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Graph algorithms



Undirected Graphs G=(V,E)

Notation. G = (V, E)
• V = nodes (or vertices)
• E = edges between pairs of nodes
• Captures pairwise relationship between objects
• Graph size parameters: n = |V|, m = |E|

V = {1, 2, 3, 4, 5 ,6, 7, 8}
E = {(1,2), (1,3), (2,3), (2,4), (2,5), (3,5), (3,7),      
aaaa(3,8), (4,5), (5,6), (7,8)}
m=11, n=8



Undirected Graphs G=(V,E)
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Graph applications

5



Directed Graphs
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Terminology

• Path: A sequence of vertices 
s.t. each vertex is connected 
to the next vertex with an edge
• A path is simple if all nodes are distinct

• Cycle: Path of length > 2 that has 
the same start and end
• A cycle is simple if all nodes are distinct

• Tree: A connected graph with no cycles
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Terminology (cont’d)

• Degree of a vertex: # edges that touch that vertex

deg(6)=3

• Connected: Graph is connected if there is a path 
between every two vertices

• Connected component: Maximal set of connected 
vertices
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Degree Sum

Claim: In any undirected graph, the number of edges is 
equal to Τ1 2 σvertex 𝑣 deg(𝑣)

Pf: σvertex 𝑣 deg(𝑣) counts every edge of the graph exactly 
twice; once from each end of the edge.
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Odd Degree Vertices

Claim: In any undirected graph, the number of odd degree 
vertices is even
Pf: In previous claim we showed sum of all vertex degrees 
is even. So there must be even number of odd degree 
vertices, because sum of odd number of odd numbers is 
odd.
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#edges

Let 𝐺 = (𝑉, 𝐸) be a graph with 𝑛 = |𝑉| vertices and 𝑚 = 𝐸  
edges.

Claim: 0 ≤ 𝑚 ≤ 𝑛
2 = 𝑛 𝑛−1

2
= 𝑂(𝑛2)

Pf: Since every edge connects two distinct vertices (i.e., G 
has no loops) 
and no two edges connect the same pair of vertices (i.e., G 
has no multi-edges)
It has at most 𝑛

2  edges.

11



Degree 1 vertices

Claim: If G has no cycle, then it has a vertex of degree ≤ 1
(Every tree has a leaf (degree 1 vertex in tree))
Proof: (By contradiction)
Suppose every vertex has degree ≥ 2.
Start from a vertex 𝑣1 and follow a path, 𝑣1, … , 𝑣𝑖 when we are at 
𝑣𝑖 we choose the next vertex to be different from 𝑣𝑖−1. We can 
do so because deg 𝑣𝑖 ≥ 2.
The first time that we see a repeated vertex (𝑣𝑗 = 𝑣𝑖) we get a 
cycle. 
We always get a repeated vertex because 𝐺 has finitely many 
vertices
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Trees and Induction

Claim: Show that every tree with 𝑛 vertices has 𝑛 − 1 edges.

Proof: (Induction on 𝑛.)
Base Case: 𝑛 = 1, the tree has no edge
Inductive Step: Let 𝑇 be a tree with 𝑛 vertices.
So, 𝑇 has a vertex 𝑣 of degree 1.
Remove 𝑣 and the neighboring edge, and let 𝑇’ be the new 
graph.
We claim 𝑇’ is a tree: It has no cycle, and it must be  
connected.
So, 𝑇’ has 𝑛 − 2 edges and 𝑇 has 𝑛 − 1 edges.

13



Graph Traversal

Walk (via edges) from a fixed starting vertex 𝑠 to all vertices 
reachable from 𝑠.
• Breadth First Search (BFS): Order nodes in successive 

layers based on distance from 𝑠
• Depth First Search (DFS): More natural approach for 

exploring a maze; 

Applications of BFS:
• Finding shortest path for unit-length graphs
• Finding connected components of a graph
• Testing bipartiteness
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Breadth First Search (BFS)

Completely explore the vertices in order of their distance 
from 𝑠.

Three states of vertices:
• Undiscovered
• Discovered
• Fully-explored

Naturally implemented using a queue
The queue will always have the list of Discovered vertices
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BFS algorithm
Initialization: mark all vertices "undiscovered" 

BFS(𝑠) 
mark 𝑠 discovered
queue = { 𝑠 }
while queue not empty

𝑢 = remove_first(queue)
for each edge {𝑢, 𝑥}

if (𝑥 is undiscovered) 
mark 𝑥 discovered
append 𝑥 on queue

mark 𝑢 fully-explored
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Graph representation
Adjacency matrix. n-by-n matrix with Auv = 1 if (u, v) is an 
edge. 
• Space proportional to n2. 
• Checking if (u, v) is an edge takes (1) time. 
• Identifying all edges takes (n2) time.



BFS Analysis
Initialization: mark all vertices "undiscovered" 

BFS(𝑠) 
mark 𝑠 discovered
queue = { 𝑠 }
while queue not empty

𝑢 = remove_first(queue)
for each edge {𝑢, 𝑥}

if (𝑥 is undiscovered) 
mark 𝑥 discovered
append 𝑥 on queue

mark 𝑢 fully-explored
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O(n) times: 
Check every vertex 𝑥 

O(n) times: 
At most once per vertex

Graph representation: adjacency matrix

Overall: O(n2) time



Graph representation
Adjacency list. Node indexed array of lists.
• Space proportional to m+n. 
• Checking if (u, v) is an edge takes (deg(u)) time. 
• Identifying all edges takes (m+n) time.



BFS Analysis
Initialization: mark all vertices "undiscovered" 

BFS(𝑠) 
mark 𝑠 discovered
queue = { 𝑠 }
while queue not empty

𝑢 = remove_first(queue)
for each edge {𝑢, 𝑥}

if (𝑥 is undiscovered) 
mark 𝑥 discovered
append 𝑥 on queue

mark 𝑢 fully-explored
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O(deg(𝑢)) times: 
At most twice per edge

O(n) times: 
At most once per vertex

Graph representation: adjacency list

Overall: O(n+m) time
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