CS 401: Computer Algorithm I

BFS

Xiaorui Sun

Homework 1

Homework 1 was out

- Deadline: February 9 11:59pm
- Submit your solution to gradescope
- More details can be found in the slides of the lecture on January 25

Undirected Graphs G=(V,E)

Notation. G = (V, E)

- $V=$ nodes (or vertices)
- $\mathrm{E}=$ edges between pairs of nodes
- Captures pairwise relationship between objects
- Graph size parameters: $\mathrm{n}=|\mathrm{V}|, \mathrm{m}=|\mathrm{E}|$

$$
\begin{aligned}
& \mathrm{V}=\{1,2,3,4,5,6,7,8\} \\
& \mathrm{E}=\{(1,2),(1,3),(2,3),(2,4),(2,5),(3,5),(3,7), \\
&(3,8),(4,5),(5,6),(7,8)\} \\
& \mathrm{m}=11, \mathrm{n}=8
\end{aligned}
$$

Graph Traversal

Walk (via edges) from a fixed starting vertex s to all vertices reachable from s.

- Breadth First Search (BFS): Order nodes in successive layers based on distance from s
- Depth First Search (DFS): More natural approach for exploring a maze;

Applications of BFS:

- Finding shortest path for unit-length graphs
- Finding connected components of a graph
- Testing bipartiteness

Breadth First Search (BFS)

Completely explore the vertices in order of their distance from s.

Three states of vertices:

- Undiscovered
- Discovered
- Fully-explored

Naturally implemented using a queue The queue will always have the list of Discovered vertices

BFS algorithm

Initialization: mark all vertices "undiscovered"

BFS(s)
mark s discovered
queue $=\{s\}$
while queue not empty
$u=$ remove_first(queue)
for each edge $\{u, x\}$
if (x is undiscovered)
mark x discovered
append x on queue
mark u fully-explored

BFS(1)

Graph representation

Adjacency matrix. n-by-n matrix with $A_{u v}=1$ if (u, v) is an edge.

- Space proportional to n^{2}.
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all edges takes $\Theta\left(\mathrm{n}^{2}\right)$ time.

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

BFS Analysis

Initialization: mark all vertices "undiscovered"

Graph representation: adjacency matrix

BFS(s)
mark s discovered
queue $=\{s\}$
while queue not empty
$u=$ remove_first(queue)
for each edge $\{u, x\}$
if (x is undiscovered)
mark x discovered
append x on queue
mark u fully-explored

O(n) times:
At most once per vertex

O(n) times:
Check every vertex x
\qquad

Overall: O(n²) time

Graph representation

Adjacency list. Node indexed array of lists.

- Space proportional to m+n.
- Checking if (u, v) is an edge takes $O(\operatorname{deg}(u))$ time.
- Identifying all edges takes $\Theta(m+n)$ time.

BFS Analysis

Initialization: mark all vertices "undiscovered"

Graph representation: adjacency list

BFS(s)
mark s discovered
queue $=\{s\}$
while queue not empty
$u=$ remove_first(queue)
for each edge $\{u, x\}$
if (x is undiscovered)
mark x discovered
append x on queue
mark u fully-explored
Overall: $O(n+m)$ time

Properties of BFS

- $\mathrm{BFS}(s)$ visits a vertex v if and only if there is a path from s to v
- Edges into then-undiscovered vertices define a tree the "Breadth First spanning tree" of G

BFS Tree

Properties of BFS

- BFS (s) visits a vertex v if and only if there is a path from s to v
- Edges into then-undiscovered vertices define a tree the "Breadth First spanning tree" of G
- Level i in the tree are exactly all vertices v s.t., the shortest path (in G) from the root s to v is of length i

Properties of BFS

Properties of BFS

Lemma: All vertices at level i of BFS(s) have shortest path distance i to s.

Claim: If $L(v)=i$ then shortest path $\leq i$
Pf: Because there is a path of length i from s to v in the BFS tree
Claim: If shortest path $=i$ then $L(v) \leq i$ Pf: If shortest path $=i$, then say $s=v_{0}, v_{1}, \ldots, v_{i}=v$ is the shortest path to v .
We have

$$
\begin{gathered}
L\left(v_{1}\right) \leq L\left(v_{0}\right)+1 \\
L\left(v_{2}\right) \leq L\left(v_{1}\right)+1 \\
L\left(v_{i}\right) \leq L\left(v_{i-1}\right)+1
\end{gathered}
$$

So, $L\left(v_{i}\right) \leq i$.
This proves the lemma.

Properties of BFS

- $\mathrm{BFS}(s)$ visits a vertex v if and only if there is a path from s to v
- Edges into then-undiscovered vertices define a tree the "Breadth First spanning tree" of G
- Level i in the tree are exactly all vertices v s.t., the shortest path (in G) from the root s to v is of length i
- All nontree edges join vertices on the same or adjacent levels of the tree

BFS Application: Shortest Paths

BFS Tree gives shortest

All edges connect same or adjacent levels

Properties of BFS

Claim: All nontree edges join vertices on the same or adjacent levels of the tree

Proof: Consider an edge $\{x, y\}$
Say x is first discovered and it is added to level i.
We show y will be at level i or $i+1$
This is because when vertices incident to x are considered in the loop, if y is still undiscovered, it will be discovered and added to level $i+1$.

Why Trees?

Trees are simpler than graphs
Many statements can be proved on trees by induction
So, computational problems on trees are simpler than general graphs

This is often a good way to approach a graph problem:

- Find a "nice" tree in the graph, i.e., one such that nontree edges have some simplifying structure
- Solve the problem on the tree
- Use the solution on the tree to find a "good" solution on the graph

BFS Application: Connected Component

We want to answer the following type questions (fast): Given vertices u, v is there a path from u to v in G ?

Idea: Create an array A such that
For all u in the same connected component, $A[u]$ is same.
Therefore, question reduces to

$$
\text { If } A[u]=A[v] ?
$$

BFS Application: Connected Component

Initial State: All vertices undiscovered, $c=0$
For $v=1$ to n do
If state (v) != fully-explored then
Run BFS (v)
Set $A[u]=c$ for each u found in $\operatorname{BFS}(v)$
$c=c+1$
Note: We no longer initialize to undiscovered in the BFS subroutine

Total Cost: $O(m+n)$
In every connected component with n_{i} vertices and m_{i} edges BFS takes time $O\left(m_{i}+n_{i}\right)$.

Note: one can use DFS instead of BFS.

Connected Components

Lesson: We can execute any algorithm on disconnected graphs by running it on each connected component.

We can use the previous algorithm to detect connected components.
There is no overhead, because the algorithm runs in time $O(m+n)$.

So, from now on, we can (almost) always assume the input graph is connected.

