
CS 401: Computer
Algorithm I

Graphs
Xiaorui Sun

1

Graph algorithms

Undirected Graphs G=(V,E)

Notation. G = (V, E)
• V = nodes (or vertices)
• E = edges between pairs of nodes
• Captures pairwise relationship between objects
• Graph size parameters: n = |V|, m = |E|

V = {1, 2, 3, 4, 5 ,6, 7, 8}
E = {(1,2), (1,3), (2,3), (2,4), (2,5), (3,5), (3,7),
aaaa(3,8), (4,5), (5,6), (7,8)}
m=11, n=8

Undirected Graphs G=(V,E)

4

A

2
10

9

8

3

4

B
6

7

11
12

13

Disconnected graph

Isolated vertices

Multi edges

Self loop

Graph applications

5

Directed Graphs

6

1

2
10

9

8

3

4

5
6

7

11
12

13
Multi edge

self loop

Terminology

• Path: A sequence of vertices
s.t. each vertex is connected
to the next vertex with an edge
• A path is simple if all nodes are distinct

• Cycle: Path of length > 2 that has
the same start and end
• A cycle is simple if all nodes are distinct

• Tree: A connected graph with no cycles

7

3

4

5
6

2
10

1

2 5

1

34 6

Terminology (cont’d)

• Degree of a vertex: # edges that touch that vertex

deg(6)=3

• Connected: Graph is connected if there is a path
between every two vertices

• Connected component: Maximal set of connected
vertices

8

3

4
5

6

7
2

10

1

Degree Sum

Claim: In any undirected graph, the number of edges is
equal to Τ1 2 σvertex 𝑣 deg(𝑣)

Pf: σvertex 𝑣 deg(𝑣) counts every edge of the graph exactly
twice; once from each end of the edge.

9

3

4
5

6

7
2

10

1

|E|=8

෍
vertex 𝑣

deg 𝑣 = 2 + 2 + 1 + 1 + 3 + 2 + 3 + 2 = 16

Odd Degree Vertices

Claim: In any undirected graph, the number of odd degree
vertices is even
Pf: In previous claim we showed sum of all vertex degrees
is even. So there must be even number of odd degree
vertices, because sum of odd number of odd numbers is
odd.

10

3

4
5

6

7
2

10

1

4 odd degree vertices
3, 4, 5, 6

#edges

Let 𝐺 = (𝑉, 𝐸) be a graph with 𝑛 = |𝑉| vertices and 𝑚 = 𝐸
edges.

Claim: 0 ≤ 𝑚 ≤ 𝑛
2 = 𝑛 𝑛−1

2
= 𝑂(𝑛2)

Pf: Since every edge connects two distinct vertices (i.e., G
has no loops)
and no two edges connect the same pair of vertices (i.e., G
has no multi-edges)
It has at most 𝑛

2 edges.

11

Degree 1 vertices

Claim: If G has no cycle, then it has a vertex of degree ≤ 1
(Every tree has a leaf (degree 1 vertex in tree))
Proof: (By contradiction)
Suppose every vertex has degree ≥ 2.
Start from a vertex 𝑣1 and follow a path, 𝑣1, … , 𝑣𝑖 when we are at
𝑣𝑖 we choose the next vertex to be different from 𝑣𝑖−1. We can
do so because deg 𝑣𝑖 ≥ 2.
The first time that we see a repeated vertex (𝑣𝑗 = 𝑣𝑖) we get a
cycle.
We always get a repeated vertex because 𝐺 has finitely many
vertices

12

𝑣1 𝑣5𝑣4𝑣2 𝑣3

Trees and Induction

Claim: Show that every tree with 𝑛 vertices has 𝑛 − 1 edges.

Proof: (Induction on 𝑛.)
Base Case: 𝑛 = 1, the tree has no edge
Inductive Step: Let 𝑇 be a tree with 𝑛 vertices.
So, 𝑇 has a vertex 𝑣 of degree 1.
Remove 𝑣 and the neighboring edge, and let 𝑇’ be the new
graph.
We claim 𝑇’ is a tree: It has no cycle, and it must be
connected.
So, 𝑇’ has 𝑛 − 2 edges and 𝑇 has 𝑛 − 1 edges.

