CS 401: Computer
Algorithm |

DFS / Topological Sort

Xiaorul Sun

Homework 1

Homework 1 will be out later today (Due Feb 18)

Writing homework
The first 5 questions are for all the students

Question 6 is for graduate student only (Undergraduate students
who work on Question 6 receive at most 3 bonus points)

Submit your homework to gradescope

Guidelines:

You can collaborate, but you must write solutions on your own

Your solution should be clear, well-organized, and concise. Spell out
main idea.

Sanity Check: Make sure you use assumptions of the problem
You can use Al/online tools, but you cannot copy Al/online solutions.

Late homework will be penalized at a rate of 10% of the initial grade
|oer late day (e.g. if your homework receives 80 points and you are
te for 4 days, you get 48 points)

Correctness proofs of ALGORITHMS are NOT REQUIRED

Graph Traversal

Walk (via edges) from a fixed starting vertex s to all vertices
reachable from s.

* Breadth First Search (BFS): Order nodes in successive
layers based on distance from s

* Depth First Search (DFS): More natural approach for
exploring a maze;

Applications of BFS:

* Finding shortest path for unit-length graphs
* Finding connected components of a graph
« Testing bipartiteness

Depth First Search

Follow the first path you find
as far as you can go; back up
to last unexplored edge when
you reach a dead end,

then go as far you can

Naturally implemented using recursive calls or a stack

DFS(s) — Recursive version

Initialization: mark all vertices undiscovered

DFS(v)
Mark v discovered

for each edge {v, x}
If (x Is undiscovered)
DFS(x)

Mark v fully-explored

Color code:

D F S (A) undiscovered

discovered
fully-explored

Suppose edge lists)
PP gelists o N Call Stack

at each vertex . . o
aresorted @ [B Yereereenne. @ (Edge list):
alphabeticall

i ’ ‘ Y A (B,J)

.
‘e,
IS
*
L

o0 0 O .

11}

Color code:
undiscovered
discovered
fully-explored

Call Stack:

"@ (Edge list)
i " A (BJ)

B (A,C,J)

. 11,2}

Color code:
undiscovered
discovered
fully-explored

Call Stack:

"@ (Edge list)
3 K A (B.J)

B (KZ.J)

C (B,D,G,H)

{1,2,3}

Color code:
undiscovered
discovered
fully-explored

Call Stack:

@ (Edge list)
3) A (BJ)

B (K.2,J)
C(B.B,GH)
D (C,E,F)

{1,2,3,4}

Color code:

undiscovered
discovered
fully-explored
. Call Stack:
@ (Edge list)
S A (B.J)
S B (X.Z,J)

C(B.B,G,H)
D (Z.E,F)

@@ @ @ E (D’F)

500 O .

{1,2,3,4,5}

10

Color code:

undiscovered
discovered
fully-explored
. Call Stack:
@ (Edge list)
S A (B.J)
SN B (X.Z,J)

C(B.B,G,H)
D (Z.E,F)

77N E (BF)
F (D,E,G)

@ @ @ @ st] =
{1,2,3,4,5,
6}

11

Color code:
undiscovered

discovered
fully-explored
. Call Stack:
@ (Edge list)
S A (B.J)
A B (X.Z,J)

C(B.B,G,H)
D (Z.E,F)

: ey : " e
' F(DE.2)
: ; G(C,F)

= ONONNON=

{1121314151
6,7}

12

Color code:
undiscovered

discovered
fully-explored
. Call Stack:
@ (Edge list)
S A (B.J)
A B (X.Z,J)

C(B.B,G,H)
D (Z.E,F)

N TN) EEs
(67 - (B 2)
. < on

= ONONNON=

{1121314151
6,7}

13

Color code:
undiscovered

discovered
fully-explored
. Call Stack:
@ (Edge list)
:': E ""‘ A (B 1‘])
Soor B (X.Z,J)

C(B.B,G,H)
D (Z.E,F)

. Py : " D@22
' F(DE.2)

S ONONNON=

{1121314151
6}

14

Color code:
undiscovered

discovered
fully-explored
. Call Stack:
@ (Edge list)
S A (B.J)
SN B (X.Z,J)

