
CS 401: Computer
Algorithm I

BFS
Xiaorui Sun

1

Homework 1
Homework 1 was out
• Deadline: February 9 11:59pm
• Submit your solution to gradescope
• More details can be found in the slides of the lecture on January 25

Undirected Graphs G=(V,E)

Notation. G = (V, E)
• V = nodes (or vertices)
• E = edges between pairs of nodes
• Captures pairwise relationship between objects
• Graph size parameters: n = |V|, m = |E|

V = {1, 2, 3, 4, 5 ,6, 7, 8}
E = {(1,2), (1,3), (2,3), (2,4), (2,5), (3,5), (3,7),
aaaa(3,8), (4,5), (5,6), (7,8)}
m=11, n=8

Graph Traversal

Walk (via edges) from a fixed starting vertex 𝑠 to all vertices
reachable from 𝑠.
• Breadth First Search (BFS): Order nodes in successive

layers based on distance from 𝑠
• Depth First Search (DFS): More natural approach for

exploring a maze;

Applications of BFS:
• Finding shortest path for unit-length graphs
• Finding connected components of a graph
• Testing bipartiteness

4

Breadth First Search (BFS)

Completely explore the vertices in order of their distance
from 𝑠.

Three states of vertices:
• Undiscovered
• Discovered
• Fully-explored

Naturally implemented using a queue
The queue will always have the list of Discovered vertices

5

BFS algorithm
Initialization: mark all vertices "undiscovered"

BFS(𝑠)
mark 𝑠 discovered
queue = { 𝑠 }
while queue not empty

𝑢 = remove_first(queue)
for each edge {𝑢, 𝑥}

if (𝑥 is undiscovered)
mark 𝑥 discovered
append 𝑥 on queue

mark 𝑢 fully-explored

6

7

BFS(1)

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
1

8

BFS(1)

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
2 3

9

BFS(1)

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
3 4

10

BFS(1)

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
4 5 6 7

11

BFS(1)

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
5 6 7 8 9

12

BFS(1)

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
7 8 9 10

13

BFS(1)

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
8 9 10 11

14

BFS(1)

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
9 10 11 12 13

15

BFS(1)

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:

Graph representation
Adjacency matrix. n-by-n matrix with Auv = 1 if (u, v) is an
edge.
• Space proportional to n2.
• Checking if (u, v) is an edge takes Q(1) time.
• Identifying all edges takes Q(n2) time.

BFS Analysis
Initialization: mark all vertices "undiscovered"

BFS(𝑠)
mark 𝑠 discovered
queue = { 𝑠 }
while queue not empty

𝑢 = remove_first(queue)
for each edge {𝑢, 𝑥}

if (𝑥 is undiscovered)
mark 𝑥 discovered
append 𝑥 on queue

mark 𝑢 fully-explored

17

O(n) times:
Check every vertex 𝑥	

O(n) times:
At most once per vertex

Graph representation: adjacency matrix

Overall: O(n2) time

Graph representation
Adjacency list. Node indexed array of lists.
• Space proportional to m+n.
• Checking if (u, v) is an edge takes O(deg(u)) time.
• Identifying all edges takes Q(m+n) time.

BFS Analysis
Initialization: mark all vertices "undiscovered"

BFS(𝑠)
mark 𝑠 discovered
queue = { 𝑠 }
while queue not empty

𝑢 = remove_first(queue)
for each edge {𝑢, 𝑥}

if (𝑥 is undiscovered)
mark 𝑥 discovered
append 𝑥 on queue

mark 𝑢 fully-explored

19

O(deg(𝑢)) times:
At most twice per edge

O(n) times:
At most once per vertex

Graph representation: adjacency list

Overall: O(n+m) time

Properties of BFS

• BFS(𝑠) visits a vertex 𝑣 if and only if there is a path from
𝑠 to 𝑣

• Edges into then-undiscovered vertices define a tree –
the “Breadth First spanning tree” of 𝐺

20

21

BFS Tree

1

2 3

10

5

4

9

12
8

13

6
7

11

Properties of BFS

• BFS(𝑠) visits a vertex 𝑣 if and only if there is a path from
𝑠 to 𝑣

• Edges into then-undiscovered vertices define a tree –
the “Breadth First spanning tree” of 𝐺

• Level 𝑖 in the tree are exactly all vertices 𝑣 s.t., the
shortest path (in 𝐺) from the root 𝑠 to 𝑣 is of length 𝑖

22

23

Properties of BFS

1

2 3

10

54

9

12

8

13

6 7

11

BFS Tree gives shortest
paths from 1 to all vertices

0

1

2

3

4

Properties of BFS
Lemma: All vertices at level 𝑖 of BFS(𝑠) have shortest path
distance 𝑖 to 𝑠.

