
CS 401: Computer
Algorithm I

DFS / Topological Ordering
Xiaorui Sun

1

2

DFS(A) A,1

B,2

J,10

I,9

H,8

C,3

G,7

F,6

D,4

E,5

K,11
L,12

M,13

Edge code:
Tree edge
Back edge
No Cross Edges!

Properties of (undirected) DFS
Like BFS(𝑠):
• DFS(𝑠) visits 𝑥 iff there is a path in G from 𝑠 to 𝑥

So, we can use DFS to find connected components
• Edges into then-undiscovered vertices define a tree –

the "DFS tree" of G

Unlike the BFS tree:
• The DFS tree isn't minimum depth
• Its levels don't reflect min distance from the root
• Non-tree edges never join vertices on the same or

adjacent levels

3

Non-Tree Edges in DFS
BFS tree ≠ DFS tree, but, as with BFS, DFS has found a
tree in the graph s.t. non-tree edges are "simple" in some
way.

All non-tree edges join a vertex and one of its
descendents/ancestors in the DFS tree

This property is useful for an O(n+m) time algorithm of
Homework 1 Problem 5 4

Non-Tree Edges in DFS
Lemma: For every edge {𝑥, 𝑦}, if {𝑥, 𝑦} is not in DFS tree, then
one of 𝑥 or 𝑦 is an ancestor of the other in the tree.

Proof:
Suppose that 𝑥 is visited first.
Therefore DFS(𝑥) was called before DFS(𝑦)

Since {𝑥, 𝑦} is not in DFS tree, 𝑦 was visited when the edge {𝑥, 𝑦}
was examined during DFS(𝑥)

Therefore 𝑦 was visited between the start of DFS(𝑥) and the
examination of {𝑥, 𝑦} in DFS(𝑥)

So 𝑦 is a descendant of 𝑥.

5

Directed Graph and Topological
Ordering

Directed Graphs
edge (2, 3) is an incoming
edge for vertex 3
edge (3, 8) is an outgoing
edge for vertex 3

7

1

2
10

9

8

3

4

5
6

7

11
12

13
Multi edge

self loop

Node = intersection, edge = one-way street

Directed Graphs

8

Precedence Constraints
In a directed graph, an edge (𝑖, 𝑗) means task 𝑖 must occur
before task 𝑗.

Applications
• Course prerequisite:
 course 𝑖 must be taken before 𝑗
• Compilation:
 must compile module 𝑖	before 𝑗
• Computing overflow:
 output of job 𝑖 is part of input to job 𝑗
• Manufacturing or assembly:
 sand it before paint it

9

Directed Acyclic Graphs (DAG)
Def: A DAG is a directed acyclic graph, i.e.,
one that contains no directed cycles.

Def: A topological order of a directed graph G = (V, E) is an
ordering of its nodes as 𝑣!, 𝑣", … , 𝑣# so that for every edge
(𝑣$, 𝑣%) we have 𝑖	 < 	𝑗.

10
a DAG

2 3

6 5 4

7 1
a topological ordering of that DAG–
all edges left-to-right

1 2 3 4 5 6 7

DAGs: A Sufficient Condition
Lemma: If 𝐺 has a topological order, then 𝐺 is a DAG.

Proof. (by contradiction)
Suppose that 𝐺 has a topological order 1,2, … , 𝑛 and that 𝐺 also
has a directed cycle 𝐶.
Let 𝑖 be the lowest-indexed node in 𝐶, and let 𝑗 be the node just
before 𝑖; thus (𝑗, 𝑖) is an (directed) edge.
By our choice of 𝑖, we have 𝑖	 < 	𝑗.
On the other hand, since (𝑗, 𝑖) is an edge and 1,… , 𝑛 is a
topological order, we must have 𝑗	 < 	𝑖, a contradiction

11

1 i j n

the directed cycle C

the supposed topological order: 1,2,…,n

DAGs: A Sufficient Condition

12

G has a
topological order G is a DAG?

Every DAG has a source node
Lemma: If 𝐺 is a DAG, then 𝐺 has a node with no incoming edges (i.e., a
source).

Proof. (by contradiction)
Suppose that 𝐺 is a DAG and it has no source
Pick any node 𝑣, and begin following edges backward from 𝑣. Since 𝑣
has at least one incoming edge (𝑢, 𝑣) we can walk backward to 𝑢.
Then, since 𝑢 has at least one incoming edge (𝑥, 𝑢), we can walk
backward to 𝑥.
Repeat until we visit a node, say w, twice.
Let C be the sequence of nodes encountered between successive visits
to w. C is a cycle.

13

w x u v

C
w x u v

DAG => Topological Order
Lemma: If 𝐺 is a DAG, then 𝐺 has a topological order

Proof. (by induction on n)
Base case: true if 𝑛	 = 	1.
Hypothesis: Every DAG with 𝑛 − 1 vertices has a topological ordering.
Inductive Step: Given DAG with 𝑛	 > 	1 nodes, find a source node 𝑣.
𝐺	 −	{	𝑣	} is a DAG, since deleting 𝑣 cannot create cycles.

By hypothesis, 𝐺	 −	{	𝑣	} has a topological ordering.
Place 𝑣 first in topological ordering; then append nodes of 𝐺 − {𝑣}

in topological order. This is valid since 𝑣 has no incoming edges.

14

Reminder: Always remove
vertices/edges to use hypothesis

A Characterization of DAGs

15

G has a
topological order G is a DAG

16

Topological Order Algorithm 1: Example

2 3

6 5 4

7 1

17

Topological order: 1, 2, 3, 4, 5, 6, 7

Topological Order Algorithm 1: Example

2 3

6 5 4

7 1

1 2 3 4 5 6 7

Running time: O(n+m)
• Adjacency list
• Maintain # outgoing edge for each node

