
CS 401: Computer
Algorithm I

BFS / DFS
Xiaorui Sun

1

Graph Traversal

Walk (via edges) from a fixed starting vertex 𝑠 to all vertices
reachable from 𝑠.
• Breadth First Search (BFS): Order nodes in successive

layers based on distance from 𝑠
• Depth First Search (DFS): More natural approach for

exploring a maze;

Applications of BFS:
• Finding shortest path for unit-length graphs
• Finding connected components of a graph
• Testing bipartiteness

2

Properties of BFS

• BFS(𝑠) visits a vertex 𝑣 if and only if there is a path from
𝑠 to 𝑣

• Edges into then-undiscovered vertices define a tree –
the “Breadth First spanning tree” of 𝐺

• Level 𝑖 in the tree are exactly all vertices 𝑣 s.t., the
shortest path (in 𝐺) from the root 𝑠 to 𝑣 is of length 𝑖

• All nontree edges join vertices on the same or adjacent
levels of the tree

3

BFS Application: Connected Component

We want to answer the following type questions (fast):
Given vertices 𝑢, 𝑣 is there a path from 𝑢 to 𝑣 in 𝐺?

Idea: Create an array 𝐴 such that
For all 𝑢 in the same connected component, 𝐴[𝑢] is same.

Therefore, question reduces to
If A[u] = A[v]?

4

Initial State: All vertices undiscovered, 𝑐	 = 	0
For 𝑣 = 1 to 𝑛 do
 If state(𝑣) != fully-explored then
 Run BFS(𝑣)
 Set 𝐴 𝑢 = 𝑐 for each 𝑢 found in BFS(𝑣)
 𝑐	 = 	𝑐	 + 	1

Note: We no longer initialize to undiscovered in the BFS
subroutine

Total Cost: 𝑂(𝑚 + 𝑛)
In every connected component with 𝑛! vertices and 𝑚!
edges BFS takes time 𝑂 𝑚! + 𝑛! .

Note: one can use DFS instead of BFS.
5

BFS Application: Connected Component

Connected Components

Lesson: We can execute any algorithm on disconnected
graphs by running it on each connected component.

We can use the previous algorithm to detect connected
components.
There is no overhead, because the algorithm runs in time
𝑂(𝑚 + 𝑛).

So, from now on, we can (almost) always assume the input
graph is connected.

6

7

BFS Application: Shortest Paths

1

2 3

10

54

9

12

8

13

6 7

11

BFS Tree gives shortest
paths from 1 to all vertices

0

1

2

3

4

Bipartite Graphs
Definition: An undirected graph 𝐺 = (𝑉, 𝐸) is bipartite
 if you can partition the node set into 2 parts (say, blue/red
or left/right) so that
 all edges join nodes in different parts
 i.e., no edge has both ends in the same part.

Application:
• Scheduling: machine=red, jobs=blue
• Stable Matching: men=blue, wom=red

8

a bipartite graph

Testing Bipartiteness
Problem: Given a graph 𝐺, is it bipartite?

Many graph problems become:
• Easier/Tractable if the underlying graph is bipartite (matching)
Before attempting to design an algorithm, we need to
understand structure of bipartite graphs.

9

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite graph G another drawing of G

An Obstruction to Bipartiteness
Lemma: If a graph contains an odd length cycle, then the
graph is not bipartite.
(If 𝐺 is bipartite, then it does not contain an odd length
cycle.)

Proof: We cannot 2-color an odd cycle, let alone 𝐺.

10

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

?

A Characterization of Bipartite Graphs
Lemma: Let 𝐺 be a connected graph, and let 𝐿0, … , 𝐿! be the
layers produced by BFS(𝑠). Exactly one of the following holds.

(i) No edge of 𝐺 joins two nodes of the same layer, and 𝐺 is
bipartite.

(ii) An edge of 𝐺 joins two nodes of the same layer, and
𝐺	contains an odd-length cycle (and hence is not bipartite).

11
Case (i)

L1 L2 L3

Case (ii)

L1 L2 L3

A Characterization of Bipartite Graphs
Lemma: Let 𝐺 be a connected graph, and let 𝐿0, … , 𝐿! be the
layers produced by BFS(𝑠). Exactly one of the following holds.

(i) No edge of 𝐺 joins two nodes of the same layer, and 𝐺 is
bipartite.

(ii) An edge of 𝐺 joins two nodes of the same layer, and
𝐺	contains an odd-length cycle (and hence is not bipartite).

Proof. (i)
Suppose no edge joins two nodes in the same layer.

All edges join nodes on adjacent levels.

12
Case (i)

L1 L2 L3

Bipartition:
 blue = nodes on odd levels,
 red = nodes on even levels.

A Characterization of Bipartite Graphs
Lemma: Let 𝐺 be a connected graph, and let 𝐿0, … , 𝐿! be the
layers produced by BFS(𝑠). Exactly one of the following holds.

(i) No edge of 𝐺 joins two nodes of the same layer, and 𝐺 is
bipartite.

(ii) An edge of 𝐺 joins two nodes of the same layer, and
𝐺	contains an odd-length cycle (and hence is not bipartite).

Proof. (ii)
Suppose {𝑥, 𝑦} is an edge & 𝑥, 𝑦 in same level 𝐿".
Let 𝑧 = their lowest common ancestor in BFS tree.
Let 𝐿# be level containing 𝑧.
Consider cycle that takes edge from 𝑥 to 𝑦,
then tree from 𝑦 to 𝑧, then tree from 𝑧 to 𝑥.

