified by your calculator), then *f* is not O(g)

Suppose
$$f(n) = n!, g(n) = 2^n$$

Is $f = O(g)$?

- - >

Definition: f(N) is O(g(N)) iff there is a constant c>0 and $N_0 \ge 0$ s.t., $0 \le f(N) \le c \cdot g(N)$ for all $N \ge N_0$

=> If
$$\frac{f(n)}{g(n)} \le c$$
 for all large enough n , then f is $O(g)$

$$\frac{f(n)}{g(n)} = \left(\frac{1}{2}\right) \left(\frac{2}{2}\right) \dots \left(\frac{n}{2}\right) \ge \left(\frac{n}{4}\right) \dots \left(\frac{n}{2}\right) \ge \left(\frac{n}{4}\right)^{\frac{n}{2}}$$

$$n \text{ terms} \qquad n/2 \text{ terms}$$

6

Which is bigger than any constant c for large enough n. So, f is not O(g).

Question: $f = n, g = 2^{(\log_2 n)^2}$, Is f O(g)?

Approach 1: As n increases, f/g approaches 0 (can be verified by your calculator)

So, f = O(g)

Question: $f = n, g = 2^{(\log_2 n)^2}$, Is f O(g)?

Property: For two functions f and g, if $\log f$ is $O(\log g)$, but $\log g$ is not $O(\log f)$ then f is O(g).

Approach 2: $\log_2 f = \log_2 n$, $\log_2 g = (\log_2 n)^2$, and thus $\log f$ is $O(\log g)$, $\log g$ is not $O(\log f)$, so f is O(g)

Question: $f = n, g = 2^{0.9 \log_2 n}$, ls f O(g)?

 $\log_2 f = \log_2 n$, $\log_2 g = 0.9 \log_2 n$, $\log f$ is $O(\log g)$, $\log g$ is also $O(\log f)$, we cannot conclude f is O(g)

A Survey of Common Running Times

Linear Time: O(n)

Linear time. Running time is at most a constant factor times the size of the input.

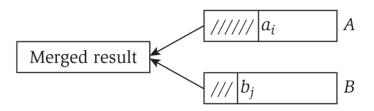
Computing the maximum. Compute maximum of n numbers $a_1, ..., a_n$.

$$max \leftarrow a_1$$

for i = 2 to n {
if (a_i > max)
max \leftarrow a_i
}

Linear Time: O(n)

Merge. Combine two sorted lists $A = a_1, a_2, ..., a_n$ with $B = b_1, b_2, ..., b_n$ into sorted whole.



```
i = 1, j = 1
while (both lists are nonempty) {
    if (a<sub>i</sub> ≤ b<sub>j</sub>) append a<sub>i</sub> to output list and increment i
    else(a<sub>i</sub> > b<sub>j</sub>)append b<sub>j</sub> to output list and increment j
}
append remainder of nonempty list to output list
```

Claim. Merging two lists of size n takes O(n) time. Pf. After each comparison, the length of output list increases by 1.

O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.

also referred to as linearithmic time

Sorting. Mergesort and heapsort are sorting algorithms that perform O(n log n) comparisons.

Largest empty interval. Given n time-stamps $x_1, ..., x_n$ on which copies of a file arrive at a server, what is largest interval of time when no copies of the file arrive?

O(n log n) solution. Sort the time-stamps. Scan the sorted list in order, identifying the maximum gap between successive time-stamps.

Quadratic Time: O(n²)

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane $(x_1, y_1), ..., (x_n, y_n)$, find the pair that is closest.

 $O(n^2)$ solution. Try all pairs of points.

```
\min \leftarrow (\mathbf{x}_{1} - \mathbf{x}_{2})^{2} + (\mathbf{y}_{1} - \mathbf{y}_{2})^{2}
for i = 1 to n {
for j = i+1 to n {
d \leftarrow (\mathbf{x}_{i} - \mathbf{x}_{j})^{2} + (\mathbf{y}_{i} - \mathbf{y}_{j})^{2}}
if (d < min)
min \leftarrow d
}
exec chapter 5
```

Remark. $\Omega(n^2)$ seems inevitable, but this is just an illusion.

Polynomial Time: O(n^k) Time

Independent set of size k. Given a graph, are there k nodes such that no two are joined by an edge?

k is a constant

O(n^k) solution. Enumerate all subsets of k nodes.

```
foreach subset S of k nodes {
    check whether S in an independent set
    if (S is an independent set)
        report S is an independent set
    }
}
```

Check whether S is an independent set = O(k²). Number of k element subsets = $\binom{n}{k} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k(k-1)(k-2)\cdots(2)(1)} \leq \frac{n^{k}}{k!}$ O(k² n^k / k!) = O(n^k).

