Homework 1: Due May 9, 2022

Please answer at least three of the following questions.

Problem 1:

Recall that in the randomized dynamic connectivity algorithm, for each value of $1 / 2,1 / 4,1 / 8, \ldots$, we sample graphs by sampling each edge with the given value. In addition, for each sampled graph, we assign each edge a random binary string as the name for the edge so that we can use exclusive or to sample edges going out from a set of vertices.
Assume the graph has n vertices, and we need to handle $t=O(n)$ graph updates. Assume for each probability, we maintain $O\left((\log n)^{4}\right)$ sampled graphs. How many bits of the binary names for edges are needed to make sure that all the updates are handled correctly with probability $1-1 / n$? Briefly give your justification.

Problem 2:

Present an algorithm to construct a spanning tree for a given unweighted graph $G=(V, E)$ with total stretch $O\left(m^{1+o(1)}\right)$ (all the edges used must be in E). In particular, specify the parameters you used. No justification.

Problem 3:

Prove that in the Bartal's algorithm to construct low stretch tree, $\mathbb{E}\left[d_{T}(u, v)\right] \leq \frac{d_{G}(u, v) \cdot \log n}{\Delta / 2}$, where Δ is the diameter of the graph, $d_{T}(u, v)$ is the distance between two vertices in the Bartal tree, and $d_{G}(u, v)$ is the distance between two vertices in the given graph.

Problem 4:

Let L_{G} be the laplacian matrix of a graph. Prove the following statements:

1. 0 is always an eigenvalue of L_{G}.
2. The dimension of eigenvectors for eigenvalue 0 is the same as the number of connected components in G.

Problem 5:

Given a graph that is a ϕ-expander. Present an algorithm to find all the cuts of size at most c in time $O\left(n \cdot(c / \phi)^{O(c)}\right)$. No justification.

