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Homework 1

Homework 1 will be out later today (Due Feb 18)

Writing homework
The first 5 questions are for all the students

Question 6 is for graduate student only (Undergraduate students
who work on Question 6 receive at most 3 bonus points)

Submit your homework to gradescope

Guidelines:

You can collaborate, but you must write solutions on your own

Your solution should be clear, well-organized, and concise. Spell out
main idea.

Sanity Check: Make sure you use assumptions of the problem
You can use Al/online tools, but you cannot copy Al/online solutions.

Late homework will be penalized at a rate of 10% of the initial grade
|oer late day (e.g. if your homework receives 80 points and you are
te for 4 days, you get 48 points)

Correctness proofs of ALGORITHMS are NOT REQUIRED



Graph Traversal

Walk (via edges) from a fixed starting vertex s to all vertices
reachable from s.

* Breadth First Search (BFS): Order nodes in successive
layers based on distance from s

* Depth First Search (DFS): More natural approach for
exploring a maze;

Applications of BFS:

* Finding shortest path for unit-length graphs
* Finding connected components of a graph
« Testing bipartiteness



Depth First Search

Follow the first path you find
as far as you can go; back up
to last unexplored edge when
you reach a dead end,

then go as far you can

Naturally implemented using recursive calls or a stack



DFS(s) — Recursive version

Initialization: mark all vertices undiscovered

DFS(v)
Mark v discovered

for each edge {v, x}
If (x Is undiscovered)
DFS(x)

Mark v fully-explored
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Properties of (undirected) DFS

Like BFS(s):

DFS(s) visits x iff there is a path in G from s to x
So, we can use DFS to find connected components

Edges into then-undiscovered vertices define a tree —
the "DFS tree" of G

Unlike the BFS tree:

The DFS tree isn't minimum depth
Its levels don't reflect min distance from the root

Non-tree edges never join vertices on the same or
adjacent levels
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Non-Tree Edges in DFS

BFS tree # DFS tree, but, as with BFS, DFS has found a
tree in the graph s.t. non-tree edges are "simple" in some
way.

All non-tree edges join a vertex and one of its
descendents/ancestors in the DFS tree
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Directed Graph and Topological
Ordering



Directed Graphs

edge (2, 3) is an incoming
edge for vertex 3
edge §3, 8) Is an outgoing
edge for vertex 3




Directed Graphs

Node = intersection, edge = one-way street
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Precedence Constraints

In a directed graph, an edge (i,j) means task i must occur
before task j.

Applications
« Course prerequisite:
course i must be taken before ]
« Compilation:
must compile module i before j
« Computing overflow:
output of job i Is part of input to job j
« Manufacturing or assembly:
sand it before paint it
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Directed Acyclic Graphs (DAG)

Def: A DAG is a directed acyclic graph, i.e.,
one that contains no directed cycles.

Def. Atopological order of a directed graph G = (V, E) is an
ordering of its nodes as v4, v, ..., 1, SO that for every edge

(v;,v;) we have i < j.

a topological ordering of that DAG—
a DAG all edges left-to-right "



DAGSs: A Sufficient Condition

Lemma: If ¢ has a topological order, then G is a DAG.

Proof. (by contradiction)

Suppose that ¢ has a topological order 1,2, ...,n and that ¢ also
has a directed cycle C.

Let i be the lowest-indexed node in C, and let j be the node just
before i; thus (j, 1) is an (directed) edge.
By our choice of i, we have i < j.

On the other hand, since (j,i) isanedgeand 1,...,nisa
topological order, we must have j < i, a contradiction

the directed cycle C

@Qé—»(')@é@@@@

the supposed topological order: 1,2,...,n
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DAGS: A Sufficient Condition

G hasa
topological order

G is a DAG
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Every DAG has a source node

Lemma: If G i1s a DAG, then G has a node with no incoming edges (i.e., a
source).

Proof. (by contradiction)
Suppose that ¢ is a DAG and it has no source

Pick any node v, and begin following edges backward from v. Since v
has at least one incoming edge (u, v) we can walk backward to wu.

Then, since u has at least one incoming edge (x, u), we can walk
backward to x.

Repeat until we visit a node, say w, twice.

Let C be the sequence of nodes encountered between successive visits
tow. Cisacycle.
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DAG => Topological Order

Lemma: If G i1s a DAG, then G has a topological order

Proof. (by induction on n)

Base case: trueifn = 1.

Hypothesis: Every DAG with n — 1 vertices has a topological ordering.
Inductive Step: Given DAG withn > 1 nodes, find a source node v.
G — {v}isaDAG, since deleting v cannot create cycles.

Reminder: Always remove
vertices/edges to use hypothesis

By hypothesis, G — { v } has a topological ordering.
Place v first in topological ordering; then append nodes of ¢ — {v}
In topological order. This is valid since v has no incoming edges.
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A Characterization of DAGS

G has a
topological order

)
C—

G is a DAG
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Topological Order Algorithm 1. Example
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Topological Order Algorithm 1: Example

Topological order: 1, 2, 3,4,5,6,7

Running time: O(n+m)
« Adjacency list

o Maintain # outgoing edge for each node
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