
CS 401: Computer

Algorithm I

Topological Ordering / Greedy

Algorithms

Xiaorui Sun

1

Stuff

Homework 1 Submission is open

Several lecture video recordings have no audio

• I have uploaded videos from the previous year for your
reference

• Please ignore any administrative content in the old videos

Topological Ordering

DAG and Topological Order

Def: A DAG is a directed acyclic graph, i.e.,

one that contains no directed cycles.

Def: A topological order of a directed graph G = (V, E) is an
ordering of its nodes as 𝑣1, 𝑣2, … , 𝑣𝑛 so that for every edge
(𝑣𝑖 , 𝑣𝑗) we have 𝑖 < 𝑗.

4
a DAG

2 3

6 5 4

7 1

a topological ordering of that DAG–

all edges left-to-right

1 2 3 4 5 6 7

A Characterization of DAGs

5

G has a

topological order
G is a DAG

DAG => Topological Order

Lemma: If 𝐺 is a DAG, then 𝐺 has a node with no incoming edges (i.e., a

source).

Lemma: If 𝐺 is a DAG, then 𝐺 has a topological order

Proof. (by induction on n)

Base case: true if 𝑛 = 1.

Hypothesis: Every DAG with 𝑛 − 1 vertices has a topological ordering.

Inductive Step: Given DAG with 𝑛 > 1 nodes, find a source node 𝑣.

𝐺 − { 𝑣 } is a DAG, since deleting 𝑣 cannot create cycles.

By hypothesis, 𝐺 − { 𝑣 } has a topological ordering.

Place 𝑣 first in topological ordering; then append nodes of 𝐺 − {𝑣}

in topological order. This is valid since 𝑣 has no incoming edges.
6

Reminder: Always remove

vertices/edges to use hypothesis

7

Topological Order Algorithm 1: Example

2 3

6 5 4

7 1

8

Topological order: 1, 2, 3, 4, 5, 6, 7

Topological Order Algorithm 1: Example

2 3

6 5 4

7 1

1 2 3 4 5 6 7

Running time: O(n+m)

• Adjacency list

• Maintain # outgoing edge for each node

Greedy Algorithms

10

Algorithm Design Principles

• Greedy algorithms

• Divide and conquer

• Dynamic programming

Common idea: Divide large and complex problem

into smaller problems

11

Greedy Algorithms

• High level idea

• Solution is built in small steps

• Decisions on how to build the solution are made to

optimize some criterion without looking to the future

• Want the ‘best’ current partial solution as if the

current step were the last step

12

Greedy Algorithms

• High level idea

• Solution is built in small steps

Independent set Vertex coloring

13

Greedy Algorithms

• High level idea

• Solution is built in small steps

• Decisions on how to build the solution are made to

optimize some criterion without looking to the future

• Want the ‘best’ current partial solution as if the

current step were the last step

• General Recipe:

• Order the input in a good way

• Go over the input one by one and make decision on

each input with a good strategy

Interval Scheduling

• Job j starts at 𝑠(𝑗) and finishes at 𝑓(𝑗).

• Two jobs compatible if they don’t overlap.

• Goal: find maximum subset of mutually compatible jobs.

14

Time

0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

Greedy Strategy

Sort the jobs in some order. Go over the jobs and take
jobs that are compatible with the previous jobs already
taken.

Main question:

• What order?

• Does it give the optimum answer?

• Why?

15

Possible Approaches for Inter Sched

Sort the jobs in some order . Go over the jobs and take jobs that are

compatible with the previous jobs already taken.

[Shortest interval] Consider jobs in ascending order of interval length

𝑓 𝑗 − 𝑠(𝑗).

[Earliest start time] Consider jobs in ascending order of start time 𝑠(𝑗).

[Earliest finish time] Consider jobs in ascending order of finish time 𝑓(𝑗).

16

Possible Approaches for Inter Sched

Sort the jobs in some order . Go over the jobs and take jobs that are

compatible with the previous jobs already taken.

[Shortest interval] Consider jobs in ascending order of interval length

𝑓 𝑗 − 𝑠(𝑗).

[Earliest start time] Consider jobs in ascending order of start time 𝑠(𝑗).

