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Last Lecture: BFS algorithm

Initialization: mark all vertices "undiscovered" 

BFS(𝑠) 

mark 𝑠 discovered

queue = { 𝑠 }

while queue not empty

𝑢 = remove_first(queue)

for each edge {𝑢, 𝑥}

if (𝑥 is undiscovered) 

mark 𝑥 discovered

append 𝑥 on queue

mark 𝑢 fully-explored
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Running time

Adjacency matrix: O(n2)

Adjacency list: O(n+m)



Properties of BFS

• BFS(𝑠) visits a vertex 𝑣 if and only if there is a path from 
𝑠 to 𝑣

• Edges into then-undiscovered vertices define a tree – 
the “Breadth First spanning tree” of 𝐺
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BFS Tree



Properties of BFS

• BFS(𝑠) visits a vertex 𝑣 if and only if there is a path from 
𝑠 to 𝑣

• Edges into then-undiscovered vertices define a tree – 
the “Breadth First spanning tree” of 𝐺

• Level 𝑖 in the tree are exactly all vertices 𝑣 s.t., the 
shortest path (in 𝐺) from the root 𝑠 to 𝑣 is of length 𝑖
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Properties of BFS

BFS Tree gives shortest 

paths from 1 to all vertices 
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Properties of BFS

• BFS(𝑠) visits a vertex 𝑣 if and only if there is a path from 
𝑠 to 𝑣

• Edges into then-undiscovered vertices define a tree – 
the “Breadth First spanning tree” of 𝐺

• Level 𝑖 in the tree are exactly all vertices 𝑣 s.t., the 
shortest path (in 𝐺) from the root 𝑠 to 𝑣 is of length 𝑖

• All nontree edges join vertices on the same or adjacent 
levels of the tree
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Why Trees?

Trees are simpler than graphs

   Many statements can be proved on trees by induction

So, computational problems on trees are simpler than 
general graphs

This is often a good way to approach a graph problem: 

• Find a "nice" tree in the graph, i.e., one such that non-
tree edges have some simplifying structure

• Solve the problem on the tree

• Use the solution on the tree to find a “good” solution on 
the graph
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BFS Application: Shortest Paths

BFS Tree gives shortest 

paths from 1 to all vertices 
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BFS Application: Connected Component

We want to answer the following type questions (fast):

Given vertices 𝑢, 𝑣 is there a path from 𝑢 to 𝑣 in 𝐺?

Idea: Create an array 𝐴 such that

For all 𝑢 in the same connected component, 𝐴[𝑢] is same.

Therefore, question reduces to

If A[u] = A[v]?
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Initial State: All vertices undiscovered, 𝑐 =  0
For 𝑣 = 1 to 𝑛 do
    If state(𝑣) != fully-explored then

       Run BFS(𝑣)

       Set 𝐴 𝑢 = 𝑐 for each 𝑢 found in BFS(𝑣)

       𝑐 =  𝑐 +  1

Note: We no longer initialize to undiscovered in the BFS 
subroutine

Total Cost: 𝑂(𝑚 + 𝑛)
In every connected component with 𝑛𝑖 vertices and 𝑚𝑖 
edges BFS takes time 𝑂 𝑚𝑖 + 𝑛𝑖 .

Note: one can use DFS instead of BFS.
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BFS Application: Connected Component



Connected Components

Lesson: We can execute any algorithm on disconnected 
graphs by running it on each connected component.

We can use the previous algorithm to detect connected 
components. 

There is no overhead, because the algorithm runs in time 
𝑂(𝑚 + 𝑛).

So, from now on, we can (almost) always assume the input 
graph is connected.
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Bipartite Graphs

Definition: An undirected graph 𝐺 = (𝑉, 𝐸) is bipartite 

   if you can partition the node set into 2 parts (say, blue/red 
or left/right) so that 

   all edges join nodes in different parts

   i.e., no edge has both ends in the same part.

