1 Last time and today

Previously: Graph decomposition (low-diameter, expander decomposition)

- Utilize nice properties on good edges (intra-component)
- Upper bound number of bad edges (inter-component)

Starting today: Graph sparsification (edge, vertex sparsification)

- Preserve some properties of the original graph
- Bound the size of sparsified graph for computation efficiency

2 Graph sparsification

2.1 Edge sparsification

$$
G=(V, E) \longrightarrow H=\left(V, E^{\prime}\right)
$$

Such that: property on $H \approx$ property on G, and $\left|E^{\prime}\right| \ll|E|$. Eg., Spanning forest for graph connectivity property.

2.2 Vertex sparsification

$$
G=(V, E),(\text { terminal set }) T \subset V \longrightarrow H=\left(V^{\prime}, E^{\prime}\right)
$$

Such that: $T \subset V^{\prime}$, property on T in $H \approx$ property on T in $G,\left|V^{\prime}\right| \ll|V|,\left|E^{\prime}\right| \ll|E|$. Eg., weighted graph for distance property.

3 Vertex sparsification for min-cut property

3.1 The problem

Given $G=(V, E), T \subset V$, construct a vertex sparsifier $H=\left(V^{\prime}, E^{\prime}\right)$ such that: $T \subset V^{\prime}$, and for all partitions of T into $\left(T^{\prime}, T \backslash T^{\prime}\right)$:

$$
\operatorname{mincut}_{H}\left(T^{\prime}, T \backslash T^{\prime}\right)=\operatorname{mincut}_{G}\left(T^{\prime}, T \backslash T^{\prime}\right)
$$

With additional parameter of threshold c :
If mincut ${ }_{G}\left(T^{\prime}, T \backslash T^{\prime}\right) \leq c$, then mincut ${ }_{H}\left(T^{\prime}, T \backslash T^{\prime}\right)=$ mincut $_{G}\left(T^{\prime}, T \backslash T^{\prime}\right)$.
If mincut ${ }_{G}\left(T^{\prime}, T \backslash T^{\prime}\right)>c$, then mincut ${ }_{H}\left(T^{\prime}, T \backslash T^{\prime}\right)>c$.

3.2 The algorithm

Definition 1 (Cut containment set) A set of edges E^{\prime} in G is called a cut containment set if $\forall\left(T^{\prime}, T \backslash T^{\prime}\right)$ with mincut ${ }_{G}\left(T^{\prime}, T \backslash T^{\prime}\right) \leq c, \exists$ such a min-cut with edges C and $C \subset E^{\prime}$.

Definition 2 (Intersecting-all-mincut set (old definition)) Given $G=(V, E)$, terminal set $T \subset V$ and threshold c, we say a set of edges F in G is a set of edges intersecting all min terminal cuts if $\forall\left(T^{\prime}, T \backslash T^{\prime}\right)$ with mincut ${ }_{G}\left(T^{\prime}, T \backslash T^{\prime}\right) \leq c, \exists$ such a min-cut with edges C and $C \cap F \neq \emptyset$.

Definition 3 (Intersecting-all-mincut set (new definition)) Given $G=(V, E)$, terminal set $T \subset V$ and threshold c, we say a set of edges F in G is a set of edges intersecting all min terminal cuts if after removing F from G, $\forall\left(T^{\prime}, T \backslash T^{\prime}\right)$ with mincut ${ }_{G}\left(T^{\prime}, T \backslash T^{\prime}\right) \leq c$, no connected component in $G \backslash F$ contains all the edges of a terminal min-cut.

Theorem 4 For vertex sparsification with respect to the min-cut property with threshold parameter c, there exists a sparsifier of size $|T| \cdot c^{O(c)}$. (Can be improved to $|T| \cdot c^{3} \cdot \log ^{4} n$.)

Suppose we have a cut containment set E^{\prime}, we can construct a vertex sparsifier H from E^{\prime} in the following way:

- Remove edges in E^{\prime} from G, breaking G into several connected components.
- Shrink each connected component into 1 super-vertex in H.
- Connect vertices in H with corresponding edges in E^{\prime}.
- If terminal vertices u, v are merged into the same connected component (thus the terminal nodes are lost in H), add u, v as vertices in H, connect each with $c+1$ parallel edges to the super-vertex corresponding to the connected component they're in. (There were no min-cut of size $\leq c$ between them in G.)
Resulting H has number of edges (and vertices) $\leq\left|E^{\prime}\right|+|T| \cdot(c+1)$. Next we need to upper-bound size of E^{\prime}.

Claim 5 Given $G, T, c, \exists E^{\prime}$ st. $\left|E^{\prime}\right|=|T| \cdot c^{O(c)}$.
Proof idea: recursively build E^{\prime} using intersecting-all-set F :

- Initialize $E^{\prime}=\emptyset$.
- Find intersecting-all-set F_{c} in G for given $T=T_{0}$ and c.
- Remove all edges in F_{c} from G, add them to E^{\prime}, and add endpoints of edges in F_{c} to terminals: $G \leftarrow G \backslash F_{c}, E^{\prime} \leftarrow E^{\prime} \cup F_{c}, T_{1} \leftarrow T_{0} \cup\left\{u, v \mid(u, v) \in F_{c}\right\}$.
- Continue to find intersecting-all-set F_{c-1} with updated G and T_{1}, until $c=1$.
- Return E^{\prime} (which is $\cup_{i=1}^{c} F_{c}$).

Claim 6 Given G, T, c, the intersecting-all-set F_{c} is of size $\left|F_{c}\right| \leq|T| \cdot c$. (Each terminal vertex is incident to at most c edges that are on any qualifying min terminal cut.)

Proof of Claim 5 by induction:
Base case: $\left|F_{c}\right| \leq|T| \cdot c$.
Step 1: $\left|T_{1}\right| \leq|T|+2\left|F_{c}\right| \leq(1+2 c) \cdot|T|=O(c) \cdot|T|$, and $\left|F_{c-1}\right| \leq\left|T_{1}\right| \cdot c=O\left(c^{2}\right) \cdot|T|$.
General induction step: $\left|T_{i}\right| \leq\left|T_{i-1}\right|+2\left|F_{c-i+1}\right|=O\left(c^{i}\right) \cdot|T|,\left|F_{c-i}\right|=O\left(c^{i+1}\right) \cdot|T|$.
Finally, $\left|F_{1}\right|=O\left(c^{c}\right) \cdot|T|$.
$\left|E^{\prime}\right|=\left|\cup_{i=1}^{c} F_{c}\right|=c^{O(c)} \cdot|T|$.

