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Last Lecture: O and  Notations

Given two positive functions f and g

• f(N) is O(g(N))  iff there is a constant c0 s.t.,        

  f(N) is eventually always  c g(N)

• f(N) is (g(N)) iff there is a constant c 0 s.t., 

            f(N) is eventually always  c g(N)

Question: If f1 is (g1) and f2 is (g2), Is f1 + f2 (g1 + g2)?
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Answer: Yes



-Notation

Given two positive functions f and g

• f(N) is (g(N))  iff there are c00, c1>0 and N0  0 s.t. 

    c0 ⋅ g(N)  f(N)  c1 ⋅ g(N) for all N  N0 

E.g. f(N)=32N2+17N+1

• f(N) is (N2).

• f(N) is neither (N) nor (N3).

Typical usage: Gale-Sharpley makes (n2) proposals in the 

worst case.
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Choose c0=32, c1=50, N0=1



Summary

Given two positive functions f and g

• f(N) is O(g(N))  iff there is a constant c0 s.t.,        

  f(N) is eventually always  c g(N)

• f(N) is (g(N)) iff there is a constant c 0 s.t., 

            f(N) is eventually always  c g(N) 

• f(N) is (g(N))  iff there are constants c1, c2>0 so that 

   eventually always c1g(N)  f(N)  c2g(N)
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Practice 1

Suppose 𝑓 𝑛 = 𝑛!, 𝑔 𝑛 = 2𝑛

Is 𝑓 = 𝑂 𝑔 ?

=> If 
𝑓(𝑛)

𝑔(𝑛)
≤ 𝑐 for all large enough 𝑛, then 𝑓 is 𝑂(𝑔)

But if as 𝑛 increases, 𝑓/𝑔 also increases (sometimes 

can be verified by your calculator), then 𝑓 is not 𝑂(𝑔)

5

Definition: f(N) is O(g(N))  iff there is a constant c0 and N0  

0 s.t.,       0 f(N)  c⋅g(N) for all N  N0 



Practice 1

Suppose 𝑓 𝑛 = 𝑛!, 𝑔 𝑛 = 2𝑛

Is 𝑓 = 𝑂 𝑔 ?

=> If 
𝑓(𝑛)

𝑔(𝑛)
≤ 𝑐 for all large enough 𝑛, then 𝑓 is 𝑂(𝑔)
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Which is bigger than any constant c for large enough n. 

So, 𝑓 is not 𝑂(𝑔).
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𝑛 terms 𝑛/2 terms

Definition: f(N) is O(g(N))  iff there is a constant c0 and N0  

0 s.t.,       0 f(N)  c⋅g(N) for all N  N0 



Practice 2

Question: 𝑓 = 𝑛, 𝑔 = 2 log2 𝑛 2
, Is 𝑓 𝑂(𝑔)?

Approach 1: As 𝑛 increases, 𝑓/𝑔 approaches 0 (can be 

verified by your calculator)

So, 𝑓 =  𝑂(𝑔)
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Practice 2

Question: 𝑓 = 𝑛, 𝑔 = 2 log2 𝑛 2
, Is 𝑓 𝑂(𝑔)?

Property: For two functions 𝑓 and 𝑔, if log 𝑓 is 𝑂(log 𝑔), but 

log 𝑔 is not 𝑂(log 𝑓) then 𝑓 is 𝑂(𝑔). 

Approach 2: log2 𝑓 = log2 𝑛 , log2 𝑔 = log2 𝑛 2, and thus 

log 𝑓 is 𝑂(log 𝑔), log 𝑔 is not 𝑂(log 𝑓), so 𝑓 is 𝑂(𝑔)

Question: 𝑓 = 𝑛, 𝑔 = 20.9 log2 𝑛, Is 𝑓 𝑂(𝑔)?

log2 𝑓 = log2 𝑛 , log2 𝑔 = 0.9 log2 𝑛, log 𝑓 is 𝑂(log 𝑔), log 𝑔 is 

also 𝑂(log 𝑓), we cannot conclude 𝑓 is 𝑂(𝑔)
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A Survey of Common 

Running Times



Linear Time:  O(n)

Linear time.  Running time is at most a constant factor 

times the size of the input. 