Application: 

• Scheduling: machine=red, jobs=blue

• Stable Matching: men=blue, wom=red
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a bipartite graph



Testing Bipartiteness

Problem: Given a graph 𝐺, is it bipartite?

Many graph problems become:

• Easier/Tractable if the underlying graph is bipartite (matching)

Before attempting to design an algorithm, we need to 

understand structure of bipartite graphs.

14

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite graph G another drawing of G



An Obstruction to Bipartiteness

Lemma: If a graph contains an odd length cycle, then the 

graph is not bipartite. 

(If 𝐺 is bipartite, then it does not contain an odd length 

cycle.)

Proof: We cannot 2-color an odd cycle, let alone 𝐺.
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A Characterization of Bipartite Graphs

Lemma: Let 𝐺 be a connected graph, and let 𝐿0, … , 𝐿𝑘 be the 

layers produced by BFS(𝑠).  Exactly one of the following holds.

(i) No edge of 𝐺 joins two nodes of the same layer, and 𝐺 is 

bipartite.

(ii)  An edge of 𝐺 joins two nodes of the same layer, and 

𝐺 contains an odd-length cycle (and hence is not bipartite).
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Case (i)

L1 L2 L3

Case (ii)

L1 L2 L3



A Characterization of Bipartite Graphs

Lemma: Let 𝐺 be a connected graph, and let 𝐿0, … , 𝐿𝑘 be the 

layers produced by BFS(𝑠).  Exactly one of the following holds.

(i) No edge of 𝐺 joins two nodes of the same layer, and 𝐺 is 

bipartite.

(ii)  An edge of 𝐺 joins two nodes of the same layer, and 

𝐺 contains an odd-length cycle (and hence is not bipartite).

Proof.  (i)

Suppose no edge joins two nodes in the same layer.

All edges join nodes on adjacent levels.
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Case (i)

L1 L2 L3

Bipartition:  

        blue  = nodes on odd levels, 

        red = nodes on even levels.



A Characterization of Bipartite Graphs

Lemma: Let 𝐺 be a connected graph, and let 𝐿0, … , 𝐿𝑘 be the 

layers produced by BFS(𝑠).  Exactly one of the following holds.

(i) No edge of 𝐺 joins two nodes of the same layer, and 𝐺 is 

bipartite.

(ii)  An edge of 𝐺 joins two nodes of the same layer, and 

𝐺 contains an odd-length cycle (and hence is not bipartite).

Proof.  (ii)

Suppose {𝑥, 𝑦} is an edge & 𝑥, 𝑦 in same level 𝐿𝑗.

Let 𝑧 = their lowest common ancestor in BFS tree.

Let 𝐿𝑖 be level containing 𝑧.

Consider cycle that takes edge from 𝑥 to 𝑦,

then tree from 𝑦 to 𝑧, then tree from 𝑧 to 𝑥.

Its length is  1 + 𝑗 − 𝑖 + (𝑗 − 𝑖), which is odd.
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z = lca(x, y)



Obstruction to Bipartiteness

Corollary: A graph 𝐺 is bipartite if and only if it contains no 

odd length cycles. 

Furthermore, one can test bipartiteness using BFS.
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Obstruction to Bipartiteness

Corollary: A graph 𝐺 is bipartite if and only if it contains no 

odd length cycles. 

Furthermore, one can test bipartiteness using BFS.

Bipartiteness testing algorithm: 

• Run BFS with an arbitrary start vertex

• Construct the BFS tree with the start vertex as root

• If each non-tree edge of G connects two vertices at 
different levels in the rooted BFS tree, then output yes.

• Otherwise, output no. 
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BFS Summary

Breadth First Search (BFS): Explore vertices according to 

the order of the discovery of vertices

Property: 

• BFS tree

• Level = distance (length of shortest path) from the initial 

vertex

• Every edge connect two vertices at the same or adjacent 

levels

Applications of BFS:

• Finding connected components of a graph

• Finding shortest path for unit-length graphs

• Testing bipartiteness
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