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Homework 1
Homework 1 was out
• Deadline: February 9 11:59pm
• Submit your solution to gradescope
• More details can be found in the slides of the lecture on January 25 



Undirected Graphs G=(V,E)

Notation. G = (V, E)
• V = nodes (or vertices)
• E = edges between pairs of nodes
• Captures pairwise relationship between objects
• Graph size parameters: n = |V|, m = |E|

V = {1, 2, 3, 4, 5 ,6, 7, 8}
E = {(1,2), (1,3), (2,3), (2,4), (2,5), (3,5), (3,7),      
aaaa(3,8), (4,5), (5,6), (7,8)}
m=11, n=8



Graph Traversal

Walk (via edges) from a fixed starting vertex 𝑠 to all vertices 
reachable from 𝑠.
• Breadth First Search (BFS): Order nodes in successive 

layers based on distance from 𝑠
• Depth First Search (DFS): More natural approach for 

exploring a maze; 

Applications of BFS:
• Finding shortest path for unit-length graphs
• Finding connected components of a graph
• Testing bipartiteness
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Breadth First Search (BFS)

Completely explore the vertices in order of their distance 
from 𝑠.

Three states of vertices:
• Undiscovered
• Discovered
• Fully-explored

Naturally implemented using a queue
The queue will always have the list of Discovered vertices
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BFS algorithm
Initialization: mark all vertices "undiscovered" 

BFS(𝑠) 
mark 𝑠 discovered
queue = { 𝑠 }
while queue not empty

𝑢 = remove_first(queue)
for each edge {𝑢, 𝑥}

if (𝑥 is undiscovered) 
mark 𝑥 discovered
append 𝑥 on queue

mark 𝑢 fully-explored
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Graph representation
Adjacency matrix. n-by-n matrix with Auv = 1 if (u, v) is an 
edge. 
• Space proportional to n2. 
• Checking if (u, v) is an edge takes Q(1) time. 
• Identifying all edges takes Q(n2) time.



BFS Analysis
Initialization: mark all vertices "undiscovered" 

BFS(𝑠) 
mark 𝑠 discovered
queue = { 𝑠 }
while queue not empty

𝑢 = remove_first(queue)
for each edge {𝑢, 𝑥}

if (𝑥 is undiscovered) 
mark 𝑥 discovered
append 𝑥 on queue

mark 𝑢 fully-explored
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O(n) times: 
Check every vertex 𝑥	

O(n) times: 
At most once per vertex

Graph representation: adjacency matrix

Overall: O(n2) time



Graph representation
Adjacency list. Node indexed array of lists.
• Space proportional to m+n. 
• Checking if (u, v) is an edge takes O(deg(u)) time. 
• Identifying all edges takes Q(m+n) time.



BFS Analysis
Initialization: mark all vertices "undiscovered" 

BFS(𝑠) 
mark 𝑠 discovered
queue = { 𝑠 }
while queue not empty

𝑢 = remove_first(queue)
for each edge {𝑢, 𝑥}

if (𝑥 is undiscovered) 
mark 𝑥 discovered
append 𝑥 on queue

mark 𝑢 fully-explored

19

O(deg(𝑢)) times: 
At most twice per edge

O(n) times: 
At most once per vertex

Graph representation: adjacency list

Overall: O(n+m) time



Properties of BFS

• BFS(𝑠) visits a vertex 𝑣 if and only if there is a path from 
𝑠 to 𝑣

• Edges into then-undiscovered vertices define a tree – 
the “Breadth First spanning tree” of 𝐺
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Properties of BFS

• BFS(𝑠) visits a vertex 𝑣 if and only if there is a path from 
𝑠 to 𝑣

• Edges into then-undiscovered vertices define a tree – 
the “Breadth First spanning tree” of 𝐺

• Level 𝑖 in the tree are exactly all vertices 𝑣 s.t., the 
shortest path (in 𝐺) from the root 𝑠 to 𝑣 is of length 𝑖
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Properties of BFS
Lemma: All vertices at level 𝑖 of BFS(𝑠) have shortest path 
distance 𝑖 to 𝑠.

Claim: If 𝐿 𝑣 = 𝑖 then shortest path ≤ 𝑖
Pf: Because there is a path of length 𝑖 from 𝑠 to 𝑣 in the BFS tree

Claim: If shortest path = 𝑖 then 𝐿 𝑣 ≤ 𝑖
Pf: If shortest path = 𝑖, then say 𝑠 = 𝑣!, 𝑣", … , 𝑣# = 𝑣 is the 
shortest path to v.
We have

𝐿 𝑣" ≤ 𝐿 𝑣! + 1
𝐿 𝑣$ ≤ 𝐿 𝑣" + 1

…
𝐿 𝑣# ≤ 𝐿 𝑣#%" + 1

So, 𝐿 𝑣# ≤ 𝑖.

This proves the lemma. 
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Properties of BFS

• BFS(𝑠) visits a vertex 𝑣 if and only if there is a path from 
𝑠 to 𝑣

• Edges into then-undiscovered vertices define a tree – 
the “Breadth First spanning tree” of 𝐺

• Level 𝑖 in the tree are exactly all vertices 𝑣 s.t., the 
shortest path (in 𝐺) from the root 𝑠 to 𝑣 is of length 𝑖

• All nontree edges join vertices on the same or adjacent 
levels of the tree
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BFS Application: Shortest Paths
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Properties of BFS

Claim: All nontree edges join vertices on the same or 
adjacent levels of the tree

Proof: Consider an edge {𝑥, 𝑦}
Say 𝑥 is first discovered and it is added to level 𝑖.
We show y will be at level 𝑖 or 𝑖 + 1

This is because when vertices incident to 𝑥 are considered 
in the loop, if 𝑦 is still undiscovered, it will be discovered 
and added to level 𝑖 + 1.
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Why Trees?

Trees are simpler than graphs
   Many statements can be proved on trees by induction

So, computational problems on trees are simpler than 
general graphs

This is often a good way to approach a graph problem: 
• Find a "nice" tree in the graph, i.e., one such that non-

tree edges have some simplifying structure
• Solve the problem on the tree
• Use the solution on the tree to find a “good” solution on 

the graph
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BFS Application: Connected Component

We want to answer the following type questions (fast):
Given vertices 𝑢, 𝑣 is there a path from 𝑢 to 𝑣 in 𝐺?

Idea: Create an array 𝐴 such that
For all 𝑢 in the same connected component, 𝐴[𝑢] is same.

Therefore, question reduces to
If A[u] = A[v]?
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Initial State: All vertices undiscovered, 𝑐	 = 	0
For 𝑣 = 1 to 𝑛 do
    If state(𝑣) != fully-explored then
       Run BFS(𝑣)
       Set 𝐴 𝑢 = 𝑐 for each 𝑢 found in BFS(𝑣)
       𝑐	 = 	𝑐	 + 	1

Note: We no longer initialize to undiscovered in the BFS 
subroutine

Total Cost: 𝑂(𝑚 + 𝑛)
In every connected component with 𝑛! vertices and 𝑚! 
edges BFS takes time 𝑂 𝑚! + 𝑛! .

Note: one can use DFS instead of BFS.
30

BFS Application: Connected Component



Connected Components

Lesson: We can execute any algorithm on disconnected 
graphs by running it on each connected component.

We can use the previous algorithm to detect connected 
components. 
There is no overhead, because the algorithm runs in time 
𝑂(𝑚 + 𝑛).

So, from now on, we can (almost) always assume the input 
graph is connected.
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