Its length is 1 + 𝑗 − 𝑖 + (𝑗 − 𝑖), which is odd.
13

z = lca(x, y)

Obstruction to Bipartiteness
Corollary: A graph 𝐺 is bipartite if and only if it contains no
odd length cycles.

Furthermore, one can test bipartiteness using BFS.

14

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

Obstruction to Bipartiteness
Corollary: A graph 𝐺 is bipartite if and only if it contains no
odd length cycles.

Furthermore, one can test bipartiteness using BFS.

Bipartiteness testing algorithm:
• Run BFS with an arbitrary start vertex
• Construct the BFS tree with the start vertex as root
• If each non-tree edge of G connects two vertices at

different levels in the rooted BFS tree, then output yes.
• Otherwise, output no.

15

BFS Summary

Breadth First Search (BFS): Explore vertices according to
the order of the discovery of vertices
Property:
• BFS tree
• Level = distance (length of shortest path) from the initial

vertex
• Every edge connect two vertices at the same or adjacent

levels
Applications of BFS:
• Finding connected components of a graph
• Finding shortest path for unit-length graphs
• Testing bipartiteness

16

Depth First Search

Follow the first path you find
as far as you can go; back up
to last unexplored edge when
you reach a dead end,
then go as far you can

Naturally implemented using recursive calls or a stack

17

DFS(s) – Recursive version

Initialization: mark all vertices undiscovered

DFS(𝑣)
Mark 𝑣 discovered

for each edge {𝑣, 𝑥}
 if (𝑥 is undiscovered)
 DFS(𝑥)

Mark 𝑣 fully-explored

18

19

DFS(A)
A,1

B J

I

H

C

G

FD

E

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack
 (Edge list):

A (B,J)

st[] =
{1}

20

DFS(A)
A,1

B,2 J

I

H

C

G

FD

E

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)
B (A,C,J)

st[] =
{1,2}

21

DFS(A)
A,1

B,2 J

I

H

C,3

G

FD

E

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)

st[] =
{1,2,3}

22

DFS(A)
A,1

B,2 J

I

H

C,3

G

FD,4

E

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)

st[] =
{1,2,3,4}

23

DFS(A)
A,1

B,2 J

I

H

C,3

G

FD,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)

st[] =
{1,2,3,4,5}

24

DFS(A)
A,1

B,2 J

I

H

C,3

G

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)

st[] =
{1,2,3,4,5,
6}

25

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)
G (C,F)

st[] =
{1,2,3,4,5,
6,7}

26

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)
G (C,F)

st[] =
{1,2,3,4,5,
6,7}

27

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)

st[] =
{1,2,3,4,5,
6}

28

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)

st[] =
{1,2,3,4,5}

29

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)

st[] =
{1,2,3,4}

30

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)

st[] =
{1,2,3}

31

DFS(A)
A,1

B,2 J

I

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)

st[] =
{1,2,3,8}

32

DFS(A)
A,1

B,2 J

I,9

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
I (H)

st[] =
{1,2,3,8,9}

33

DFS(A)
A,1

B,2 J

I,9

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)

st[] =
{1,2,3,8}

34

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)

st[] =
{1,2,3,8,
10}

35

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)

st[] =
{1,2,3,8,10
,11}

36

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
L (J,K,M)

st[] =
{1,2,3,8,10
,11,12}

37

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
L (J,K,M)
M (L)

st[] =
{1,2,3,8,10
,11,12,13}

38

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
L (J,K,M)

st[] =
{1,2,3,8,10
,11,12}

39

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)

st[] =
{1,2,3,8,10
,11}

40

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)

st[] =
{1,2,3,8,
10}

41

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)

st[] =
{1,2,3,8,
10}

42

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)

st[] =
{1,2,3,8}

43

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)

st[] =
{1,2,3}

44

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)
B (A,C,J)

st[] =
{1,2}

45

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)
B (A,C,J)

st[] =
{1,2}

46

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)

st[] =
{1}

47

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

A (B,J)

st[] =
{1}

48

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
 (Edge list)

 TA-DA!!

st[] = {}

49

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Edge code:
Tree edge
Back edge

50

DFS(A) A,1

B,2

J,10

I,9

H,8

C,3

G,7

F,6

D,4

E,5

K,11
L,12

M,13

Edge code:
Tree edge
Back edge
No Cross Edges!

Properties of (undirected) DFS
Like BFS(𝑠):
• DFS(𝑠) visits 𝑥 iff there is a path in G from 𝑠 to 𝑥

So, we can use DFS to find connected components
• Edges into then-undiscovered vertices define a tree –

the "DFS tree" of G

Unlike the BFS tree:
• The DFS tree isn't minimum depth
• Its levels don't reflect min distance from the root
• Non-tree edges never join vertices on the same or

adjacent levels

51

Non-Tree Edges in DFS
BFS tree ≠ DFS tree, but, as with BFS, DFS has found a
tree in the graph s.t. non-tree edges are "simple" in some
way.

All non-tree edges join a vertex and one of its
descendents/ancestors in the DFS tree

52

Non-Tree Edges in DFS
Lemma: For every edge {𝑥, 𝑦}, if {𝑥, 𝑦} is not in DFS tree, then
one of 𝑥 or 𝑦 is an ancestor of the other in the tree.

Proof:
Suppose that 𝑥 is visited first.
Therefore DFS(𝑥) was called before DFS(𝑦)

Since {𝑥, 𝑦} is not in DFS tree, 𝑦 was visited when the edge {𝑥, 𝑦}
was examined during DFS(𝑥)

Therefore 𝑦 was visited during the call to DFS(𝑥) so 𝑦 is a
descendant of 𝑥.

53