Claim: If 𝐿 𝑣 = 𝑖 then shortest path ≤ 𝑖
Pf: Because there is a path of length 𝑖 from 𝑠 to 𝑣 in the BFS tree

Claim: If shortest path = 𝑖 then 𝐿 𝑣 ≤ 𝑖
Pf: If shortest path = 𝑖, then say 𝑠 = 𝑣!, 𝑣", … , 𝑣# = 𝑣 is the
shortest path to v.
We have

𝐿 𝑣" ≤ 𝐿 𝑣! + 1
𝐿 𝑣$ ≤ 𝐿 𝑣" + 1

…
𝐿 𝑣# ≤ 𝐿 𝑣#%" + 1

So, 𝐿 𝑣# ≤ 𝑖.

This proves the lemma.
24

Properties of BFS

• BFS(𝑠) visits a vertex 𝑣 if and only if there is a path from
𝑠 to 𝑣

• Edges into then-undiscovered vertices define a tree –
the “Breadth First spanning tree” of 𝐺

• Level 𝑖 in the tree are exactly all vertices 𝑣 s.t., the
shortest path (in 𝐺) from the root 𝑠 to 𝑣 is of length 𝑖

• All nontree edges join vertices on the same or adjacent
levels of the tree

25

26

BFS Application: Shortest Paths

1

2 3

10

54

9

12

8

13

6 7

11

BFS Tree gives shortest
paths from 1 to all vertices

0

1

2

3

4All edges connect same
or adjacent levels

Properties of BFS

Claim: All nontree edges join vertices on the same or
adjacent levels of the tree

Proof: Consider an edge {𝑥, 𝑦}
Say 𝑥 is first discovered and it is added to level 𝑖.
We show y will be at level 𝑖 or 𝑖 + 1

This is because when vertices incident to 𝑥 are considered
in the loop, if 𝑦 is still undiscovered, it will be discovered
and added to level 𝑖 + 1.

27

Why Trees?

Trees are simpler than graphs
 Many statements can be proved on trees by induction

So, computational problems on trees are simpler than
general graphs

This is often a good way to approach a graph problem:
• Find a "nice" tree in the graph, i.e., one such that non-

tree edges have some simplifying structure
• Solve the problem on the tree
• Use the solution on the tree to find a “good” solution on

the graph

28

BFS Application: Connected Component

We want to answer the following type questions (fast):
Given vertices 𝑢, 𝑣 is there a path from 𝑢 to 𝑣 in 𝐺?

Idea: Create an array 𝐴 such that
For all 𝑢 in the same connected component, 𝐴[𝑢] is same.

Therefore, question reduces to
If A[u] = A[v]?

29

Initial State: All vertices undiscovered, 𝑐	 = 	0
For 𝑣 = 1 to 𝑛 do
 If state(𝑣) != fully-explored then
 Run BFS(𝑣)
 Set 𝐴 𝑢 = 𝑐 for each 𝑢 found in BFS(𝑣)
 𝑐	 = 	𝑐	 + 	1

Note: We no longer initialize to undiscovered in the BFS
subroutine

Total Cost: 𝑂(𝑚 + 𝑛)
In every connected component with 𝑛! vertices and 𝑚!
edges BFS takes time 𝑂 𝑚! + 𝑛! .

Note: one can use DFS instead of BFS.
30

BFS Application: Connected Component

Connected Components

Lesson: We can execute any algorithm on disconnected
graphs by running it on each connected component.

We can use the previous algorithm to detect connected
components.
There is no overhead, because the algorithm runs in time
𝑂(𝑚 + 𝑛).

So, from now on, we can (almost) always assume the input
graph is connected.

31