C(B.B,G,H)
D (Z.E,F)

L4 *
Lz [} *
U n “
L4 ™ .
L4 = .
: " .
N u .
|| S [] .
L4
O.)
[N
u []

O ONONNON=

{1,2,3,4,5}

15

Color code:
undiscovered
discovered
fully-explored

Call Stack:

@ (Edge list)
3) A (BJ)

B (K.Z.9)
C(BP,GH)

OEONONNON

{1,2,3,4}

16

Color code:
undiscovered
discovered
fully-explored

Call Stack:

"@ (Edge list)
-l A (B.J)

B (XZ.J)
C(B.B,G,H)

{1,2,3}

17

Color code:
undiscovered

discovered
fully-explored
. Call Stack:
@ (Edge list)
S A g ;122
:w é ““‘ B , ’J)
C(B.B.8 M)
: H(C,I,J)

ORF:

{1,2,3,8}

18

Color code:
undiscovered

discovered
fully-explored
. Call Stack:
@ (Edge list)
S A (B.J)
SN B (X,Z,J)

C (B.B.8.H)
H(ZXJ)

OO "

OR-:

{1,2,3,8,9}

19

Color code:
undiscovered

discovered
fully-explored
. Call Stack:
@ (Edge list)
S A g 2
:w é ““‘ B ’ ’J)
C (B.B.8.H)
:= : H(Z XJ)

ORF:

{1,2,3,8}

20

Color code:

..
IS
e
.

undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A &]Z) J)
C (B.B.2.H)
H (€ 43)

J (A,B,HK,L)

st] =
{1,2,3,8,
10}

21

Color code:

undiscovered

discovered
@ fully-explored

Call Stack:
(Edge list)

A &]Z))
C(B.B.2H)
H (2 X2)

J (KBHKL)
K (J,L)

st] =
{1,2,3,8,10
11}

22

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

A &]Z))
C(B.B.2H)
H (2 X2)

3 (MBHMK,L)
K (HLY

L (J,K,M)

st] =
{1,2,3,8,10
11,12}

23

Color code:

D FS(A) undiscovered

discovered
@ fully-explored

e, Call Stack:

@ @ (Edge list)

’ A(BJ)

B (KX.Z.J)
(c3, .2k,

> H(Z.43)

' 3 WEHKL
1) (us) (L) «Gy

L (VM)

M(L)
..... @ @ @ st] =

{1,2,3,8,10

11,12,13)
® 24

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

A%Z))
B(XZ,J

C (B.B.8.H)
H(Z X3)

3 (KBHKL)
K (LY

L (M)

st] =
{1,2,3,8,10
11,12}

25

Color code:

D F S (A) undiscovered

discovered
@ fully-explored

Call Stack:

@ @ (Edge list)
A%Z))
. B ’ ,.J

@ C (B.B.E.H)
s H (Z ¥3)

| J (KBHKL)
@) () - &

----- D O O .

{1,2,3,8,10

11}
Es) :

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

A %Z))
CEB.EH
H (2 12)

3 (KBMKL)

st[] =
{1,2,3,8,
10}

27

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

A %Z))
C(B.B.2H)
H (2 X2)

3 (KBHKY)

st[] =
{1,2,3,8,
10}

28

Color code:

D F S (A) undiscovered

discovered
@ fully-explored

Call Stack:

@ @ (Edge list)
A%Z))
., B | ,.J

@ C (B.B.8.H)
ool

----- ONONNCE

{1,2,3,8}

@ 29

Color code:

D F S (A) undiscovered

discovered
@ fully-explored

Call Stack:

@ @ (Edge list)
A%Z))
“ B ’ ,.J

@ ‘.“ C (g, JZ g H)

----- D O O .

