CS 401: Computer Algorithm I

Efficiency / Graphs

Xiaorui Sun

Last Lecture

Asymptotic notations: $\mathbf{O}, \Omega, \Theta$

Common running times: linear time, $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time, quadratic time, polynomial time, and exponential time

Efficiency

An algorithm runs in polynomial time if $T(n)=n^{O(1)}$. Equivalently, $T(n)=O\left(n^{d}\right)$ for some constant d.

Name *	Complexity class *	Running time ($T(n)$) *	Examples of running times *	Example algorithms *
constant time		O(1)	10	Determining if an integer (represented in binary) is even or odd
inverse Ackermann time		O($\alpha(n)$)		Amortized time per operation using a disjoint set
iterated logarithmic time		$\bigcirc\left(\log ^{*} n\right)$		Distributed coloring of cycles
log-logarithmic		$O(\log \log n)$		Amortized time per operation using a bounded priority queue ${ }^{[2]}$
logarithmic time	DLOGTIME	O($\log n)$	$\log n, \log \left(n^{2}\right)$	Binary search
polylogarithmic time		poly $(\log n)$	$(\log n)^{2}$	
fractional power		$O\left(n^{\mathrm{c}}\right)$ where $0<\mathrm{c}<1$	$n^{1 / 2}, n^{2 / 3}$	Searching in a kd-tree
linear time		$\mathrm{O}(\mathrm{n})$	n	Finding the smallest or largest item in an unsorted array
"n log star n" time		$O\left(n \log ^{*} n\right)$		Seidel's polygon triangulation algorithm.
quasilinear time		O($n \log n$)	$n \log n, \log n!$	Fastest possible comparison sort; Fast Fourier transform.
quadratic time		$\mathrm{O}\left(n^{2}\right)$	n^{2}	Bubble sort; Insertion sort; Direct convolution
cubic time		$\mathrm{O}\left(n^{3}\right)$	n^{3}	Naive multiplication of two $n \times n$ matrices. Calculating partial correlation.
polynomial time	P	$2^{\bigcirc(\log n)}=\operatorname{poly}(n)$	$n, n \log n, n^{10}$	Karmarkar's algorithm for linear programming; AKS primality test
quasi-polynomial time	QP	$2^{\text {poly(log } n)}$	$n^{\log \log n}, n^{\log n}$	Best-known $\mathrm{O}\left(\log ^{2} n\right)$-approximation algorithm for the directed Steiner tree problem.
sub-exponential time (first definition)	SUBEXP	$O\left(2^{n^{\varepsilon}}\right)$ for all $\varepsilon>0$	$O\left(2^{\log n^{\log \log n}}\right)$	Assuming complexity theoretic conjectures, BPP is contained in SUBEXP. ${ }^{[3]}$
sub-exponential time (second definition)		$2^{0(n)}$	$2^{n^{1 / 3}}$	Best-known algorithm for integer factorization
exponential time (with linear exponent)	E	$2^{0(n)}$	$1.1^{n}, 10^{n}$	Solving the traveling salesman problem using dynamic programming
exponential time	EXPTIME	$2^{\text {poly(n) }}$	$2^{n}, 2^{n^{2}}$	Solving matrix chain multiplication via brute-force search
factorial time		$O(n!)$	$n!$	Solving the traveling salesman problem via brute-force search
double exponential time	2-EXPTIME	$2^{2{ }^{\text {poly }}(\text { n) }}$	$2^{2{ }^{n}}$	Deciding the truth of a given statement in Presburger arithmetic

Why it matters?

Suppose we can do 1 million operations per second.

	n	$n \log _{2} n$	n^{2}	n^{3}	1.5^{n}	2^{n}	$n!$
$n=10$	$<1 \mathrm{sec}$	4 sec					
$n=30$	$<1 \mathrm{sec}$	18 min	10^{25} years				
$n=50$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	11 min	36 years	very long
$n=100$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	12,892 years	10^{17} years	very long
$n=1,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	18 min	very long	very long	very long
$n=10,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	2 min	12 days	very long	very long	very long
$n=100,000$	$<1 \mathrm{sec}$	2 sec	3 hours	32 years	very long	very long	very long
$n=1,000,000$	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Outdated: Nvidia announced a "computer" this Tue that do 2 quadrillion $\left(2 \times 10^{15}\right)$ operations/sec. It brings down the 31,710 years to 500 sec.
However, 2^{100} operations still takes millions of years.

Why "Polynomial"?

Point is not that n^{2000} is a practical bound, or that the differences among n and 2 n and n^{2} are negligible.
Rather, simple theoretical tools may not easily capture such differences, whereas exponentials are qualitatively different from polynomials, so more amenable to theoretical analysis.

