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DFS / Topological Ordering
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DFS(A) A,1

B,2

J,10

I,9

H,8

C,3

G,7

F,6

D,4

E,5

K,11
L,12

M,13

Edge code:
Tree edge
Back edge
No Cross Edges!



Properties of (undirected) DFS
Like BFS(𝑠):
• DFS(𝑠) visits 𝑥 iff there is a path in G from 𝑠 to 𝑥 

So, we can use DFS to find connected components
• Edges into then-undiscovered vertices define a tree – 

the "DFS tree" of G

Unlike the BFS tree: 
• The DFS tree isn't minimum depth
• Its levels don't reflect min distance from the root
• Non-tree edges never join vertices on the same or 

adjacent levels
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Non-Tree Edges in DFS
BFS tree ≠ DFS tree, but, as with BFS, DFS has found a 
tree in the graph s.t. non-tree edges are "simple" in some 
way.

All non-tree edges join a vertex and one of its 
descendents/ancestors in the DFS tree

This property is useful for an O(n+m) time algorithm of 
Homework 1 Problem 5 4



Non-Tree Edges in DFS
Lemma: For every edge {𝑥, 𝑦}, if {𝑥, 𝑦} is not in DFS tree, then 
one of 𝑥 or 𝑦 is an ancestor of the other in the tree.

Proof: 
Suppose that 𝑥 is visited first.
Therefore DFS(𝑥) was called before DFS(𝑦)

Since {𝑥, 𝑦} is not in DFS tree, 𝑦 was visited when the edge {𝑥, 𝑦} 
was examined during DFS(𝑥)

Therefore 𝑦 was visited between the start of DFS(𝑥) and the 
examination of {𝑥, 𝑦} in DFS(𝑥)

So 𝑦 is a descendant of 𝑥.
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Directed Graph and Topological 
Ordering



Directed Graphs
edge (2, 3) is an incoming 
edge for vertex 3
edge (3, 8) is an outgoing 
edge for vertex 3
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self loop



Node = intersection, edge = one-way street

Directed Graphs
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Precedence Constraints
In a directed graph, an edge (𝑖, 𝑗) means task 𝑖 must occur 
before task 𝑗.

Applications
• Course prerequisite:
 course 𝑖 must be taken before 𝑗
• Compilation: 
 must compile module 𝑖	before 𝑗
• Computing overflow:
 output of job 𝑖 is part of input to job 𝑗
• Manufacturing or assembly: 
 sand it before paint it
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Directed Acyclic Graphs (DAG)
Def: A DAG is a directed acyclic graph, i.e., 
one that contains no directed cycles.

Def:  A topological order of a directed graph G = (V, E) is an 
ordering of its nodes as 𝑣!, 𝑣", … , 𝑣# so that for every edge 
(𝑣$, 𝑣%) we have 𝑖	 < 	𝑗.
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all edges left-to-right
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DAGs: A Sufficient Condition
Lemma: If 𝐺 has a topological order, then 𝐺 is a DAG.

Proof.  (by contradiction)
Suppose that 𝐺 has a topological order 1,2, … , 𝑛 and that 𝐺 also 
has a directed cycle 𝐶.
Let 𝑖 be the lowest-indexed node in 𝐶, and let 𝑗 be the node just 
before 𝑖; thus (𝑗, 𝑖) is an (directed) edge.
By our choice of 𝑖, we have 𝑖	 < 	𝑗.
On the other hand, since (𝑗, 𝑖) is an edge and 1,… , 𝑛 is a 
topological order, we must have 𝑗	 < 	𝑖, a contradiction
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the directed cycle C

the supposed topological order:  1,2,…,n



DAGs: A Sufficient Condition
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G has a 
topological order G is a DAG?



Every DAG has a source node
Lemma: If 𝐺 is a DAG, then 𝐺 has a node with no incoming edges (i.e., a 
source).

Proof.  (by contradiction)
Suppose that 𝐺 is a DAG and it has no source
Pick any node 𝑣, and begin following edges backward from 𝑣.  Since 𝑣 
has at least one incoming edge (𝑢, 𝑣) we can walk backward to 𝑢.
Then, since 𝑢 has at least one incoming edge (𝑥, 𝑢), we can walk 
backward to 𝑥.
Repeat until we visit a node, say w, twice.
Let C be the sequence of nodes encountered between successive visits 
to w.  C is a cycle.
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w x u v
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DAG => Topological Order
Lemma: If 𝐺 is a DAG, then 𝐺 has a topological order

Proof.  (by induction on n)
Base case:  true if 𝑛	 = 	1.
Hypothesis: Every DAG with 𝑛 − 1 vertices has a topological ordering.
Inductive Step: Given DAG with 𝑛	 > 	1 nodes, find a source node 𝑣.
𝐺	 −	{	𝑣	} is a DAG, since deleting 𝑣 cannot create cycles.

By hypothesis, 𝐺	 −	{	𝑣	} has a topological ordering.
Place 𝑣 first in topological ordering; then append nodes of 𝐺 − {𝑣}

in topological order. This is valid since 𝑣 has no incoming edges. 
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Reminder: Always remove 
vertices/edges to use hypothesis



A Characterization of DAGs

15

G has a 
topological order G is a DAG
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Topological Order Algorithm 1:  Example
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Topological order:  1, 2, 3, 4, 5, 6, 7

Topological Order Algorithm 1:  Example

2 3

6 5 4

7 1

1 2 3 4 5 6 7

Running time: O(n+m)
• Adjacency list
• Maintain # outgoing edge for each node