Computing the maximum.  Compute maximum of n 

numbers a1, …, an.

max  a1
for i = 2 to n {

   if (ai > max)

      max  ai
}
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Linear Time:  O(n)

Merge.  Combine two sorted lists A = a1,a2,…,an with B = 

b1,b2,…,bn  into sorted whole.

Claim.  Merging two lists of size n takes O(n) time.

Pf.  After each comparison, the length of output list 

increases by 1.

i = 1, j = 1

while (both lists are nonempty) {

   if (ai  bj) append ai to output list and increment i

   else(ai > bj)append bj to output list and increment j

}

append remainder of nonempty list to output list

11



O(n log n) Time
O(n log n) time.  Arises in divide-and-conquer algorithms.

Sorting.  Mergesort and heapsort are sorting algorithms 

that perform O(n log n) comparisons.

Largest empty interval.  Given n time-stamps x1, …, xn on 

which copies of a file arrive at a server, what is largest 

interval of time when no copies of the file arrive?

O(n log n) solution.  Sort the time-stamps.  Scan the sorted 

list in order, identifying the maximum gap between 

successive time-stamps.

also referred to as linearithmic time
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Quadratic Time:  O(n2)

Quadratic time.  Enumerate all pairs of elements.

Closest pair of points.  Given a list of n points in the plane 

(x1, y1), …, (xn, yn), find the pair that is closest.

O(n2) solution.  Try all pairs of points.

Remark.  (n2) seems inevitable, but this is just an illusion.

min  (x1 - x2)
2 + (y1 - y2)

2

for i = 1 to n {

   for j = i+1 to n {

      d  (xi - xj)
2 + (yi - yj)

2

      if (d < min)

         min  d

   }

}

don't need to
take square roots

see chapter 5



Polynomial Time:  O(nk) Time
Independent set of size k.  Given a graph, are there k 

nodes such that no two are joined by an edge?

O(nk) solution.  Enumerate all subsets of k nodes.

Check whether S is an independent set = O(k2).

Number of k element subsets = 

O(k2 nk / k!) = O(nk).

foreach subset S of k nodes {

   check whether S in an independent set

   if (S is an independent set)

      report S is an independent set

   }

}

 

n

k

 

 
 

 

 
 =
n (n−1) (n− 2) (n− k +1)

k (k −1) (k − 2) (2) (1)
   

nk

k!

poly-time for k=17,
but not practical

k is a constant
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Exponential Time

Independent set.  Given a graph, what is maximum size of 

an independent set?

O(n2 2n) solution.  Enumerate all subsets.

S*  

foreach subset S of nodes {

   check whether S in an independent set

   if (S is largest independent set seen so far)

      update S*  S

   }

}
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Efficiency
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An algorithm runs in polynomial time if 𝑇 𝑛 = 𝑛𝑂(1).

Equivalently, 𝑇 𝑛 = 𝑂(𝑛𝑑) for some constant d.



Why it matters?
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Suppose we can do 1 million operations per second.

not only get very big, but do so abruptly, which likely yields 
erratic performance on small  instances

Outdated: Nvidia announced a “computer” this Tue that do 2 quadrillion (2 × 1015) operations/sec.

It brings down the 31,710 years to 500 sec.

However, 2100 operations still takes millions of years.



Why “Polynomial”?

Point is not that n2000 is a practical bound, or that the 

differences among n and 2n and n2 are negligible.

Rather, simple theoretical tools may not easily capture 

such differences, whereas exponentials are qualitatively 

different from polynomials, so more amenable to theoretical 

analysis.

• “My problem is in P” is a starting point for a more 

detailed analysis

• “My problem is not in P” may suggest that you need to 

shift to a more tractable variant
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Summary

Asymptotic notations: O, ,  

Efficient algorithm: polynomial running time
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