Exponential Time

Independent set. Given a graph, what is maximum size of an independent set?

O(n² 2ⁿ) solution. Enumerate all subsets.

```
S* ← $
foreach subset S of nodes {
    check whether S in an independent set
    if (S is largest independent set seen so far)
        update S* ← S
    }
}
```

Efficiency

An algorithm runs in polynomial time if $T(n) = n^{O(1)}$. Equivalently, $T(n) = O(n^d)$ for some constant d.

Name 🗢	Complexity class \$	Running time $(T(n)) \Leftrightarrow$	Examples of running times ♦	Example algorithms +	
constant time		O(1)	10	Determining if an integer (represented in binary) is even or odd	
inverse Ackermann time		<i>O</i> (<i>α</i> (<i>n</i>))		Amortized time per operation using a disjoint set	
iterated logarithmic time		O(log* n)		Distributed coloring of cycles	
log-logarithmic		O(log log n)		Amortized time per operation using a bounded priority queue ^[2]	
logarithmic time	DLOGTIME	O(log n)	$\log n$, $\log(n^2)$	Binary search	
polylogarithmic time		poly(log n)	$(\log n)^2$		
fractional power		$O(n^{\rm c})$ where $0 < {\rm c} < 1$	$n^{1/2}, n^{2/3}$	Searching in a kd-tree	
linear time		<i>O</i> (<i>n</i>)	n	Finding the smallest or largest item in an unsorted array	
"n log star n" time		$O(n \log^* n)$		Seidel's polygon triangulation algorithm.	
quasilinear time		O(n log n)	<i>n</i> log <i>n</i> , log <i>n</i> !	Fastest possible comparison sort; Fast Fourier transform.	
quadratic time		<i>O</i> (<i>n</i> ²)	n ²	Bubble sort; Insertion sort; Direct convolution	
cubic time		<i>O</i> (<i>n</i> ³)	n ³	Naive multiplication of two <i>n×n</i> matrices. Calculating partial correlation.	
polynomial time	Р	$2^{O(\log n)} = \operatorname{poly}(n)$	<i>n</i> , <i>n</i> log <i>n</i> , <i>n</i> ¹⁰	Karmarkar's algorithm for linear programming; AKS primality test	
quasi-polynomial time	QP	2 ^{poly(log n)}	n ^{log log n} , n ^{log n}	Best-known $O(\log^2 n)$ -approximation algorithm for the directed Steiner tree problem.	
sub-exponential time (first definition)	SUBEXP	$O(2^{n^{\varepsilon}})$ for all $\varepsilon > 0$	$O(2^{\log n^{\log \log n}})$	Assuming complexity theoretic conjectures, BPP is contained in SUBEXP. ^[3]	
sub-exponential time (second definition)		2 ^{o(n)}	2 ^{n^{1/3}}	Best-known algorithm for integer factorization and graph isomerphism	
exponential time (with linear exponent)	E	2 ^{O(n)}	1.1 ⁿ , 10 ⁿ	Solving the traveling salesman problem using dynamic programming	
exponential time	EXPTIME	2 ^{poly(n)}	2 ⁿ , 2 ^{n²}	Solving matrix chain multiplication via brute-force search	
factorial time		O(n!)	<i>n</i> !	Solving the traveling salesman problem via brute-force search	
double exponential time	2-EXPTIME	$2^{2^{\text{poly}(n)}}$	2 ^{2ⁿ}	Deciding the truth of a given statement in Presburger arithmetic	

Why it matters?

	n	$n \log_2 n$	<i>n</i> ²	n ³	1.5 ⁿ	2 ⁿ	<i>n</i> !
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
<i>n</i> = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
<i>n</i> = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Suppose we can do 1 million operations per second.

not only get very big, but do so *abruptly*, which likely yields erratic performance on small instances

Outdated: Nvidia announced a "computer" this Tue that do 2 quadrillion (2×10^{15}) operations/sec. It brings down the 31,710 years to 500 sec.

However, 2^{100} operations still takes millions of years.

Why "Polynomial"?

Point is not that n²⁰⁰⁰ is a practical bound, or that the differences among n and 2n and n² are negligible.

Rather, simple theoretical tools may not easily capture such differences, whereas exponentials are qualitatively different from polynomials, so more amenable to theoretical analysis.

- "My problem is in P" is a starting point for a more detailed analysis
- "My problem is not in P" may suggest that you need to shift to a more tractable variant

Summary

Asymptotic notations: **O**, Ω , Θ

Efficient algorithm: polynomial running time