
CS 401: Computer

Algorithm I

BFS

Xiaorui Sun

1

Last Lecture: BFS algorithm

Initialization: mark all vertices "undiscovered"

BFS(𝑠)

mark 𝑠 discovered

queue = { 𝑠 }

while queue not empty

𝑢 = remove_first(queue)

for each edge {𝑢, 𝑥}

if (𝑥 is undiscovered)

mark 𝑥 discovered

append 𝑥 on queue

mark 𝑢 fully-explored

2

Running time

Adjacency matrix: O(n2)

Adjacency list: O(n+m)

Properties of BFS

• BFS(𝑠) visits a vertex 𝑣 if and only if there is a path from
𝑠 to 𝑣

• Edges into then-undiscovered vertices define a tree –
the “Breadth First spanning tree” of 𝐺

3

4

BFS Tree

Properties of BFS

• BFS(𝑠) visits a vertex 𝑣 if and only if there is a path from
𝑠 to 𝑣

• Edges into then-undiscovered vertices define a tree –
the “Breadth First spanning tree” of 𝐺

• Level 𝑖 in the tree are exactly all vertices 𝑣 s.t., the
shortest path (in 𝐺) from the root 𝑠 to 𝑣 is of length 𝑖

5

6

Properties of BFS

BFS Tree gives shortest

paths from 1 to all vertices

0

1

2

3

4

Properties of BFS

• BFS(𝑠) visits a vertex 𝑣 if and only if there is a path from
𝑠 to 𝑣

• Edges into then-undiscovered vertices define a tree –
the “Breadth First spanning tree” of 𝐺

• Level 𝑖 in the tree are exactly all vertices 𝑣 s.t., the
shortest path (in 𝐺) from the root 𝑠 to 𝑣 is of length 𝑖

• All nontree edges join vertices on the same or adjacent
levels of the tree

7

Why Trees?

Trees are simpler than graphs

 Many statements can be proved on trees by induction

So, computational problems on trees are simpler than
general graphs

This is often a good way to approach a graph problem:

• Find a "nice" tree in the graph, i.e., one such that non-
tree edges have some simplifying structure

• Solve the problem on the tree

• Use the solution on the tree to find a “good” solution on
the graph

8

9

BFS Application: Shortest Paths

BFS Tree gives shortest

paths from 1 to all vertices

0

1

2

3

4
All edges connect same

or adjacent levels

BFS Application: Connected Component

We want to answer the following type questions (fast):

Given vertices 𝑢, 𝑣 is there a path from 𝑢 to 𝑣 in 𝐺?

Idea: Create an array 𝐴 such that

For all 𝑢 in the same connected component, 𝐴[𝑢] is same.

Therefore, question reduces to

If A[u] = A[v]?

10

Initial State: All vertices undiscovered, 𝑐 = 0
For 𝑣 = 1 to 𝑛 do
 If state(𝑣) != fully-explored then

 Run BFS(𝑣)

 Set 𝐴 𝑢 = 𝑐 for each 𝑢 found in BFS(𝑣)

 𝑐 = 𝑐 + 1

Note: We no longer initialize to undiscovered in the BFS
subroutine

Total Cost: 𝑂(𝑚 + 𝑛)
In every connected component with 𝑛𝑖 vertices and 𝑚𝑖
edges BFS takes time 𝑂 𝑚𝑖 + 𝑛𝑖 .

Note: one can use DFS instead of BFS.
11

BFS Application: Connected Component

Connected Components

Lesson: We can execute any algorithm on disconnected
graphs by running it on each connected component.

We can use the previous algorithm to detect connected
components.

There is no overhead, because the algorithm runs in time
𝑂(𝑚 + 𝑛).

So, from now on, we can (almost) always assume the input
graph is connected.

12

Bipartite Graphs

Definition: An undirected graph 𝐺 = (𝑉, 𝐸) is bipartite

 if you can partition the node set into 2 parts (say, blue/red
or left/right) so that

 all edges join nodes in different parts

 i.e., no edge has both ends in the same part.

Application:

• Scheduling: machine=red, jobs=blue

• Stable Matching: men=blue, wom=red

13

a bipartite graph

Testing Bipartiteness

Problem: Given a graph 𝐺, is it bipartite?

Many graph problems become:

• Easier/Tractable if the underlying graph is bipartite (matching)

Before attempting to design an algorithm, we need to

understand structure of bipartite graphs.

14

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite graph G another drawing of G

An Obstruction to Bipartiteness

Lemma: If a graph contains an odd length cycle, then the

graph is not bipartite.