{1,2,3}

@ 30

Color code:

D F S (A) undiscovered

discovered
@ fully-explored

‘oo, Call Stack:
@ @ (Edge list)
“ A (B"])

@ «“‘ B (ﬂ,g, J)

----- ONOEENTR-=

11,2}

Color code:

D F S (A) undiscovered

discovered
@ fully-explored

‘oo, Call Stack:
@ @ (Edge list)
“ A (B"])

@ B (KL

----- ONOEENTR-=

11,2}

Color code:

D F S (A) undiscovered

discovered
@ fully-explored

‘oo, Call Stack:

@ (Edge list)

L
L 4
.
2

“‘ A (B"])

1}

Color code:

D F S (A) undiscovered

discovered
@ fully-explored

Call Stack:

@ (Edge list)
A (B2)

L
L 4

.
2

1}

@ 34

Color code:

D F S (A) undiscovered

discovered
@ fully-explored

‘oo, Call Stack:

@ (Edge list)

L 4
.
2

%, TA-DA!!

@ ‘

.

.

| L 2
@ @ @

st = {}

Edge code:
Tree edge
Back edge

36

37

Tree edge
Back edge =sssss
No Cross Edges!

Edge code:

% 2e .
.
*
*
*
o @
@0 m
@ IlIlIlIIIIIIIIIIIIIIIIIIIIIII@
@ EEEEEEEEEER

<
7] (&)
L
a

Properties of (undirected) DFS

Like BFS(s):

DFS(s) visits x iff there is a path in G from s to x
So, we can use DFS to find connected components

Edges into then-undiscovered vertices define a tree —
the "DFS tree" of G

Unlike the BFS tree:

The DFS tree isn't minimum depth
Its levels don't reflect min distance from the root

Non-tree edges never join vertices on the same or
adjacent levels

38

Non-Tree Edges in DFS

BFS tree # DFS tree, but, as with BFS, DFS has found a
tree in the graph s.t. non-tree edges are "simple" in some
way.

All non-tree edges join a vertex and one of its
descendents/ancestors in the DFS tree

39

Directed Graph and Topological
Ordering

Directed Graphs

edge (2, 3) is an incoming
edge for vertex 3
edge §3, 8) Is an outgoing
edge for vertex 3

Directed Graphs

Node = intersection, edge = one-way street

: =
Three Dots and A Dash Q ' 9 Howl at the Tribune T°Wefe SP+ Parking Q g
Moon Chicago | o 0gc
z HubSi@ ; = = 2
e The Wrigley Building €
& ienaiTiz e Wrigley Buildin
% Siena Tavern @ giey | 29 _ . :
Untitled Supper Club (D A Sheraton Grand Chicago @
. (X)Merchandise Mart Dusableiglcds @
Chicago Architecture Q Chicado
Steakhouse @ , t Foundation Riverwglk .
wyndham Grand 5 :
Ehicago Riverfront @ Swissotel'Chici
W Wacker Dr - @ Radisson Blu Aqua
L Renaissance @ S Hotel, Chicago
° Chicaago Downtowr 3 rairmont Cnicago
a iy et Harold W_ashmgton Millennium Park = .Lake Shor
- College, City College... e g % East Park
. + Clark/Lake[@ ; E Lake St g
The Chica oTheatreQ ; oo
. Prudential Plaza Q e @ MingHin Cui
: - DLake P ¢ S
Richard J. Daley Center @ Randolph/Wabash [E Randoiph St Harris Theater for E Randolph,St
~ B Music and Dance '
e Pleasso @ . @ Chicago Cultural Center’ : e
Washington [0 Jay Pritzker Pavilion Q !
gton St - ‘

@

na:_nn. MM

7 USEQEM N

Millanninim

42

Precedence Constraints

In a directed graph, an edge (i,j) means task i must occur
before task j.

Applications
« Course prerequisite:
course i must be taken before]
« Compilation:
must compile module i before j
« Computing overflow:
output of job i Is part of input to job j
« Manufacturing or assembly:
sand it before paint it

43

Directed Acyclic Graphs (DAG)

Def: A DAG is a directed acyclic graph, i.e.,
one that contains no directed cycles.

Def. Atopological order of a directed graph G = (V, E) is an
ordering of its nodes as v4, v, ..., 1, SO that for every edge

(v;,v;) we have i < j.

a topological ordering of that DAG—
a DAG all edges left-to-right "

DAGSs: A Sufficient Condition

Lemma: If ¢ has a topological order, then G is a DAG.