- "My problem is in P " is a starting point for a more detailed analysis
- "My problem is not in P" may suggest that you need to shift to a more tractable variant

Summary

Running time: a function that maps input size \mathbf{N} to max number of simple operations algorithm takes on any input of size \mathbf{N}

Asymptotic notations: $\mathbf{O}, \Omega, \Theta$

Efficient algorithm: polynomial running time

Graph algorithms

Undirected Graphs G=(V,E)

Notation. G = (V, E)

- $V=$ nodes (or vertices)
- $\mathrm{E}=$ edges between pairs of nodes
- Captures pairwise relationship between objects
- Graph size parameters: $\mathrm{n}=|\mathrm{V}|, \mathrm{m}=|\mathrm{E}|$

$$
\begin{aligned}
& \mathrm{V}=\{1,2,3,4,5,6,7,8\} \\
& \mathrm{E}=\{(1,2),(1,3),(2,3),(2,4),(2,5),(3,5),(3,7), \\
&(3,8),(4,5),(5,6),(7,8)\} \\
& \mathrm{m}=11, \mathrm{n}=8
\end{aligned}
$$

Undirected Graphs $G=(\mathrm{V}, \mathrm{E})$

Graph applications

graph	node	edge
communication	telephone, computer	fiber optic cable
circuit	gate, register, processor	wire
mechanical	joint	rod, beam, spring
fransportation	stock, currency	transactions
street intersection, airport	highway, airway route	
game	class C network	connection
social relationship	board position	legal move
neural network	person, actor	neuron
protein network	protein	synapse
molecule		atom

Directed Graphs

Terminology

- Path: A sequence of vertices
s.t. each vertex is connected to the next vertex with an edge

- A path is simple if all nodes are distinct
- Cycle: Path of length > 2 that has the same start and end
- A cycle is simple if all nodes are distinct
- Tree: A connected graph with no cycles

Terminology (cont'd)

- Degree of a vertex: \# edges that touch that vertex
$\operatorname{deg}(6)=3$

- Connected: Graph is connected if there is a path between every two vertices
- Connected component: Maximal set of connected vertices

Degree Sum

Claim: In any undirected graph, the number of edges is equal to $(1 / 2) \sum_{\text {vertex } v} \operatorname{deg}(v)$

Pf: $\sum_{\text {vertex } v} \operatorname{deg}(v)$ counts every edge of the graph exactly twice; once from each end of the edge.
|E|=8

$\sum_{\text {vertex } v} \operatorname{deg}(v)=2+2+1+1+3+2+3+2=16$

Odd Degree Vertices

Claim: In any undirected graph, the number of odd degree vertices is even
Pf: In previous claim we showed sum of all vertex degrees is even. So there must be even number of odd degree vertices, because sum of odd number of odd numbers is odd.

\#edges

Let $G=(V, E)$ be a graph with $n=|V|$ vertices and $m=|E|$ edges.

Claim: $0 \leq m \leq\binom{ n}{2}=\frac{n(n-1)}{2}=O\left(n^{2}\right)$
Pf: Since every edge connects two distinct vertices (i.e., G has no loops)
and no two edges connect the same pair of vertices (i.e., G has no multi-edges)
It has at most $\binom{n}{2}$ edges.

Degree 1 vertices

Claim: If G has no cycle, then it has a vertex of degree ≤ 1
(Every tree has a leaf (degree 1 vertex in tree))
Proof: (By contradiction)
Suppose every vertex has degree ≥ 2.
Start from a vertex v_{1} and follow a path, v_{1}, \ldots, v_{i} when we are at v_{i} we choose the next vertex to be different from v_{i-1}. We can do so because $\operatorname{deg}\left(v_{i}\right) \geq 2$.
The first time that we see a repeated vertex ($v_{j}=v_{i}$) we get a cycle.
We always get a repeated vertex because G has finitely many vertices

Trees and Induction

Claim: Show that every tree with n vertices has $n-1$ edges.

Proof: (Induction on n.)
Base Case: $n=1$, the tree has no edge
Inductive Step: Let T be a tree with n vertices.
So, T has a vertex v of degree 1 .
Remove v and the neighboring edge, and let T^{\prime} be the new graph.
We claim T^{\prime} is a tree: It has no cycle, and it must be connected.
So, $T^{\prime \prime}$ has $n-2$ edges and T has $n-1$ edges.

Graph Traversal

Walk (via edges) from a fixed starting vertex s to all vertices reachable from s.

- Breadth First Search (BFS): Order nodes in successive layers based on distance from s
- Depth First Search (DFS): More natural approach for exploring a maze;

Applications of BFS:

- Finding shortest path for unit-length graphs
- Finding connected components of a graph
- Testing bipartiteness

Breadth First Search (BFS)

Completely explore the vertices in order of their distance from s.

Three states of vertices:

- Undiscovered
- Discovered
- Fully-explored

Naturally implemented using a queue
The queue will always have the list of Discovered vertices

BFS algorithm

Initialization: mark all vertices "undiscovered"

BFS(s)
mark s discovered
queue $=\{s\}$
while queue not empty
$u=$ remove_first(queue)
for each edge $\{u, x\}$
if (x is undiscovered)
mark x discovered
append x on queue
mark u fully-explored

BFS(1)