13

Graph Traversal

Walk (via edges) from a fixed starting vertex 𝑠 to all vertices
reachable from 𝑠.
• Breadth First Search (BFS): Order nodes in successive

layers based on distance from 𝑠
• Depth First Search (DFS): More natural approach for

exploring a maze;

Applications of BFS:
• Finding shortest path for unit-length graphs
• Finding connected components of a graph
• Testing bipartiteness

14

Breadth First Search (BFS)

Completely explore the vertices in order of their distance
from 𝑠.

Three states of vertices:
• Undiscovered
• Discovered
• Fully-explored

Naturally implemented using a queue
The queue will always have the list of Discovered vertices

15

BFS algorithm
Initialization: mark all vertices "undiscovered"

BFS(𝑠)
mark 𝑠 discovered
queue = { 𝑠 }
while queue not empty

𝑢 = remove_first(queue)
for each edge {𝑢, 𝑥}

if (𝑥 is undiscovered)
mark 𝑥 discovered
append 𝑥 on queue

mark 𝑢 fully-explored

16

17

BFS(1)

Queue:
1

18

BFS(1)

Queue:
2 3

19

BFS(1)

Queue:
3 4

20

BFS(1)

Queue:
4 5 6 7

21

BFS(1)

Queue:
5 6 7 8 9

22

BFS(1)

Queue:
7 8 9 10

23

BFS(1)

Queue:
8 9 10 11

24

BFS(1)

Queue:
9 10 11 12 13

25

BFS(1)

Queue:

Graph representation
Adjacency matrix. n-by-n matrix with Auv = 1 if (u, v) is an
edge.
• Space proportional to n2.
• Checking if (u, v) is an edge takes (1) time.
• Identifying all edges takes (n2) time.

BFS Analysis
Initialization: mark all vertices "undiscovered"

BFS(𝑠)
mark 𝑠 discovered
queue = { 𝑠 }
while queue not empty

𝑢 = remove_first(queue)
for each edge {𝑢, 𝑥}

if (𝑥 is undiscovered)
mark 𝑥 discovered
append 𝑥 on queue

mark 𝑢 fully-explored

27

O(n) times:
Check every vertex 𝑥

O(n) times:
At most once per vertex

Graph representation: adjacency matrix

Overall: O(n2) time

Graph representation
Adjacency list. Node indexed array of lists.
• Space proportional to m+n.
• Checking if (u, v) is an edge takes (deg(u)) time.
• Identifying all edges takes (m+n) time.

BFS Analysis
Initialization: mark all vertices "undiscovered"

BFS(𝑠)
mark 𝑠 discovered
queue = { 𝑠 }
while queue not empty

𝑢 = remove_first(queue)
for each edge {𝑢, 𝑥}

if (𝑥 is undiscovered)
mark 𝑥 discovered
append 𝑥 on queue

mark 𝑢 fully-explored

29

O(deg(𝑢)) times:
At most twice per edge

O(n) times:
At most once per vertex

Graph representation: adjacency list

Overall: O(n+m) time

	Slide 1: CS 401: Computer Algorithm I
	Slide 2: Graph algorithms
	Slide 3: Undirected Graphs G=(V,E)
	Slide 4: Undirected Graphs G=(V,E)
	Slide 5: Graph applications
	Slide 6: Directed Graphs
	Slide 7: Terminology
	Slide 8: Terminology (cont’d)
	Slide 9: Degree Sum
	Slide 10: Odd Degree Vertices
	Slide 11: #edges
	Slide 12: Degree 1 vertices
	Slide 13: Trees and Induction
	Slide 14: Graph Traversal
	Slide 15: Breadth First Search (BFS)
	Slide 16: BFS algorithm
	Slide 17: BFS(1)
	Slide 18: BFS(1)
	Slide 19: BFS(1)
	Slide 20: BFS(1)
	Slide 21: BFS(1)
	Slide 22: BFS(1)
	Slide 23: BFS(1)
	Slide 24: BFS(1)
	Slide 25: BFS(1)
	Slide 26: Graph representation
	Slide 27: BFS Analysis
	Slide 28: Graph representation
	Slide 29: BFS Analysis
	Slide 30: Properties of BFS
	Slide 31: BFS Tree
	Slide 32: Properties of BFS
	Slide 33: Properties of BFS
	Slide 34: Properties of BFS
	Slide 35: Properties of BFS
	Slide 36: BFS Application: Shortest Paths
	Slide 37: Properties of BFS
	Slide 38: Why Trees?