[Earliest finish time] Consider jobs in ascending order of finish time 𝑓(𝑗).

17

a b c

d

a b

c

Greedy Alg: Earliest Finish Time

Consider jobs in increasing order of finish time. Take each job

provided it’s compatible with the ones already taken.

Implementation. O(n log n).
• Remember job 𝑗∗ that was added last to A.

• Job 𝑗 is compatible with A if 𝑠 𝑗 ≥ 𝑓(𝑗∗).

18

Sort jobs by finish times so that f(1)  f(2)  ...  f(n).

𝑨 ← ∅
for j = 1 to n {

 if (job j compatible with 𝑨)
 𝑨 ← 𝑨 ∪ {𝒋}
}

return 𝑨

Greedy Alg: Example

19

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

0 1 2 3 4 5 6 7 8 9 10 11

B CA ED F G H

Correctness

• The output is compatible. (This is by construction.)

How to show it gives maximum number of jobs?

Let 𝑖1, 𝑖2, 𝑖3, ⋯ be jobs picked by greedy (ordered by finish time)

Let 𝑗1, 𝑗2, 𝑗3, ⋯ be an optimal solution (ordered by finish time)

How about proving 𝑖𝑘 = 𝑗𝑘 for all 𝑘?

No, there can be multiple optimal solutions.

Idea: Prove that greedy outputs the “best” optimal solution.

Given two compatible orders, which is better?

The one finish earlier.

How to prove greedy gives the “best”?

Induction: it gives the “best” during every iteration.

20

Correctness

Theorem: Greedy algorithm is optimal.

Proof: (technique: “Greedy stays ahead”)

Let 𝑖1, 𝑖2, 𝑖3, ⋯ , 𝑖𝑘 be jobs picked by greedy, 𝑗1, 𝑗2, 𝑗3, ⋯ , 𝑗𝑚 those

in some optimal solution in order.

We show 𝑓(𝑖𝑟)  𝑓(𝑗𝑟)

for all 𝑟, by induction on 𝑟.

Base Case: 𝑖1 chosen to have min finish time, so 𝑓(𝑖1)  𝑓(𝑗1).

IH: 𝑓(𝑖𝑟)  𝑓 𝑗𝑟 for some r

IS: Since 𝑓 𝑖𝑟 ≤ 𝑓 𝑗𝑟 ≤ 𝑠(𝑗𝑟+1), 𝑗𝑟+1 is among the candidates

considered by greedy when it picked 𝑖𝑟+1, & it picks min finish,

so 𝑓 𝑖𝑟+1 ≤ 𝑓(𝑗𝑟+1)

Observe that we must have 𝑘 ≥ 𝑚, else 𝑗𝑘+1 is among

(nonempty) set of candidates for 𝑖𝑘+1.
21

Greedy stays ahead: At each step any other solution has a worse

value for some criterion that eventually implies optimality

This example: criterion = finish time

Lesson

Order is important for greedy algorithms

• In general, the order gives priorities to different elements

(the most important element is ordered first)

• This example: the job can be finished earliest is the most

important job because finishing this job gives more

freedom to finish other jobs

• If you want to solve a problem by greedy, first think

about what is the “right” order of the elements

Greedy stays ahead

• A useful strategy to argue why the solution is the best

22

	Slide 1: CS 401: Computer Algorithm I
	Slide 2: Stuff
	Slide 3: Topological Ordering
	Slide 4: DAG and Topological Order
	Slide 5: A Characterization of DAGs
	Slide 6: DAG => Topological Order
	Slide 7: Topological Order Algorithm 1: Example
	Slide 8: Topological Order Algorithm 1: Example
	Slide 9: Greedy Algorithms
	Slide 10: Algorithm Design Principles
	Slide 11: Greedy Algorithms
	Slide 12: Greedy Algorithms
	Slide 13: Greedy Algorithms
	Slide 14: Interval Scheduling
	Slide 15: Greedy Strategy
	Slide 16: Possible Approaches for Inter Sched
	Slide 17: Possible Approaches for Inter Sched
	Slide 18: Greedy Alg: Earliest Finish Time
	Slide 19: Greedy Alg: Example
	Slide 20: Correctness
	Slide 21: Correctness
	Slide 22: Lesson

