
CS 401: Computer

Algorithm I

DFS / Topological Sort

Xiaorui Sun

1

Homework 1
Homework 1 will be out later today (Due Feb 18)

• Writing homework

• The first 5 questions are for all the students

• Question 6 is for graduate student only (Undergraduate students

who work on Question 6 receive at most 3 bonus points)

• Submit your homework to gradescope

Guidelines:

• You can collaborate, but you must write solutions on your own

• Your solution should be clear, well-organized, and concise. Spell out
main idea.

• Sanity Check: Make sure you use assumptions of the problem

• You can use AI/online tools, but you cannot copy AI/online solutions.

• Late homework will be penalized at a rate of 10% of the initial grade
per late day (e.g. if your homework receives 80 points and you are
late for 4 days, you get 48 points)

• Correctness proofs of ALGORITHMS are NOT REQUIRED

Graph Traversal

Walk (via edges) from a fixed starting vertex 𝑠 to all vertices

reachable from 𝑠.

• Breadth First Search (BFS): Order nodes in successive

layers based on distance from 𝑠

• Depth First Search (DFS): More natural approach for

exploring a maze;

Applications of BFS:

• Finding shortest path for unit-length graphs

• Finding connected components of a graph

• Testing bipartiteness

3

Depth First Search

Follow the first path you find

as far as you can go; back up

to last unexplored edge when

you reach a dead end,

then go as far you can

Naturally implemented using recursive calls or a stack

4

DFS(s) – Recursive version

Initialization: mark all vertices undiscovered

DFS(𝑣)

Mark 𝑣 discovered

for each edge {𝑣, 𝑥}

 if (𝑥 is undiscovered)

 DFS(𝑥)

Mark 𝑣 fully-explored

5

6

DFS(A)

Suppose edge lists

at each vertex

are sorted

alphabetically

Color code:

undiscovered

discovered

fully-explored

Call Stack

 (Edge list):

A (B,J)

st[] =

{1}

7

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

st[] =

{1,2}

8

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

st[] =

{1,2,3}

9

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

st[] =

{1,2,3,4}

10

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

E (D,F)

st[] =

{1,2,3,4,5}

11

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

E (D,F)

F (D,E,G)

st[] =

{1,2,3,4,5,

6}

12

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

E (D,F)

F (D,E,G)

G (C,F)

st[] =

{1,2,3,4,5,

6,7}

13

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

E (D,F)

F (D,E,G)

G (C,F)

st[] =

{1,2,3,4,5,

6,7}

14

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

E (D,F)

F (D,E,G)

st[] =

{1,2,3,4,5,

6}

15

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

E (D,F)

st[] =

{1,2,3,4,5}

16

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

st[] =

{1,2,3,4}

17

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

st[] =

{1,2,3}

18

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

st[] =

{1,2,3,8}

19

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

I (H)

st[] =

{1,2,3,8,9}

20

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

st[] =

{1,2,3,8}

21

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

st[] =

{1,2,3,8,

10}

22

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

K (J,L)

st[] =

{1,2,3,8,10

,11}

23

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

K (J,L)

L (J,K,M)

st[] =

{1,2,3,8,10

,11,12}

24

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

K (J,L)

L (J,K,M)

M (L)

st[] =

{1,2,3,8,10

,11,12,13}

25

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

K (J,L)

L (J,K,M)

st[] =

{1,2,3,8,10

,11,12}

26

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

K (J,L)

st[] =

{1,2,3,8,10

,11}

27

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

st[] =

{1,2,3,8,

10}

28

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

st[] =

{1,2,3,8,

10}

29

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

st[] =

{1,2,3,8}

30

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

st[] =

{1,2,3}

31

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

st[] =

{1,2}

32

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

st[] =

{1,2}

33

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

st[] =

{1}

34

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

st[] =

{1}

35

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

 TA-DA!!

st[] = {}

36

DFS(A) Edge code:

Tree edge

Back edge

37

DFS(A)
Edge code:

Tree edge

Back edge

No Cross Edges!

Properties of (undirected) DFS

Like BFS(𝑠):

• DFS(𝑠) visits 𝑥 iff there is a path in G from 𝑠 to 𝑥

So, we can use DFS to find connected components

• Edges into then-undiscovered vertices define a tree –
the "DFS tree" of G

Unlike the BFS tree:

• The DFS tree isn't minimum depth

• Its levels don't reflect min distance from the root

• Non-tree edges never join vertices on the same or
adjacent levels

38

Non-Tree Edges in DFS

BFS tree ≠ DFS tree, but, as with BFS, DFS has found a

tree in the graph s.t. non-tree edges are "simple" in some

way.

All non-tree edges join a vertex and one of its

descendents/ancestors in the DFS tree

39

Directed Graph and Topological

Ordering

Directed Graphs

edge (2, 3) is an incoming
edge for vertex 3

edge (3, 8) is an outgoing
edge for vertex 3

41

1

2
10

9

8

3

4

5

6

7

11
12

13

Multi edge

self loop

Node = intersection, edge = one-way street

Directed Graphs

42

Precedence Constraints

In a directed graph, an edge (𝑖, 𝑗) means task 𝑖 must occur

before task 𝑗.