Proof. (by contradiction)

Suppose that ¢ has a topological order 1,2, ...,n and that ¢ also
has a directed cycle C.

Let i be the lowest-indexed node in C, and let j be the node just
before i; thus (j, 1) is an (directed) edge.
By our choice of i, we have i < j.

On the other hand, since (j,i) isanedgeand 1,...,nisa
topological order, we must have j < i, a contradiction

the directed cycle C

@Qé—»(')@é@@@@

the supposed topological order: 1,2,...,n

45

DAGS: A Sufficient Condition

G hasa
topological order

G is a DAG

46

Every DAG has a source node

Lemma: If G i1s a DAG, then G has a node with no incoming edges (i.e., a
source).

Proof. (by contradiction)
Suppose that ¢ is a DAG and it has no source

Pick any node v, and begin following edges backward from v. Since v
has at least one incoming edge (u, v) we can walk backward to wu.

Then, since u has at least one incoming edge (x, u), we can walk
backward to x.

Repeat until we visit a node, say w, twice.

Let C be the sequence of nodes encountered between successive visits
tow. Cisacycle.

47

DAG => Topological Order

Lemma: If G i1s a DAG, then G has a topological order

Proof. (by induction on n)

Base case: trueifn = 1.

Hypothesis: Every DAG with n — 1 vertices has a topological ordering.
Inductive Step: Given DAG withn > 1 nodes, find a source node v.
G — {v}isaDAG, since deleting v cannot create cycles.

Reminder: Always remove
vertices/edges to use hypothesis

By hypothesis, G — { v } has a topological ordering.
Place v first in topological ordering; then append nodes of ¢ — {v}
In topological order. This is valid since v has no incoming edges.

48

A Characterization of DAGS

G has a
topological order

)
C—

G is a DAG

49

Topological Order Algorithm 1. Example

50

Topological Order Algorithm 1: Example

Topological order: 1, 2, 3,4,5,6,7

Running time: O(n+m)
« Adjacency list

o Maintain # outgoing edge for each node

	Slide 1: CS 401: Computer Algorithm I
	Slide 2: Homework 1
	Slide 3: Graph Traversal
	Slide 4: Depth First Search
	Slide 5: DFS(s) – Recursive version
	Slide 6: DFS(A)
	Slide 7: DFS(A)
	Slide 8: DFS(A)
	Slide 9: DFS(A)
	Slide 10: DFS(A)
	Slide 11: DFS(A)
	Slide 12: DFS(A)
	Slide 13: DFS(A)
	Slide 14: DFS(A)
	Slide 15: DFS(A)
	Slide 16: DFS(A)
	Slide 17: DFS(A)
	Slide 18: DFS(A)
	Slide 19: DFS(A)
	Slide 20: DFS(A)
	Slide 21: DFS(A)
	Slide 22: DFS(A)
	Slide 23: DFS(A)
	Slide 24: DFS(A)
	Slide 25: DFS(A)
	Slide 26: DFS(A)
	Slide 27: DFS(A)
	Slide 28: DFS(A)
	Slide 29: DFS(A)
	Slide 30: DFS(A)
	Slide 31: DFS(A)
	Slide 32: DFS(A)
	Slide 33: DFS(A)
	Slide 34: DFS(A)
	Slide 35: DFS(A)
	Slide 36: DFS(A)
	Slide 37: DFS(A)
	Slide 38: Properties of (undirected) DFS
	Slide 39: Non-Tree Edges in DFS
	Slide 40: Directed Graph and Topological Ordering
	Slide 41: Directed Graphs
	Slide 42: Directed Graphs
	Slide 43: Precedence Constraints
	Slide 44: Directed Acyclic Graphs (DAG)
	Slide 45: DAGs: A Sufficient Condition
	Slide 46: DAGs: A Sufficient Condition
	Slide 47: Every DAG has a source node
	Slide 48: DAG => Topological Order
	Slide 49: A Characterization of DAGs
	Slide 50: Topological Order Algorithm 1: Example
	Slide 51: Topological Order Algorithm 1: Example

