
CS 401:  Computer 

Algorithm I

DFS / Topological Sort

Xiaorui Sun
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Homework 1
Homework 1 will be out later today (Due Feb 18)

• Writing homework

• The first 5 questions are for all the students

• Question 6 is for graduate student only (Undergraduate students 

who work on Question 6 receive at most 3 bonus points)

• Submit your homework to gradescope

Guidelines:

• You can collaborate, but you must write solutions on your own

• Your solution should be clear, well-organized, and concise. Spell out 
main idea.

• Sanity Check: Make sure you use assumptions of the problem

• You can use AI/online tools, but you cannot copy AI/online solutions. 

• Late homework will be penalized at a rate of 10% of the initial grade 
per late day (e.g. if your homework receives 80 points and you are 
late for 4 days, you get 48 points)

• Correctness proofs of ALGORITHMS are NOT REQUIRED



Graph Traversal

Walk (via edges) from a fixed starting vertex 𝑠 to all vertices 

reachable from 𝑠.

• Breadth First Search (BFS): Order nodes in successive 

layers based on distance from 𝑠

• Depth First Search (DFS): More natural approach for 

exploring a maze; 

Applications of BFS:

• Finding shortest path for unit-length graphs

• Finding connected components of a graph

• Testing bipartiteness
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Depth First Search

Follow the first path you find 

as far as you can go; back up 

to last unexplored edge when 

you reach a dead end, 

then go as far you can 

Naturally implemented using recursive calls or a stack
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DFS(s) – Recursive version

Initialization: mark all vertices undiscovered 

DFS(𝑣) 

Mark 𝑣 discovered

for each edge {𝑣, 𝑥}

 if (𝑥 is undiscovered)

  DFS(𝑥)

Mark 𝑣 fully-explored
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DFS(A)

Suppose edge lists

at each vertex 

are sorted 

alphabetically

Color code:

undiscovered

discovered

fully-explored

Call Stack

 (Edge list):

A (B,J)

 

 

 

 

 

 

st[] =           

{1}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

 

 

 

 

 

  

st[] =           

{1,2}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

 

 

 

 

  

st[] =           

{1,2,3}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

 

 

 

  

st[] =           

{1,2,3,4}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

E (D,F)

 

 

  

st[] =           

{1,2,3,4,5}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

E (D,F)

F (D,E,G)

 

  

st[] =           

{1,2,3,4,5,

6}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

E (D,F)

F (D,E,G)

G (C,F)

  

st[] =           

{1,2,3,4,5,

6,7}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

E (D,F)

F (D,E,G)

G (C,F)

  

st[] =           

{1,2,3,4,5,

6,7}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

E (D,F)

F (D,E,G)

  

st[] =           

{1,2,3,4,5,

6}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

E (D,F)

  

st[] =           

{1,2,3,4,5}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

  

st[] =           

{1,2,3,4}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

  

st[] =           

{1,2,3}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

  

st[] =           

{1,2,3,8}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

I (H)

  

st[] =           

{1,2,3,8,9}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

  

st[] =           

{1,2,3,8}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

  

st[] =           

{1,2,3,8, 

10}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

K (J,L)

  

st[] =           

{1,2,3,8,10

,11}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

K (J,L)

L (J,K,M)

  

st[] =           

{1,2,3,8,10

,11,12}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

K (J,L)

L (J,K,M)

M (L) 

st[] =           

{1,2,3,8,10

,11,12,13}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

K (J,L)

L (J,K,M)

st[] =           

{1,2,3,8,10

,11,12}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

K (J,L)

st[] =           

{1,2,3,8,10

,11}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

st[] =           

{1,2,3,8, 

10}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

st[] =           

{1,2,3,8, 

10}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

st[] =           

{1,2,3,8}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

st[] =           

{1,2,3}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

st[] =           

{1,2}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

B (A,C,J)

st[] =           

{1,2}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

st[] =           

{1}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

A (B,J)

st[] =           

{1}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

 (Edge list)

 TA-DA!!

st[] =  {}
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DFS(A) Edge code:

Tree edge

Back edge
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DFS(A)
Edge code:

Tree edge

Back edge

No Cross Edges!