(If 𝐺 is bipartite, then it does not contain an odd length

cycle.)

Proof: We cannot 2-color an odd cycle, let alone 𝐺.

15

bipartite

(2-colorable)

not bipartite

(not 2-colorable)

?

A Characterization of Bipartite Graphs

Lemma: Let 𝐺 be a connected graph, and let 𝐿0, … , 𝐿𝑘 be the

layers produced by BFS(𝑠). Exactly one of the following holds.

(i) No edge of 𝐺 joins two nodes of the same layer, and 𝐺 is

bipartite.

(ii) An edge of 𝐺 joins two nodes of the same layer, and

𝐺 contains an odd-length cycle (and hence is not bipartite).

16
Case (i)

L1 L2 L3

Case (ii)

L1 L2 L3

A Characterization of Bipartite Graphs

Lemma: Let 𝐺 be a connected graph, and let 𝐿0, … , 𝐿𝑘 be the

layers produced by BFS(𝑠). Exactly one of the following holds.

(i) No edge of 𝐺 joins two nodes of the same layer, and 𝐺 is

bipartite.

(ii) An edge of 𝐺 joins two nodes of the same layer, and

𝐺 contains an odd-length cycle (and hence is not bipartite).

Proof. (i)

Suppose no edge joins two nodes in the same layer.

All edges join nodes on adjacent levels.

17
Case (i)

L1 L2 L3

Bipartition:

 blue = nodes on odd levels,

 red = nodes on even levels.

A Characterization of Bipartite Graphs

Lemma: Let 𝐺 be a connected graph, and let 𝐿0, … , 𝐿𝑘 be the

layers produced by BFS(𝑠). Exactly one of the following holds.

(i) No edge of 𝐺 joins two nodes of the same layer, and 𝐺 is

bipartite.

(ii) An edge of 𝐺 joins two nodes of the same layer, and

𝐺 contains an odd-length cycle (and hence is not bipartite).

Proof. (ii)

Suppose {𝑥, 𝑦} is an edge & 𝑥, 𝑦 in same level 𝐿𝑗.

Let 𝑧 = their lowest common ancestor in BFS tree.

Let 𝐿𝑖 be level containing 𝑧.

Consider cycle that takes edge from 𝑥 to 𝑦,

then tree from 𝑦 to 𝑧, then tree from 𝑧 to 𝑥.

Its length is 1 + 𝑗 − 𝑖 + (𝑗 − 𝑖), which is odd.

18

z = lca(x, y)

Obstruction to Bipartiteness

Corollary: A graph 𝐺 is bipartite if and only if it contains no

odd length cycles.

Furthermore, one can test bipartiteness using BFS.

19

bipartite

(2-colorable)

not bipartite

(not 2-colorable)

Obstruction to Bipartiteness

Corollary: A graph 𝐺 is bipartite if and only if it contains no

odd length cycles.

Furthermore, one can test bipartiteness using BFS.

Bipartiteness testing algorithm:

• Run BFS with an arbitrary start vertex

• Construct the BFS tree with the start vertex as root

• If each non-tree edge of G connects two vertices at
different levels in the rooted BFS tree, then output yes.

• Otherwise, output no.

20

BFS Summary

Breadth First Search (BFS): Explore vertices according to

the order of the discovery of vertices

Property:

• BFS tree

• Level = distance (length of shortest path) from the initial

vertex

• Every edge connect two vertices at the same or adjacent

levels

Applications of BFS:

• Finding connected components of a graph

• Finding shortest path for unit-length graphs

• Testing bipartiteness
21

	Slide 1: CS 401: Computer Algorithm I
	Slide 2: Last Lecture: BFS algorithm
	Slide 3: Properties of BFS
	Slide 4: BFS Tree
	Slide 5: Properties of BFS
	Slide 6: Properties of BFS
	Slide 7: Properties of BFS
	Slide 8: Why Trees?
	Slide 9: BFS Application: Shortest Paths
	Slide 10: BFS Application: Connected Component
	Slide 11
	Slide 12: Connected Components
	Slide 13: Bipartite Graphs
	Slide 14: Testing Bipartiteness
	Slide 15: An Obstruction to Bipartiteness
	Slide 16: A Characterization of Bipartite Graphs
	Slide 17: A Characterization of Bipartite Graphs
	Slide 18: A Characterization of Bipartite Graphs
	Slide 19: Obstruction to Bipartiteness
	Slide 20: Obstruction to Bipartiteness
	Slide 21: BFS Summary