Applications

• Course prerequisite:

 course 𝑖 must be taken before 𝑗

• Compilation:

 must compile module 𝑖 before 𝑗

• Computing overflow:

 output of job 𝑖 is part of input to job 𝑗

• Manufacturing or assembly:

 sand it before paint it
43

Directed Acyclic Graphs (DAG)

Def: A DAG is a directed acyclic graph, i.e.,

one that contains no directed cycles.

Def: A topological order of a directed graph G = (V, E) is an
ordering of its nodes as 𝑣1, 𝑣2, … , 𝑣𝑛 so that for every edge
(𝑣𝑖 , 𝑣𝑗) we have 𝑖 < 𝑗.

44
a DAG

2 3

6 5 4

7 1

a topological ordering of that DAG–

all edges left-to-right

1 2 3 4 5 6 7

DAGs: A Sufficient Condition

Lemma: If 𝐺 has a topological order, then 𝐺 is a DAG.

Proof. (by contradiction)

Suppose that 𝐺 has a topological order 1,2, … , 𝑛 and that 𝐺 also

has a directed cycle 𝐶.

Let 𝑖 be the lowest-indexed node in 𝐶, and let 𝑗 be the node just

before 𝑖; thus (𝑗, 𝑖) is an (directed) edge.

By our choice of 𝑖, we have 𝑖 < 𝑗.

On the other hand, since (𝑗, 𝑖) is an edge and 1, … , 𝑛 is a

topological order, we must have 𝑗 < 𝑖, a contradiction

45

1 i j n

the directed cycle C

the supposed topological order: 1,2,…,n

DAGs: A Sufficient Condition

46

G has a

topological order
G is a DAG?

Every DAG has a source node

Lemma: If 𝐺 is a DAG, then 𝐺 has a node with no incoming edges (i.e., a

source).

Proof. (by contradiction)

Suppose that 𝐺 is a DAG and it has no source

Pick any node 𝑣, and begin following edges backward from 𝑣. Since 𝑣

has at least one incoming edge (𝑢, 𝑣) we can walk backward to 𝑢.

Then, since 𝑢 has at least one incoming edge (𝑥, 𝑢), we can walk

backward to 𝑥.

Repeat until we visit a node, say w, twice.

Let C be the sequence of nodes encountered between successive visits

to w. C is a cycle.

47

w x u v

C

w x u v

DAG => Topological Order

Lemma: If 𝐺 is a DAG, then 𝐺 has a topological order

Proof. (by induction on n)

Base case: true if 𝑛 = 1.

Hypothesis: Every DAG with 𝑛 − 1 vertices has a topological ordering.

Inductive Step: Given DAG with 𝑛 > 1 nodes, find a source node 𝑣.

𝐺 − { 𝑣 } is a DAG, since deleting 𝑣 cannot create cycles.

By hypothesis, 𝐺 − { 𝑣 } has a topological ordering.

Place 𝑣 first in topological ordering; then append nodes of 𝐺 − {𝑣}

in topological order. This is valid since 𝑣 has no incoming edges.

48

Reminder: Always remove

vertices/edges to use hypothesis

A Characterization of DAGs

49

G has a

topological order
G is a DAG

50

Topological Order Algorithm 1: Example

2 3

6 5 4

7 1

51

Topological order: 1, 2, 3, 4, 5, 6, 7

Topological Order Algorithm 1: Example

2 3

6 5 4

7 1

1 2 3 4 5 6 7

Running time: O(n+m)

• Adjacency list

• Maintain # outgoing edge for each node

	Slide 1: CS 401: Computer Algorithm I
	Slide 2: Homework 1
	Slide 3: Graph Traversal
	Slide 4: Depth First Search
	Slide 5: DFS(s) – Recursive version
	Slide 6: DFS(A)
	Slide 7: DFS(A)
	Slide 8: DFS(A)
	Slide 9: DFS(A)
	Slide 10: DFS(A)
	Slide 11: DFS(A)
	Slide 12: DFS(A)
	Slide 13: DFS(A)
	Slide 14: DFS(A)
	Slide 15: DFS(A)
	Slide 16: DFS(A)
	Slide 17: DFS(A)
	Slide 18: DFS(A)
	Slide 19: DFS(A)
	Slide 20: DFS(A)
	Slide 21: DFS(A)
	Slide 22: DFS(A)
	Slide 23: DFS(A)
	Slide 24: DFS(A)
	Slide 25: DFS(A)
	Slide 26: DFS(A)
	Slide 27: DFS(A)
	Slide 28: DFS(A)
	Slide 29: DFS(A)
	Slide 30: DFS(A)
	Slide 31: DFS(A)
	Slide 32: DFS(A)
	Slide 33: DFS(A)
	Slide 34: DFS(A)
	Slide 35: DFS(A)
	Slide 36: DFS(A)
	Slide 37: DFS(A)
	Slide 38: Properties of (undirected) DFS
	Slide 39: Non-Tree Edges in DFS
	Slide 40: Directed Graph and Topological Ordering
	Slide 41: Directed Graphs
	Slide 42: Directed Graphs
	Slide 43: Precedence Constraints
	Slide 44: Directed Acyclic Graphs (DAG)
	Slide 45: DAGs: A Sufficient Condition
	Slide 46: DAGs: A Sufficient Condition
	Slide 47: Every DAG has a source node
	Slide 48: DAG => Topological Order
	Slide 49: A Characterization of DAGs
	Slide 50: Topological Order Algorithm 1: Example
	Slide 51: Topological Order Algorithm 1: Example