Properties of (undirected) DFS

Like BFS(𝑠):

• DFS(𝑠) visits 𝑥 iff there is a path in G from 𝑠 to 𝑥 

So, we can use DFS to find connected components

• Edges into then-undiscovered vertices define a tree – 
the "DFS tree" of G

Unlike the BFS tree: 

• The DFS tree isn't minimum depth

• Its levels don't reflect min distance from the root

• Non-tree edges never join vertices on the same or 
adjacent levels
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Non-Tree Edges in DFS

BFS tree ≠ DFS tree, but, as with BFS, DFS has found a 

tree in the graph s.t. non-tree edges are "simple" in some 

way.

All non-tree edges join a vertex and one of its 

descendents/ancestors in the DFS tree
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Directed Graph and Topological 

Ordering



Directed Graphs

edge (2, 3) is an incoming 
edge for vertex 3

edge (3, 8) is an outgoing 
edge for vertex 3

41

1

2
10

9

8

3

4

5

6

7

11
12

13

Multi edge

self loop



Node = intersection, edge = one-way street

Directed Graphs

42



Precedence Constraints

In a directed graph, an edge (𝑖, 𝑗) means task 𝑖 must occur 

before task 𝑗.

Applications

• Course prerequisite:

 course 𝑖 must be taken before 𝑗

• Compilation: 

 must compile module 𝑖 before 𝑗

• Computing overflow:

 output of job 𝑖 is part of input to job 𝑗

• Manufacturing or assembly: 

 sand it before paint it
43



Directed Acyclic Graphs (DAG)

Def: A DAG is a directed acyclic graph, i.e., 

one that contains no directed cycles.

Def:  A topological order of a directed graph G = (V, E) is an 
ordering of its nodes as 𝑣1, 𝑣2, … , 𝑣𝑛 so that for every edge 
(𝑣𝑖 , 𝑣𝑗) we have 𝑖 <  𝑗.

44
a DAG

2 3

6 5 4

7 1

a topological ordering of that DAG–

all edges left-to-right

1 2 3 4 5 6 7



DAGs: A Sufficient Condition

Lemma: If 𝐺 has a topological order, then 𝐺 is a DAG.

Proof.  (by contradiction)

Suppose that 𝐺 has a topological order 1,2, … , 𝑛 and that 𝐺 also 

has a directed cycle 𝐶.

Let 𝑖 be the lowest-indexed node in 𝐶, and let 𝑗 be the node just 

before 𝑖; thus (𝑗, 𝑖) is an (directed) edge.

By our choice of 𝑖, we have 𝑖 <  𝑗.

On the other hand, since (𝑗, 𝑖) is an edge and 1, … , 𝑛 is a 

topological order, we must have 𝑗 <  𝑖, a contradiction

45

1 i j n

the directed cycle C

the supposed topological order:  1,2,…,n



DAGs: A Sufficient Condition

46

G has a 

topological order
G is a DAG?



Every DAG has a source node

Lemma: If 𝐺 is a DAG, then 𝐺 has a node with no incoming edges (i.e., a 

source).

Proof.  (by contradiction)

Suppose that 𝐺 is a DAG and it has no source

Pick any node 𝑣, and begin following edges backward from 𝑣.  Since 𝑣 

has at least one incoming edge (𝑢, 𝑣) we can walk backward to 𝑢.

Then, since 𝑢 has at least one incoming edge (𝑥, 𝑢), we can walk 

backward to 𝑥.

Repeat until we visit a node, say w, twice.

Let C be the sequence of nodes encountered between successive visits 

to w.  C is a cycle.

47

w x u v

C

w x u v



DAG => Topological Order

Lemma: If 𝐺 is a DAG, then 𝐺 has a topological order

Proof.  (by induction on n)

Base case:  true if 𝑛 =  1.

Hypothesis: Every DAG with 𝑛 − 1 vertices has a topological ordering.

Inductive Step: Given DAG with 𝑛 >  1 nodes, find a source node 𝑣.

𝐺 − { 𝑣 } is a DAG, since deleting 𝑣 cannot create cycles.

By hypothesis, 𝐺 − { 𝑣 } has a topological ordering.

Place 𝑣 first in topological ordering; then append nodes of 𝐺 − {𝑣}

in topological order. This is valid since 𝑣 has no incoming edges. 

48

Reminder: Always remove 

vertices/edges to use hypothesis



A Characterization of DAGs

49

G has a 

topological order
G is a DAG
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Topological Order Algorithm 1:  Example

2 3

6 5 4

7 1
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Topological order:  1, 2, 3, 4, 5, 6, 7

Topological Order Algorithm 1:  Example

2 3

6 5 4

7 1

1 2 3 4 5 6 7

Running time: O(n+m)

• Adjacency list

• Maintain # outgoing edge for each node
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